

TDA1904

4W AUDIO AMPLIFIER

6

-40 to 150

W

°C

Powerdip (8 + 8)

- HIGH OUTPUT CURRENT CAPABILITY
- PROTECTION AGAINST CHIP OVERTEM-PERATURE
- LOW NOISE
- HIGH SUPPLY VOLTAGE REJECTION
- SUPPLY VOLTAGE RANGE: 4V TO 20V

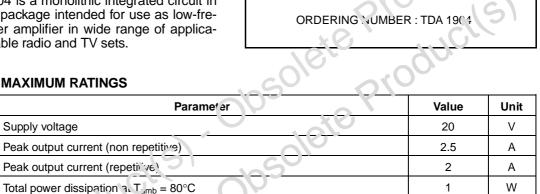
DESCRIPTION

Symbol

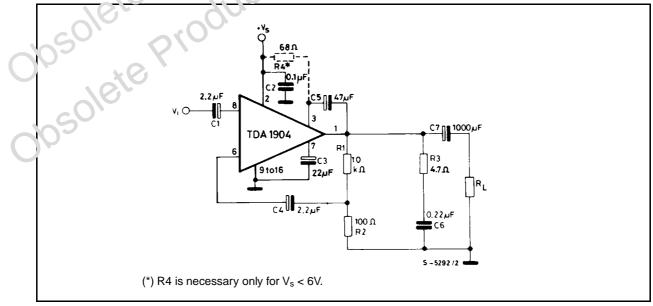
 V_{S}

lo

lo

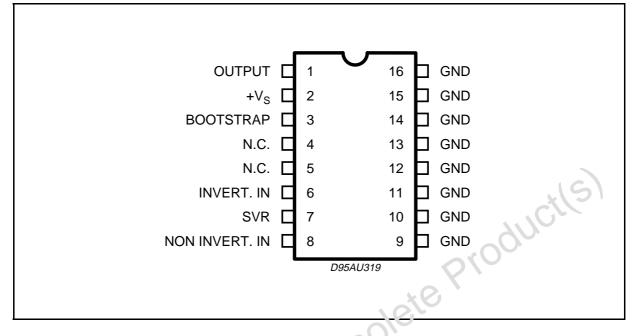

P_{tot}

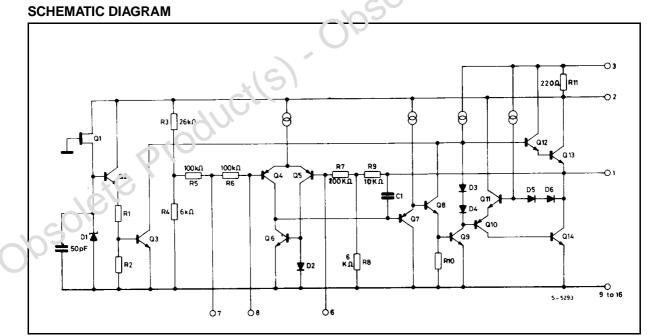
T_{stg}, T_j


The TDA 1904 is a monolithic integrated circuit in POWERDIP package intended for use as low-frequency power amplifier in wide range of applications in portable radio and TV sets.

Storage and junction temperature

ABSOLUTE MAXIMUM RATINGS


TEST AND A P "L'CATION CIRCULT



at T_{pins} = 60°C

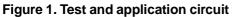
TDA1904

PIN CONNECTION

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th-j-case}	Thermal resistance junction-pins max	15	°C/W
R _{th-j-amb}	Thermal resistance junction-ambient max	70	°C/W

57


2/10

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vs	Supply voltage		4		20	V
Vo	Quiescent output voltage			2.1 7.2		V
l _d	Quiescent drain current	$V_s = 9V$ $V_s = 14V$		8 10	15 18	mA
Po	Output power	$\begin{array}{ll} d = 10\% & f = 1 \ \text{KHz} \\ V_{s} = 9V & R_{L} = 4\Omega \\ V_{s} = 14V & \\ V_{s} = 12V & \\ V_{s} = 6V & \end{array}$	1.8 4 3.1 0.7	2 4.5		w
d	Harmonic distortion			0.1	C.3	%
Vi	Input saturation voltage (rms)	$V_{s} = 9V$ $V_{s} = 14V$	5.3 1 3	0		V
Ri	Input resistance (pin 8)	f = 1 KHz	55	150		KΩ
h	Efficiency			70 65		%
BW	Small signal bandwidth (-3 dB)	$V_s = 14V$ $R_L = 4\Omega$	4	0 to 40,00	00	Hz
Gv	Voltage gain (open loop)	V₀ = 14\∕ f = 1 KHz		75		dB
Gv	Voltage gain (closed loop)	$ \begin{array}{ll} V_{s}=14V & R_{L}=4\Omega \\ t=1 \ \text{KHz} & P_{o}=1W \end{array} $	39.5	40	40.5	dB
e _N	Total input noise	$ \begin{array}{l} R_{g} = 50\Omega \\ R_{g} = 10 \;K\Omega \end{array} \tag{$^\circ$} $		1.2 2	4	μV
	PIC	$ \begin{array}{l} R_{g}=50\Omega\\ R_{g}=10\ K\Omega \end{array} \tag{$^\circ\circ$} $		2 3		μV
SVR	Surply voltage rejection	$ \begin{array}{l} V_s = 12V \\ f_{ripple} = 100 \mbox{ Hz} \\ V_{ripple} = 0.5 \mbox{ Vrms} \end{array} R_g = 10 \mbox{ K}\Omega $	40	50		dB
I sd	Thermal shut-down case temperature	P _{tot} = 2W		120		ÉC

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $T_{amb} = 25 \degree C$, R_{th} (heatsink) = 20 °C/W, unless otherwisw specified)

Note: (°) Weighting filter = curve A.

(°°) Filter with noise bendwidth: 22Hz to 22 KHz.

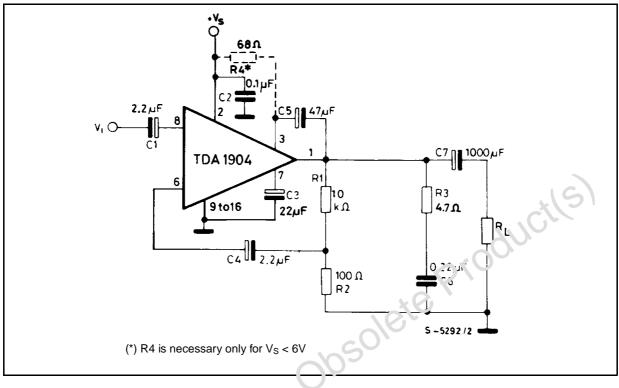
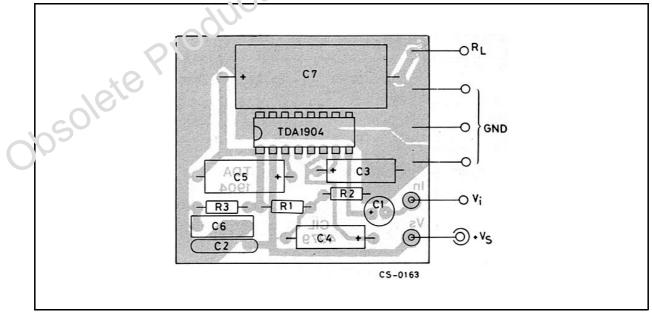



Figure 2. P.C. board and components layout of fig. 1 (1:1 scale)

APPLICATION SUGGESTION

The recommended values of the external components are those shown on the application circuit of fig. 1.

When the supply voltage V_S is less than 6V, a 68Ω resistor must be connected between pin 2 and pin

3 in order to obtain the maximum output power. Different values can be used. The following table can help the designer.

Components	Recomm.	Purpose	Larger than	Smaller than	Allowe	d range
components	value	Fulbose	recommended value	recommended value	Min.	Max.
R1	10 KΩ	Feedback resistors	Increase of gain.	Decrease of gain. Increase quiescent current.	9;`3	0,
R2	100 Ω		Decrease of gain.	Increase of ye in.		1 KΩ
R3	4.7 Ω	Frequency stability	Danger of oscillation at high frequencies with inductive loads.	ter:		
R4	68 Ω	Increase of the output swing with low supply voltage.	010501		39 Ω	220 Ω
C1	2.2 μF	Input DC decoupling.	H [;] gher cost lower noise.	Higher low frequency cutoff. Higher noise.		
C2	0.1 μF	Supply val age bypars		Danger of oscillations.		
С3	22 µF	Rir ple rejection	Increase of SVR increase of the switch-on time.	Degradation of SVR.	2.2 μF	100ΩF
C4	2.2 μF	Inverting input DC decoupling.	Increase of the switch-on noise	Higher low frequency cutoff.	0.1 ΩF	
0 ^{2,25}	47 μF	Bootstrap.		Increase of the distortion at low frequency.	10 μF	100µF
C6	0.22 μF	Frequency stability.		Danger of oscillation.		
C7	1000 μF	Output DC decoupling		Higher low frequency cutoff.		

Figure 3. Quiescent output voltage vs. supply voltage

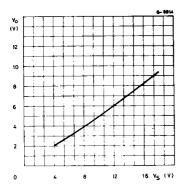


Figure 4. Quiescent drain current vs. supply voltage

Figure 5. Output power vs. supply voltage

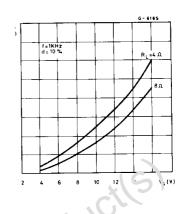


Figure 6. Distortion vs. output power

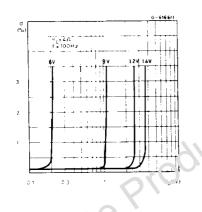
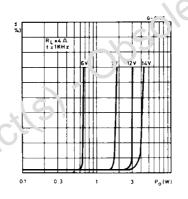


Figure 7. Distortion vs. output power

12


16 V5 (V)

2

0

4

8

Sigure 8. Distortion vs. output power

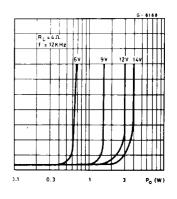


Figure 9. Distortion vs.

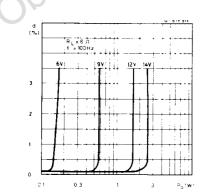


Figure 10. Distortion vs. output power

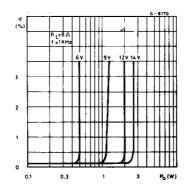


Figure 11. Distortion vs. output power

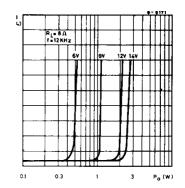


Figure 12. Distortion vs. frequency

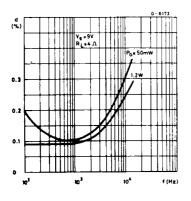


Figure 13. Distortion vs. frequency

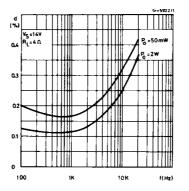


Figure 14. Distortion vs. frequency

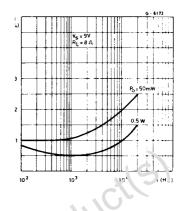


Figure 15. Distortion vs. frequency

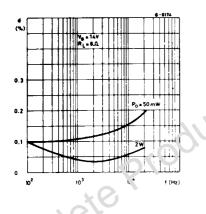
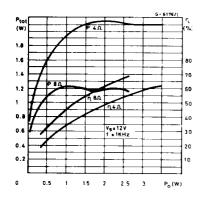



Figure 18. Total power dissipation and efficiency vs. output power

57

Figure 16. Supply voltage rejection vs. frequency

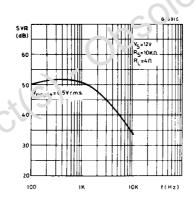


Figure 17. Total power a ssipation and efficiency vs. output power

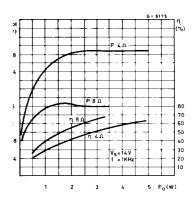


Figure 19. Total power dissipation and efficiency vs. output power

γ.,

1.5

2 Po (W)

ղ •Ն)

60

70

60

50

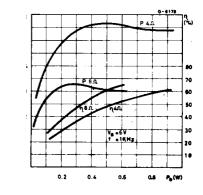
40

30

20

10

'tol W)


1.8

1.6

0.5

1

Figure 20. Total power dissipation and efficiency vs. output power

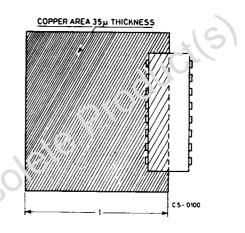
THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

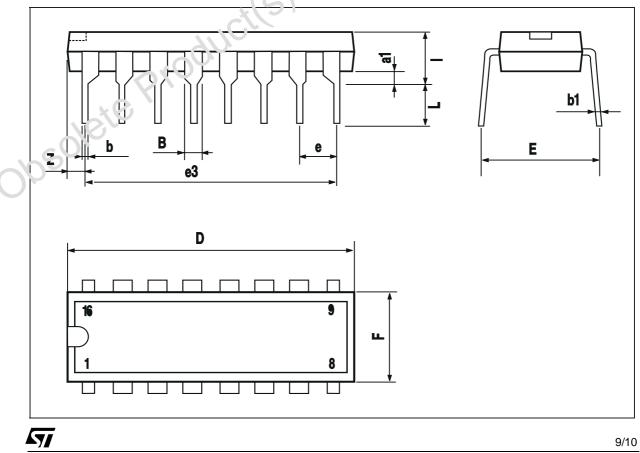
- An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily tolerated since the T_j cannot be higher than 150°C.
- The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature.

If for any reason, the junction temperature increase up to 150°C, the thermal shut-down simply reduces the power dissipation and the current consumption.

obsolete Product(s) ob


MOUNTING INSTRUCTION

The TDA 1904 is assembled in the Powerdip, in which 8 pins (from 9 to 16) are attached to the frame and remove the heat produced by the chip.


Figure 21 shows a PC board copper area used as a heatsink (I = 65 mm).

The thermal resistance junction-ambient is 35°C.

Figure 21. Example of heatsink using PC board copper (I = 65 mm)

OUTLINE AND	inch			mm			DIM.
MECHANICAL DATA	MAX.	TYP.	MIN.	MAX.	TYP.	MIN.	
			0.020			0.51	a1
	0.055		0.033	1.40		0.85	В
		0.020			0.50		b
	0.020		0.015	0.50		0.38	b1
	0.787			20.0			D
N THE TO THE		0.346			8.80		Е
		0.100			2.54		е
		0.700			17.78		e3
	0.280			7.10			F
- lete	0.201			5.10			I
Soverdin 46		0.130			3.30		L
Powerdip 16	0.050			1.27			Z

obsolete Product(S) - Obsolete Product(S) Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

> > © 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: TDA1904