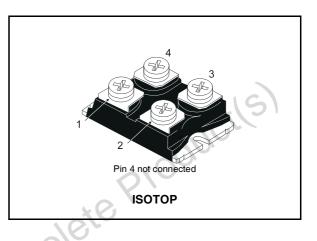
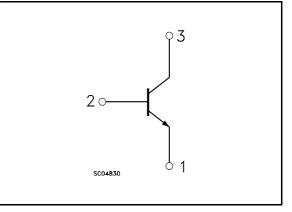


BUV298V


NPN transistor power module

General features


- NPN Transistor
- High current power bipolar module
- Very low R_{th} junction case
- Specific accidental overload areas
- Fully insulated package (U.L. compliant) for easy mounting
- Low internal parasitic inductance
- In compliance with the 2002/93/EC European Directive

Applications

- Motor control
- SMPS & UPS
- yosolete Productis

Internal schematic diagram

Order codes

Part Number	Marking	Package	Packing	
BUV298V	BUV298V	ISOTOP	Tube	

Contents

1	Electrical ratings
2	Electrical characteristics42.1Electrical characteristics (curves)52.2Test circuits and waveforms7
3	Package mechanical data9
4	Revision history
bsolf	Electrical ratings 3 Electrical characteristics 4 2.1 Electrical characteristics (curves) 5 2.2 Test circuits and waveforms 7 Package mechanical data 9 Revision history 11

1

Electrical ratings

Symbol	Parameter	Value	Unit
V_{CEV}	Collector-emitter voltage (V _{BE} = -5V)	850	V
V _{CEO(sus)}	Collector-emitter voltage ($I_B = 0$)	450	V
V _{EBO}	Emitter-base voltage ($I_C = 0$)	7	V
۱ _C	Collector current	50	А
I _{CM}	Collector peak current (t _P < 10ms)	75	Α
Ι _Β	Base current	10	А
I _{BM}	Base peak current (t _P < 10ms)	16	А
P _{tot}	Total dissipation at $T_c = 25^{\circ}C$	250	W
V _{isol}	Insulation insulation withstand voltage (RMS) from all four leads to external heatsink	2500	V
T _{stg}	Storage temperature	-65 to 150	°C
Т _Ј	Max. operating junction temperature	150	°C

Table 2.

Symbol	Parameter		Value	Unit
R _{thj-case}	Thermal resistance junction-case	max	0.5	°C/W
R _{thc-h}	Thermal resistance case heatsink with co applied	onductive grease max	0.05	°C/W
xe'				
5				

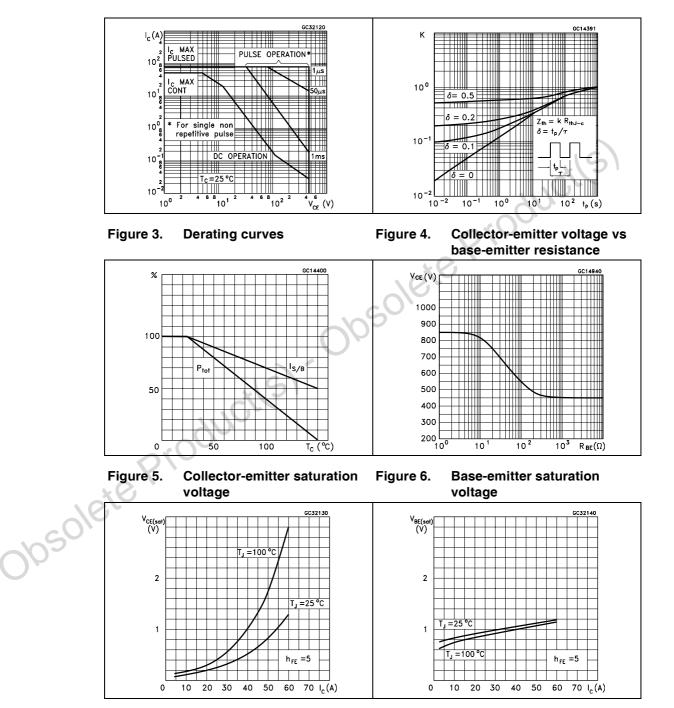
2 Electrical characteristics

 $(T_{case} = 25^{\circ}C \text{ unless otherwise specified})$

Table 3.	Electrical characteristics	

	Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	I _{CER}	Collector cut-off current (R_{BE} =5 Ω)	$V_{CE} = V_{CEV}$ $V_{CE} = V_{CEV}$ $T_j = 100^{\circ}C$			0.4 2	mA mA
	I _{CEV}	Collector cut-off current (V _{BE} =-5V)	$V_{CE} = V_{CEV}$ $V_{CE} = V_{CEV}$ $T_j = 100^{\circ}C$			0.4 2	mA mA
	I _{EBO}	Emitter cut-off current (I _C =0)	V _{EB} =5V		411	2	mA
	V _{CEO(sus)} ⁽¹⁾	Collector-emitter sustaining voltage (I _B = 0)	I _C =0.2A L =25mH V _{clamp} =450V	450	0		v
	h _{FE}	DC current gain	I _C =32A V _{CE} =5V		12		
	V _{CE(sat)} ⁽¹⁾	Collector-emitter saturation voltage	$I_{C} = 32A I_{B} = 6.4A$ $I_{C} = 32A I_{B} = 6.4A T_{j} = 100^{\circ}C$		0.35 0.6	1.2 2	v v
obsole	V _{BE(sat)} ⁽¹⁾	Base-emitter saturation voltage	$I_{C} = 32A I_{B} = 6.4A$ $I_{C} = 32A I_{B} = 6.4A T_{j} = 100^{\circ}C$		1 0.9	1.5 1.5	V V
	di _c /dt	Rate of rise of On-state collector	$V_{CC} = 300V R_C = 0 t_p = 3\mu s$ $I_{B1} = 9.6A T_j = 100^{\circ}C$	160	210		A/µs
	V _{CE(3µs)}	Collector-emitter dynamic voltage	$V_{CC} = 300V R_C = 9.3\Omega$ $I_{B1} = 9.6A T_j = 100^{\circ}C$		4.5	8	V
	V _{CE(5µs)}	Collector-emitter dynamic voltage	$V_{CC} = 300V R_C = 9.3\Omega$ $I_{B1} = 9.6A T_j = 100^{\circ}C$		2.5	4	V
	t _s t _f t _c	Storage time Fall time Cross-over time	$I_C = 32A$ $V_{CC} = 50V$ $V_{BB} = -5V$ $R_{BB} = 0.39\Omega$ $I_{B1} = 6.4A$ $V_{clamp} = 450V$ L = 78µH $T_j = 100^\circ C$		3.2 0.25 0.5	4.5 0.4 0.7	μs μs μs
	V _{CEW}	Maximum collector- emitter voltage without snubber	$\begin{array}{l} I_{CWoff} = \!$	450			v

Note (1) Pulsed duration = $300\mu s$, duty cycle $\leq 1.5\%$



5

2.1 Electrical characteristics (curves)

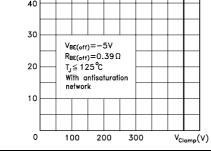

Figure 1. Safe operating area

Figure 2. Thermal impedance

V_{CE} (V)

Figure 7. Reverse biased SOA Figure 8. Forward biased SOA

100

200

300

T_J≦125℃ †r≦0.5μs

40

20

0

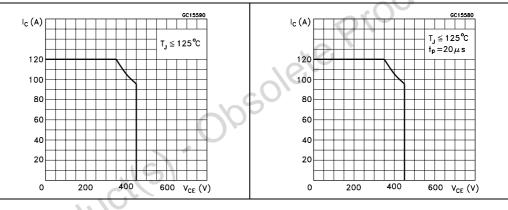


Figure 11. Switching times Inductive load

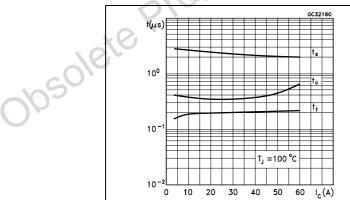


Figure 12. Switching times Inductive load vs temperature

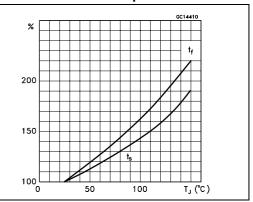
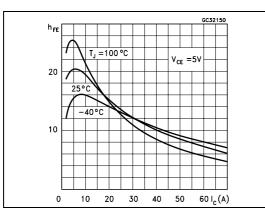



Figure 13. DC current gain

2.2 Test circuits and waveforms

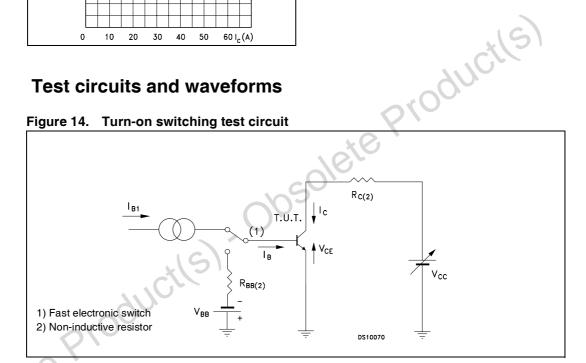
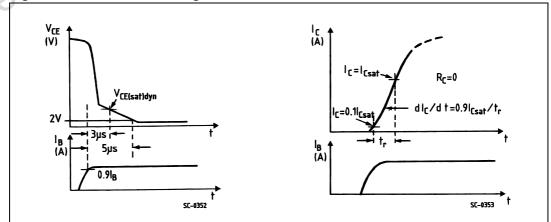



Figure 15. Turn-on switching waveforms

57

050

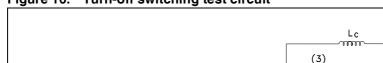


Figure 16. Turn-off switching test circuit

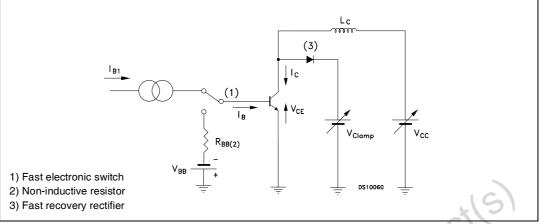
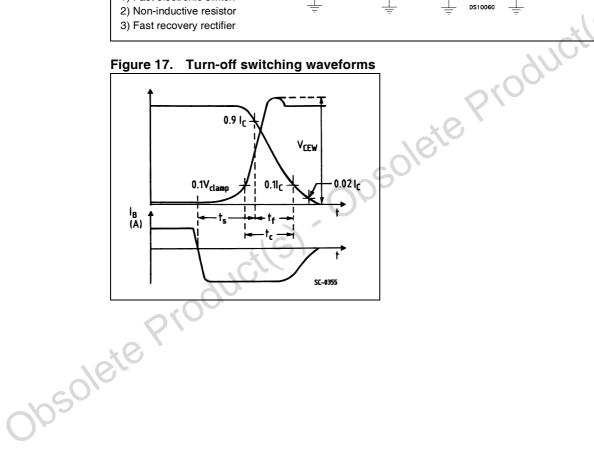
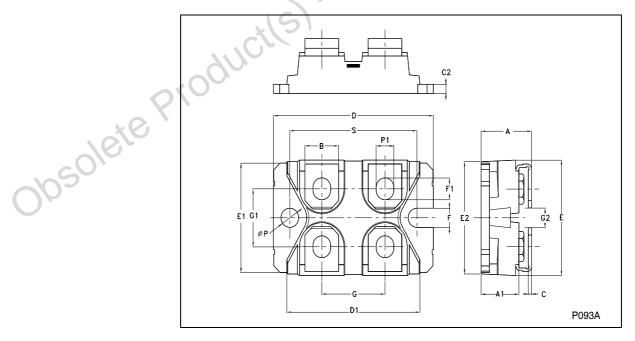



Figure 17. Turn-off switching waveforms

3 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com


obsolete Product(s). Obsolete Product(s)

57

Г

٦

		ISOTOP	MECHANIC	AL DATA		
DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	11.8		12.2	0.465		0.480
A1	8.9		9.1	0.350		0.358
В	7.8		8.2	0.307		0.322
С	0.75		0.85	0.029		0.033
C2	1.95		2.05	0.076		0.080
D	37.8		38.2	1.488		1.503
D1	31.5		31.7	1.240		1.248
Е	25.15		25.5	0.990		1.003
E1	23.85		24.15	0.938	s O Y	0.950
E2		24.8		\mathbf{c}	0.976	
G	14.9		15.1	0.586		0.594
G1	12.6		12.8	0.496		0.503
G2	3.5		4.3	0.137		1.169
F	4.1		4.3	0.161		0.169
F1	4.6	4	5	0.181		0.196
Р	4		4.3	0.157		0.169
P1	4		4.4	0.157		0.173
S	30.1		30.3	1.185		1.193

4 Revision history

Table 4.	Revision	history
----------	----------	---------

	Date	Revision	Changes
	01-Mar-2003	1	Initial release.
	14-Jan-2004	2	Technical migration from ST-press to EDOCS
	27-Nov-2006	3	The document has been reformatted
obsole	tepro	ducth	obsolete Production

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

12/12

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: BUV298V