

STWA35N65DM2

N-channel 650 V, 0.093 Ω typ., 32 A MDmesh™ DM2 Power MOSFET in a TO-247 long leads package

Datasheet - production data

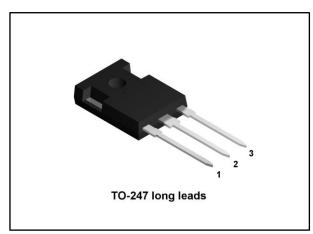
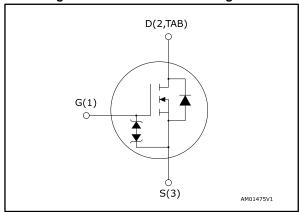



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D	P _{TOT}
STWA35N65DM2	650 V	0.110 Ω	32 A	250 W

- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

Switching applications

Description

This high voltage N-channel Power MOSFET is part of the MDmesh™ DM2 fast recovery diode series. It offers very low recovery charge (Q_{rr}) and time (t_{rr}) combined with low R_{DS(on)}, rendering it suitable for the most demanding high efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STWA35N65DM2	35N65DM2	TO-247 long leads	Tube

Contents STWA35N65DM2

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuits	8
4	Packag	e information	9
	4.1	TO-247 long leads package information	9
5	Revisio	n history	11

STWA35N65DM2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	±25	V
l-	Drain current (continuous) at T _{case} = 25 °C	32	۸
ID	Drain current (continuous) at T _{case} = 100 °C	20	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	90	Α
P _{TOT}	Total dissipation at T _{case} = 25 °C	250	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope 50		V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness 50		V/IIS
T _{stg}	Storage temperature range -55 to 150		°C
Tj	Operating junction temperature range	-55 (0 150	C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.5	90044
R _{thj-amb}	Thermal resistance junction-ambient 50		°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or non-repetitive	4	Α
E _{AS} ⁽¹⁾	Single pulse avalanche energy	1150	mJ

Notes:

 $^{(1)}Starting~T_{j}=25~^{\circ}C,~I_{D}=I_{AR},~V_{DD}=50~V.$

⁽¹⁾Pulse width is limited by safe operating area.

 $^{^{(2)}}I_{SD} \leq 32$ A, di/dt=900 A/ μ s, V $_{DS}$ peak < V $_{(BR)DSS}$, V $_{DD}$ = 80% V $_{(BR)DSS}$

 $^{^{(3)}}V_{DS} \le 520 \ V$

Electrical characteristics STWA35N65DM2

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	650			V
	Zoro goto voltago droin	$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V}$			1	
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V},$ $T_{case} = 125 \text{ °C}^{(1)}$			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±5	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 16 A		0.093	0.110	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions		Тур.	Max.	Unit
Ciss	Input capacitance		-	2540	ı	
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	115	ı	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	2.5	-	Pi
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 to 520 V, V _{GS} = 0 V	-	204	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	4.2	-	Ω
Q_g	Total gate charge	$V_{DD} = 520 \text{ V}, I_D = 32 \text{ A}, V_{GS} = 0$	-	56.3	-	
Qgs	Gate-source charge	to 10 V (see Figure 15: "Test	-	12.7	-	nC
Q _{gd}	Gate-drain charge	circuit for gate charge behavior")	-	27.6	-	

Notes:

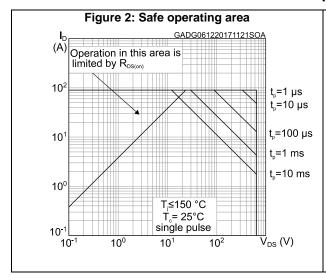
Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 325 V, I _D = 16 A,		23.4	-	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Test circuit for	ı	23	-	
t _{d(off)}	Turn-off delay time	resistive load switching times" and Figure 19: "Switching time waveform")	-	72	-	ns
t _f	Fall time		-	10.4	-	

⁽¹⁾Defined by design, not subject to production test.

 $^{^{(1)}}$ Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDs increases from 0 to 80% VDss.

Table 8: Source-drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		32	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		90	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 32 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 32 A, di/dt = 100 A/μs,	-	100		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load	-	0.42		μC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	8.4		Α
t _{rr}	Reverse recovery time	I _{SD} = 32 A, di/dt = 100 A/µs,	-	205		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C} \text{ (see}$ Figure 16: "Test circuit for		1.8		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	17.6		Α

Notes:

⁽¹⁾Pulse width is limited by safe operating area.

 $^{^{(2)}\}text{Pulse}$ test: pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

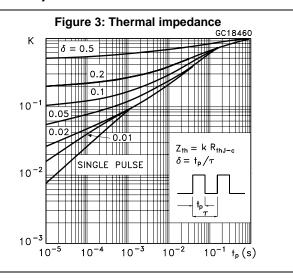
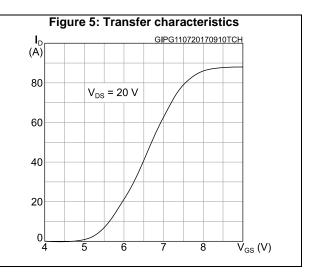
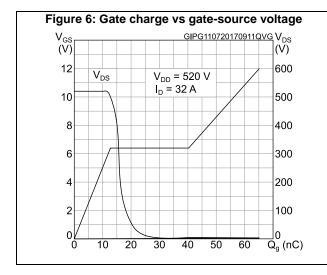




Figure 4: Output characteristics GIPG110720170910OCH I_D (A) V_{GS}= 9, 10 V 80 V_{GS} =8 V60 V_{GS}=7 V 40 20 V_{GS}=6 V 0 8 12 16 $\overline{V}_{DS}(V)$

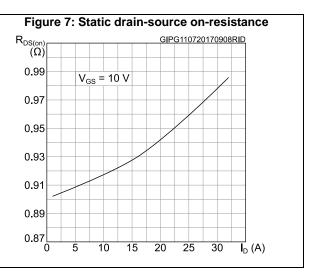
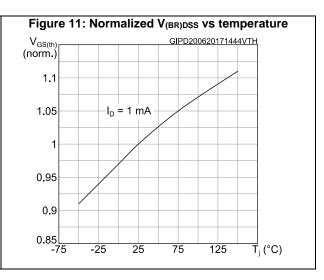
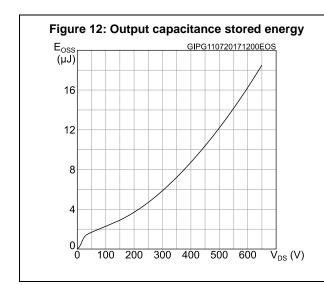
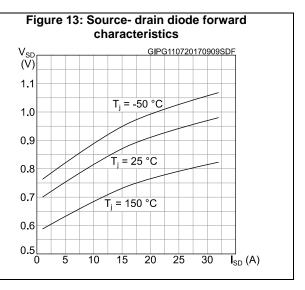





Figure 8: Capacitance variations GIPG110720170909CVR (pF) 10^{4} C_{ISS} 10^{3} 10² C_{oss} 10¹ f = 1 MHz C_{RSS} 10⁰ 10⁻¹ 10⁰ 10¹ 10² $\vec{V}_{DS}(V)$

Figure 9: Normalized gate threshold voltage vs temperature $V_{GS(th)} = \frac{V_{GS(th)}}{(norm.)} = \frac{GIPD200620171427VTH}{1}$

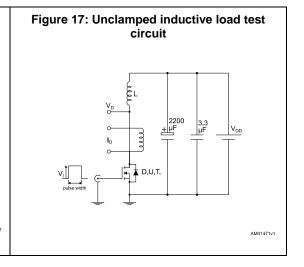
Test circuits STWA35N65DM2

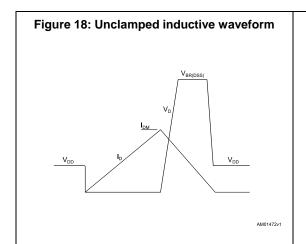
3 Test circuits

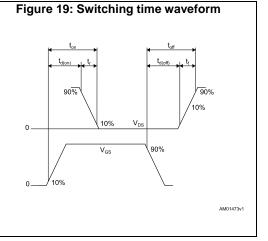
Figure 14: Test circuit for resistive load switching times

Figure 15: Test circuit for gate charge behavior

12 V 47 KΩ 100 Ω D.U.T.


12 V 47 KΩ VGD


14 V CONST 100 Ω D.U.T.


14 V CONST 100 Ω VGD

AM01469v1

Figure 16: Test circuit for inductive load switching and diode recovery times

577

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-247 long leads package information

HEAT-SINK PLANE øΡ E3 A2-Ď A1. *b2* (3x) b 8463846_2_F

Figure 20: TO-247 long leads package outline

Table 9: TO-247 long leads package mechanical data

Dim	3	mm	
Dim.	Min.	Тур.	Max.
Α	4.90	5.00	5.10
A1	2.31	2.41	2.51
A2	1.90	2.00	2.10
b	1.16		1.26
b2			3.25
b3			2.25
С	0.59		0.66
D	20.90	21.00	21.10
E	15.70	15.80	15.90
E2	4.90	5.00	5.10
E3	2.40	2.50	2.60
е	5.34	5.44	5.54
L	19.80	19.92	20.10
L1			4.30
Р	3.50	3.60	3.70
Q	5.60		6.00
S	6.05	6.15	6.25

STWA35N65DM2 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
21-Jul-2017	1	Initial release
06-Dec-2017	2	Document status changed from preliminary to production data. Updated Table 2: "Absolute maximum ratings" and Table 8: "Source-drain diode". Updated Section 2.1: "Electrical characteristics (curves)". Updated Figure 2: "Safe operating area". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STWA35N65DM2