

High precision voltage regulator

Features

- Input voltage up to 40 V
- Output voltage adjustable from 2 to 37 V
- Positive or negative supply operation
- Series, shunt, switching or floating operation
- Output current to 150 mA without external pass transistor
- Adjustable current limiting

Description

The LM723 is a monolithic integrated programmable voltage regulator, assembled in 14-lead dual in-line plastic package. The circuit provides internal current limiting. When the output current exceeds 150 mA an external NPN or PNP pass element may be used. Provisions are made for adjustable current limiting and remote shutdown.

Order code	Package
LM723N	DIP-14
LM723CN	DIP-14

November 2007

Contents

1	Diagram
2	Pin configuration
3	Maximum ratings
4	Circuit
5	Electrical characteristics7
6	Typical performance characteristics9
7	Applications information12
8	Package mechanical data 18
9	Revision history

1 Diagram

2 Pin configuration

Figure 2.	Pin connections	(top	view)
-----------	-----------------	------	-------

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Devementer	Value			
	Farameter	LM723	LM723C	Unit	
VI	DC input voltage	40	40	V	
ΔV_{I-O}	Dropout voltage	40	40	V	
Ι _Ο	Output current	150	150	mA	
I _{REF}	Current from V _{REF}	15	25	mA	
T _{OP}	Operating Temperature	-55 to 125	0 to 70	°C	
T _{STG}	Storage Temperature	-65 to 150	-65 to 150	°C	
TJ	Junction Temperature	150	125	°C	

Table 3.Thermal data

Symbol	Parameter	DIP14	Unit
R _{thJA}	Thermal resistance junction-ambient Max	200	°C/W

4 Circuit

Figure 3. Test circuit (pin configuration relative to the plastic package)

5 Electrical characteristics

Table 4.Electrical characteristics for LM723 (refer to the test circuits, $T_A = 25$ °C, unless
otherwise specified.)

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit	
		V _I = 12 to 15 V			0.01	0.1		
$\Delta V_O / \Delta V_I$	Line regulation	V _I = 12 to 40 V			0.02	0.2	%	
		$V_{I} = 12$ to 15 V, $T_{A} = -55$ to	125°C			0.3		
	Load regulation	I _O = 1 to 50 mA			0.03	0.15	0/	
Δv ₀ /v ₀		$I_{O} = 1$ to 10 mA, $T_{A} = -55$ to	o 125°C			0.6	70	
V _{REF}	Reference voltage	I _{REF} = 160 μA		6.95	7.15	7.35	V	
SVR Supply voltage rejection	f _ 100 Hz to 10kHz	C _{REF} = 0		74		dB		
	Supply vollage rejection	$C_{\text{REF}} = 5\mu I$			86			
$\Delta V_O / \Delta T$	Output voltage drift					150	ppm/°C	
I _{SC}	Output current limit	$R_{SC} = 10\Omega, V_O = 0 V$			65		mA	
VI	Input voltage range			9.5		40	V	
Vo	Output voltage range					37	V	
V _O -V _I				3		38	V	
I _d	Quiescent current	V _I = 30V, I _O = 0 mA			2.3	5	mA	
K _{VH}	Long term stability				0.1		%/1000 hrs	
۹N		PW/ - 100 Hz to 10 kHz	C _{REF} = 0		20			
CIN	Output noise voitage	C _{REF} =			2.5		μν	

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit	
		V _I = 12 to 15 V			0.01	0.1		
$\Delta V_O / \Delta V_I$ Line regulation	Line regulation	V _I = 12 to 40 V			0.1	0.5	%	
		$V_{I} = 12$ to 15 V, $T_{A} = 0$ to 7	0°C			0.3		
		I _O = 1 to 50 mA			0.03	0.2	0/	
Δv ₀ /v ₀	Load regulation	$I_{O} = 1$ to 10 mA, $T_{A} = 0$ to 7	′0°C			0.6	70	
V _{REF}	Reference voltage	I _{REF} = 160 μA		6.8	7.15	7.5	V	
SVR Supply voltage rejection		C _{REF} = 0		74		dB		
	Supply voltage rejection	$T = 100 \text{ Hz to 10 kHz}$ $C_{\text{REF}} = 5$			86			
$\Delta V_O / \Delta T$	Output voltage drift					150	ppm/°C	
I _{SC}	Output current limit	$R_{SC} = 10\Omega, V_O = 0 V$			65		mA	
VI	Input voltage range			9.5		40	V	
Vo	Output voltage range			2		37	V	
V _O -V _I				3		38	V	
I _d	Quiescent current	$V_{I} = 30V, I_{O} = 0 \text{ mA}$			2.3	4	mA	
К _{VH}	Long term stability				0.1		%/1000 hrs	
oN		BW = 100 Hz to 10 kHz	C _{REF} = 0		20			
eN	Output noise voltage	$C_{\text{REF}} = 5\mu\text{F}$			2.5		μv	

Table 5.Electrical characteristics for LM723C (refer to the test circuits, $T_A = 25$ °C, unless
otherwise specified.)

G-4340/1

80 I_o(mA)

LM723

6 Typical performance characteristics

(unless otherwise specified $V_{O(NOM)} = 3.3 \text{ V}$)

v_o (v)

4

3

2

1

0

Vi = 12

R_{SC}= 10.0

20

25.

40

Figure 6. Current limiting characteristics vs Figure 7. junction temperature

Figure 8. Load regulation characteristics with current limiting

57

Load regulation characteristics without current limiting

Figure 9. Load regulation characteristics with current limiting

Figure 10. Line regulation vs voltage drop

Figure 12. Quiescent drain current vs input voltage

Load regulation vs voltage drop Figure 11.

Figure 13. Line transient response

Figure 15. Output impedance vs frequency

Output	Applicable figures	Fixed ou	Fixed output ± 5%		Output adjustable \pm 10% ⁽¹⁾		
Voltage		R1	R2	R1	P1	R2	
+3	16, 18, 20, 21, 24, 26	4.12	3.01	1.8	0.5	1.2	
+5	16, 18, 20, 21, 24, 26	2.15	4.99	0.75	0.5	2.2	
+6	16, 18, 20, 21, 24, 26	1.15	6.04	0.5	0.5	2.7	
+9	17, 18, 20, 21, 24, 26	1.87	7.15	0.75	1	2.7	
+12	17, 18, 20, 21, 24, 26	4.87	7.15	2	1	3	
+15	17, 18, 20, 21, 24, 26	7.87	7.15	3.3	1	3	
+28	17, 18, 20, 21, 24, 26	21	7.15	5.6	1	2	
+45	22	3.57	48.7	2.2	10	39	
+75	22	3.57	78.7	2.2	10	68	
+100	22	3.57	102	2.2	10	91	
+250	22	3.57	255	2.2	10	240	
-6 ⁽²⁾	18	3.57	2.43	1.2	0.5	0.75	
-9	18	3.48	5.36	1.2	0.5	2	
-12	18	3.57	8.45	1.2	0.5	3.3	
-15	18	3.65	11.5	1.2	0.5	4.3	
-28	18	3.57	24.3	1.2	0.5	10	
-45	23	3.57	21.2	2.2	10	33	
-100	23	3.57	97.6	2.2	10	91	
-250	23	3.57	249	2.2	10	240	

 Table 6.
 Resistor values (kΩ) for standard output voltages

1. Replace R1/R2 divider with the circuit of *Figure 27*.

2. V+ must be connected to a +3 V or greater supply.

Table 7. Formula for intermediate output voltages

	Conditions	
Outputs from 2 to 7V <i>Figure 16, 19, 20, 21, 24, 26</i> V _O =(V _{REF} xR ₂)/(R ₁ +R ₂)	Outputs from 4 to 250V <i>Figure 22</i> V _O =(V _{REF} /2)x[(R ₂ -R ₁)/R ₁] ; R ₃ =R ₄	Current Limit I _{LIMIT} =V _{SENSE} /R _{SC}
Outputs from 7 to 37V Figure 17, 19, 20, 21, 24, 26 V _O =V _{REF} x[(R ₁ +R ₂)/R ₂]	Outputs from -6 to -250V <i>Figure 18, Figure 23</i> V _O =(V _{REF} /2)x[(R ₁ +R ₂)/R ₁] ; R ₃ =R ₄	Foldback Current Limiting I _{KNEE} =[(V _O xR ₃)/(R _{SC} xR ₄)] x[V _{SENSE} x(R ₃ +R ₄)] / (R _{SC} xR ₄) I _{SHORTCKT} =(V _{SENSE} /R _{SC})x[(R ₃ +R ₄)/R ₄]

7 Applications information

Figure 16. Basic low voltage regulator (V₀ = 2 to 7 V)

Figure 17. Basic high voltage regulator ($V_0 = 7$ to 37 V)

Note:

 $R_3 = (R_1 x R_2)/(R_1 + R_2)$ for minimum temperature drift. R_3 may be eliminated for minimum component count. Typical performance Regulated output voltage......15 V Line regulation (Δ V₁ = 3 V)......1.5 mV Load regulation (Δ I₀ = 50 mA).....4.5 mV

Figure 18. Negative voltage regulator

Note: Typical performance Regulated output voltage......15 V Line regulation ($\Delta V_I = 3 V$)......1 mV Load regulation ($\Delta I_O = 100 \text{ mA}$).....2 mV

Figure 19. Positive voltage regulator (external NPN pass transistor)

R2

-v

co

SC06870

Note: Typical performance Regulated output voltage......5 V Line regulation ($\Delta V_{l} = 3 V$).....0.5 mV Load regulation ($\Delta I_O = 1 A$).....1.5 mV

C_{ref}

Figure 21. Foldback current limiting

Note: Typical performance

> Regulated output voltage......5 V Line regulation ($\Delta V_I = 3 V$).....0.5 mV Load regulation ($\Delta I_O = 10 \text{ mA}$)......1 mV Current limit knee......20 mA

14/21

Figure 22. Positive floating regulator

Note: Typical performance Regulated output voltage......100 V Line regulation (Δ V_I = 20 V)......15 mV Load regulation (Δ I_O = 50 mA)......20 mV

Figure 23. Negative floating regulator

Note: Typical performance Regulated output voltage.....-100 V Line regulation (Δ V_I = 20 V)......30 mV Load regulation (Δ I_O = 100 mA)......20 mV

Note: Typical performance Regulated output voltage......5 V Line regulation (Δ V_I = 30 V)......10 mV Load regulation (Δ I_O = 2 A)......80 mV

Figure 25. Remote shutdown regulator with current limiting

Load regulation ($\Delta I_{O} = 50 \text{ mA}$).....1.5 mV

LM723

Figure 26. Shunt regulator

Figure 27. Output voltage adjust

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Dim	mm.			inch.		
Dini.	Min.	Тур.	Max.	Min.	Тур.	Max.
a1	0.51			0.020		
В	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		15.24			0.600	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z	1.27		2.54	0.050		0.100

Plastic DIP-14 mechanical data

9 Revision history

ory
r

Date	Revision	Changes
21-Jun-2004	5	
22-Nov-2007	6	Added Table 1.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: <u>LM723N</u> <u>LM723CD013TR</u> <u>LM723CD</u>