

Low voltage high performance NPN power transistor

Features

- Very low collector-emitter saturation voltage
- High current gain characteristic
- Fast switching speed

Applications

- Emergency lighting
- LED drive
- Motherboard and hard disk drive
- Mobile equipment
- DC-DC converter, voltage regulation

Description

The device is a NPN transistor manufactured using new "PB-HCD" (power bipolar high current density) technology. The resulting transistor shows exceptional high gain performances coupled with very low saturation voltage.

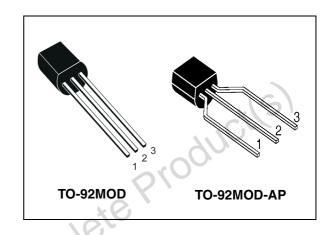


Figure 1. Internal schematic diagram

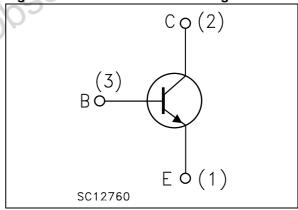


Table 1. Device summary

Order codes	Marking	Package	Packaging	
2STL1525	2STL1525	TO-92MOD	Bag	
2STL1525-AP	2STL1525	TO-92MOD-AP	Ammopack	

December 2010 Doc ID 16054 Rev 2 1/8

Electrical ratings 2STL1525

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CEX}	Collector-emitter voltage (V _{BE} = -1.5 V)	95	V
V _{CEO}	Collector-emitter voltage (I _B = 0)	25	V
V _{EBO}	Emitter-base voltage ($I_C = 0$)	5	٧
I _C	Collector current	5	Α
I _{CM}	Collector peak current (t _P < 5 ms)	10	Α
I _B	Base current	1	A
P _{TOT}	Total dissipation at T _{amb} = 25 °C	1.5	W
T _{STG}	Storage temperature	-65 to 150	°C
T _J	Max. operating junction temperature	150	°C

Table 3. Thermal data

Symbol		Parameter	Value	Unit	
	R_{thJA}	Thermal resistance junction-ambient max	83	°C/W	
L		OA	L		
		3(5)			
		oducils			
		000			
	6,				
3	(S)				
005018					
-WSU.					
Oh					

2 Electrical characteristics

 T_{case} = 25 °C unless otherwise specified.

Table 4. Electrical characteristics

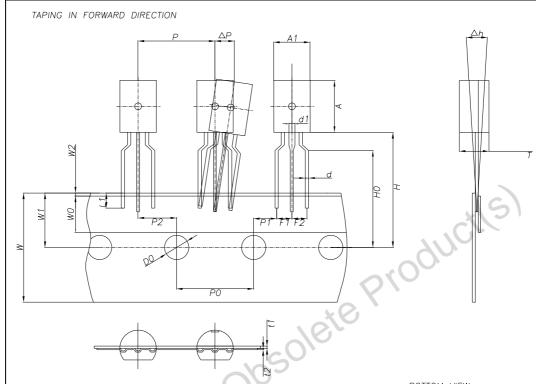
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector cut-off current (I _E = 0)	V _{CB} = 50 V			0.1	μΑ
I _{EBO}	Emitter cut-off current (I _C = 0)	V _{EB} = 4 V			0.1	μА
V _{(BR)CEX}	Collector-emitter breakdown voltage (V _{BE} = -1.5 V)	I _C = 1 mA	95			V
V _{(BR)CEO} (1)	Collector-emitter breakdown voltage (I _B = 0)	I _C = 10 mA	25	5		V
V _{(BR)EBO}	Emitter-base breakdown voltage $(I_C = 0)$	I _E = 100 μA	5			V
h _{FE} ⁽¹⁾	DC current gain	$\begin{split} I_{C} &= 0.5 \text{ A} & V_{CE} = 2 \text{ V} \\ I_{C} &= 3 \text{ A} & V_{CE} = 2 \text{ V} \\ I_{C} &= 5 \text{ A} & V_{CE} = 5 \text{ V} \end{split}$	150 100	150	500	
V _{CE(sat)} (1)	Collector-emitter saturation voltage	$I_C = 3 \text{ A}$ $I_B = 300 \text{ mA}$ $I_C = 3.5 \text{ A}$ $I_B = 40 \text{ mA}$		220	500	mV mV
V _{BE(sat)} (1)	Base-emitter saturation voltage	I _C = 3 A I _B = 300 mA			1.2	V
C _{CBO}	Collector-base capacitance (I _E = 0)	V _{CB} = 10 V, f = 1 MHz		20		pF
fτ	Transition frequency	V _{CE} = 10 V I _C = 50 mA		120		MHz
t _{on} t _{off}	Resistive load Turn-on time Turn-off time	$I_C = 1.5 \text{ A}$ $V_{CC} = 10 \text{ V}$ $I_{B1} = -I_{B2} = 150 \text{ mA}$		60 450		ns ns

^{1.} Pulse test: pulse duration \leq 300 μ s, duty cycle \leq 2%

Package mechanical data 3

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Table 5. TO-92MOD mechanical data


Table 5. TO-92N	MOD mechanical data		AUCL
Dim.		mm.	0.
	Min.	Тур.	Max.
A	4.7	10/0	5.1
A1	1.730	-0/	2.030
b	0.4	9	0.6
b1	0.9		1.1
С	0.4		0.5
D	5.8		6.2
D1	4.0		
E O	8.4		8.8
e		1.5	
e1	2.9		3.1
L	13.8		14.2
К			1.6
h	0.0		0.380

ပ $\mathbb{D}1$ e Product(s) \mathbb{D} b1 Obsolete Product(So) 8190862_B

Figure 2. TO-92MOD drawing mechanical data

577

TO-92MOD-AP ammopack dimension

Taping in Forward Direction

BOTTOM VIEW

		ITEM	SYMBOL	VALUE & TOLERANCE
		Body Width	A1	6.0 ± 0.2
		Body Eigth	Α	8.6 ± 0.2
		Body Thickness	T	4.9 ± 0.2
		Lead Wire Diameter	d	0.5 ± 0.05
		Lead Wire Diameter 1	d1	1.0 ± 0.05
	- 4	Pitch of component	P	12.7 ± 0.3
		Feed Hole Pitch	P0	12.7 ± 0.2
		Hole center to component center	P2	6.35 ± 0.3
		Lead to lead distance	F1, F2	2.5 ± 0.3
		Component alignment F-R	Δh	0 ± 1.0
10		Type width	W	18.0 +1.0, -0.5
		Hole down tape width	WO	6.0 ± 0.5
0/0501		Hole position	W 1	9.0 ± 0.5
		Hole down tape position	W2	1.0 MAX
		Height of component from tape center	Н	19.0 ± 1.0
		Lead wire clinch height	HO	16.0 ± 0.5
		Lead wire (tape portion)	L1	2.5 MIN
		Feed hole diameter	DO DO	4.0 ± 0.2
		Taped Lead Thickness	t 1	0.4 ± 0.05
		Carrier tape Thickness	t2	0.2 ± 0.05
		Position of Hole	P1	3.85 ± 0.03
		Component alignment	ΔΡ	0 ± 1.0
				Unit: mm

^{*}Dimensions in mm

8231868_B

577

^{*}Cumulative pitch error: 1.0mm/20 pitches

^{*}Groung paper tape: 0.5mm+/-0.1

2STL1525 Revision history

4 Revision history

Table 6. Document revision history

	Date	Revision	Changes
	31-Jul-2009	1	Initial release.
	01-Dec-2010	2	Document status promoted from preliminary data to datasheet. Updated package mechanical data <i>Table 5 on page 4</i> and <i>Figure 2 on page 5</i> .
Obsole	ie Pro	ducil	on page 3. Obsolete Product(S) S)

577

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

8/8 Doc ID 16054 Rev 2

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: 2STL1525-AP