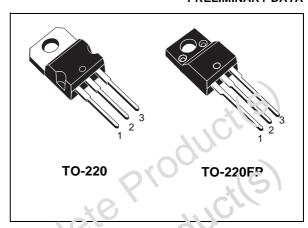


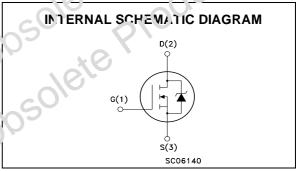
STP4NB50 STP4NB50FP

N-CHANNEL 500V - 2.5Ω - 3.8A - TO-220/TO-220FP PowerMesh™ MOSFET

PRELIMINARY DATA

TYPE	V _{DSS}	R _{DS(on)}	I _D
STP4NB50	500 V	< 2.8 Ω	3.8 A
STP4NB50FP	500 V	< 2.8 Ω	2.5 A


- TYPICAL $R_{DS}(on) = 2.5 \Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- VERY LOW INTRINSIC CAPACITANCES
- GATE CHARGE MINIMIZED


DESCRIPTION

Using the latest high voltage MESH OVERLAY™ process, STMicroelectronics has designed an advanced family of power MOSFETs with outstanding performances. The new patent pending strip layout coupled with the Company's proprieraty edge termination structure, gives the lowest RDS(on) per area exceptional avalanche and dv/dt capabilities and unrivalled gate charge and switching characteristics.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SWITH MODE POWER SUPPLIES (SMPS)

ABSOLUTE MAXIMUM RATINGS

Svribel	Parameter	Valu	Value	
<u> </u>	01	STP4NB50	STP4NB50FP	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	50	0	V
V _{DGR}	L rain-gate Voltage (R _{GS} = 20 kΩ)	50	0	V
V(iS	Gate- source Voltage	±3	0	V
	Drain Current (continuous) at T _C = 25°C	3.8	2.5	Α
ID	Drain Current (continuous) at T _C = 100°C	2.4	1.6	Α
I _{DM} (●)	Drain Current (pulsed)	15.2	15.2	Α
P _{TOT}	Total Dissipation at T _C = 25°C	80	35	W
	Derating Factor	0.64	0.28	W/°C
dv/dt	Peak Diode Recovery voltage slope	4.5	5	V/ns
V _{ISO}	Insulation Withstand Voltage (DC)	- 2500		V
T _{stg}	Storage Temperature	-65 to 150		°C
Tj	Max. Operating Junction Temperature	15	0	°C

(•)Pulse width limited by safe operating area

(1) $I_{SD} \le 4$ A, di/dt ≤ 200 A/ μ s, $V_{DD} \le V_{(BR)DSS}$, $T_i \le T_{JMAX}$

April 2003 1/7

STP4NB50 - STP4NB50FP

THERMAL DATA

		TO-220	TO-220FP	
Rthj-case	Thermal Resistance Junction-case Max	1.56	3.57	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5		°C/W
Tı	Maximum Lead Temperature For Soldering Purpose	30	0	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	3.8	A
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	220	lnJ

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED)

Symbol	Parameter	Test Conditions	Min Typ	. Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0$	500	. Cil	V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating		1	μΑ
	Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating T_C = 125 °C$	240,	50	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ±30V	2, 4	±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	2	3	4	V
R _{DS(on)}	Static Drain-รวน. ัดว	V _{GS} = 10V, I _D = 1.9 A		2.5	2.8	Ω
DYNAM:C	is , anci,	T 10 10	T			

Svribcl	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g ₄₅ (1)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_{D} = 1.9 \text{ A}$		2.3		S
C _{iss}	Input Capacitance	$V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$		400		pF
Coss	Output Capacitance			62		pF
C _{rss}	Reverse Transfer Capacitance			7.5		pF

A7/₃ 2/7

ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	$V_{DD} = 250V, I_D = 1.9 A$		11		ns
t _r	Rise Time	$R_G = 4.7\Omega V_{GS} = 10V$ (see test circuit, Figure 3)		8		ns
Qg	Total Gate Charge	V _{DD} = 400V, I _D = 3.8 A,		15	21	nC
Q_{gs}	Gate-Source Charge	$V_{GS} = 10V$		6.5		nC
Q_gd	Gate-Drain Charge			5		nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Jul:
t _{r(Voff)}	Off-voltage Rise Time	$V_{DD} = 400V$, $I_D = 3.8 A$,		8	. 6.	ns
t _f	Fall Time	$R_G = 4.7\Omega$, $V_{GS} = 10V$ (see test circuit, Figure 5)		5	00	ns
t _c	Cross-over Time	(000 1001 011 0111, 119 119 11)		14		ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current			300	3.8	Α
I _{SDM} (2)	Source-drain Current (pulsed)	1050	0		15.2	Α
V _{SD} (1)	Forward On Voltage	I _{SD} = 3.8 A V _G : 5	.0.		1.6	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 3.8 \text{ A}, \text{ ai/dt} = 100 \text{A/} \mu \text{s},$		245		ns
Q _{rr}	Reverse Recovery Charge	$V_{DD} = 100V$, $T_j = 150$ °C (see test circuit, Figure 5)		980		nC
I _{RRM}	Reverse Recovery Current	(S. W.St Girodit, 1 igure 0)		9		Α
0050	lete Product					

47/

Fig. 1: Unclamped Inductive Load Test Circuit

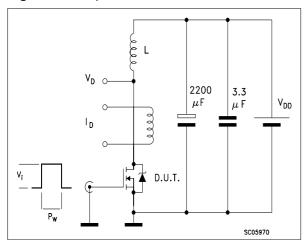


Fig. 3: Switching Times Test Circuit For Resistive Load

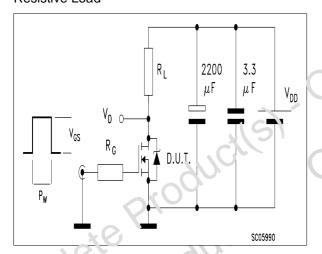


Fig. 5 That Circuit For Inductive Load Switching And Diode Recovery Times

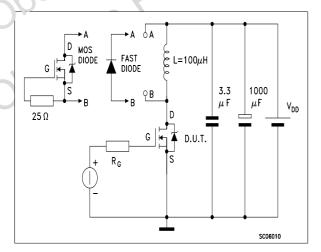
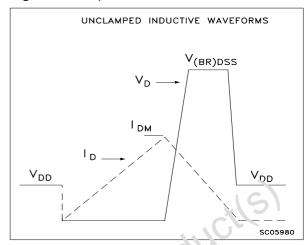
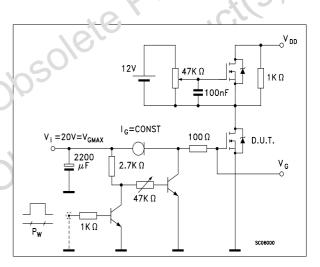
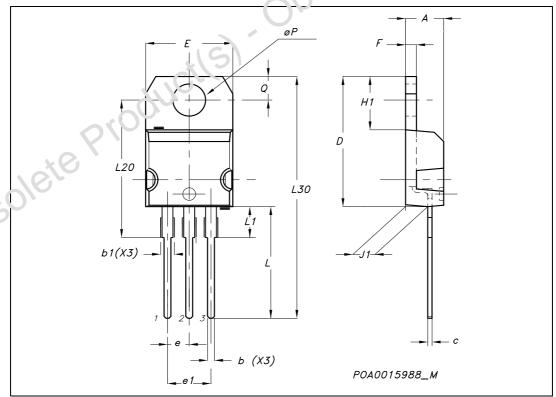


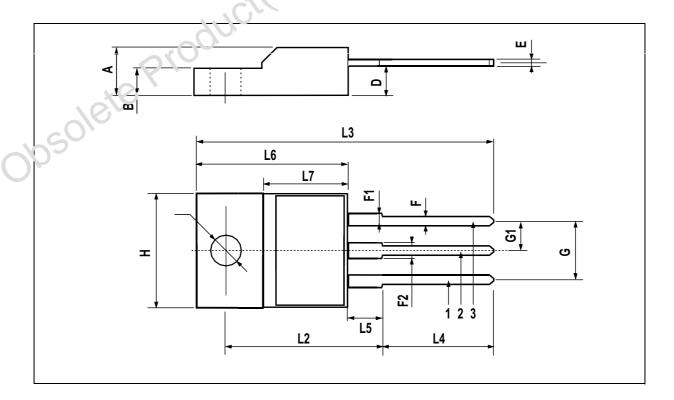
Fig. 2: Unclamped Inductive Waveform


Fig. 4: Gate Charge tos' Circuit

4/7

TO-220 MECHANICAL DATA


DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.20.2
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094	10	0.107
L	13		14	0.511	0/0	0.551
L1	3.50		3.93	0.137		0.154
L20		16.40		-46	0.645	
L30		28.90		18,	1.137	
øΡ	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

5/7

TO-220FP MECHANICAL DATA

DIM	mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.030
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195	40	0.204
G1	2.4		2.7	0.094	740	0.106
Н	10		10.4	0.393		0.409
L2		16		20,	0.630	
L3	28.6		30.6	(.126)		1.204
L4	9.8		10.6	.0385		0.417
L5	2.9		3.6	0.114		0.141
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3	16	3.2	0.118		0.126

Obsolete Productis). Obsolete Productis)

consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

47/.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STP4NB50