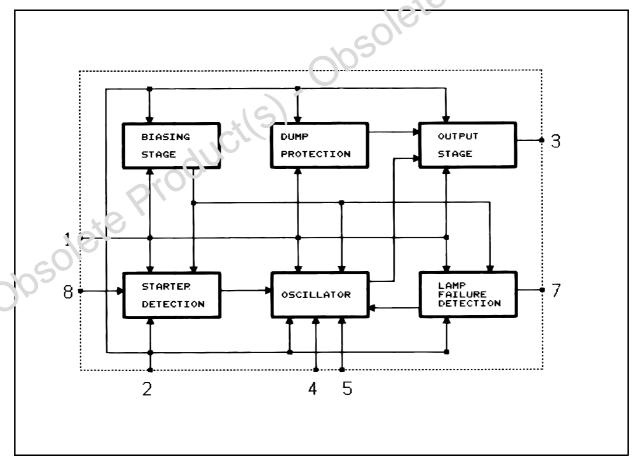
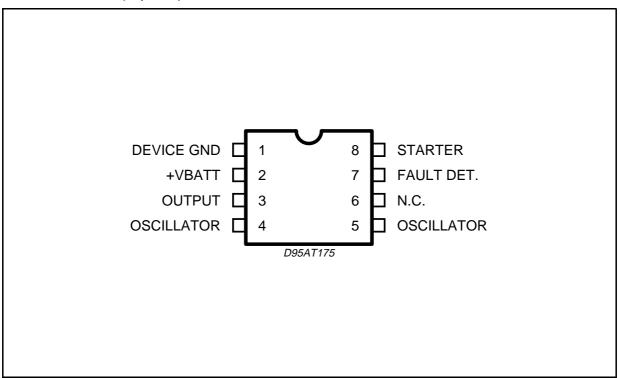


AUTOMOTIVE DIRECTION INDICATOR


- RELAY DRIVER IN CAR DIRECTION INDICATORS
- FLASH FREQUENCY DOUBLES TO INDI-CATE LAMP FAILURE
- DUMP PROTECTION (± 80 V)
- REVERSE BATTERY PROTECTION

DESCRIPTION

The L9686 is a two frequency oscillator particularly suitable as relay driver for flashing light control in automotive applications. The circuit may be also used for other warning lamps like "handbrake on" etc. The lamp failure detection is given by doubling the flash repetition frequency. The L9686 is supplied in minidip 8-lead and SO8 plastic packages.



BLOCK DIAGRAM

September 2003

PIN CONNECTION (Top view)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Transient Peak Supply Voltage ($R_3 \ge 220\Omega$): Load Dump: $5ms \le t_{rise} \le 10ms$	80	V
	$ \begin{aligned} &\tau_f \text{ Fall Time Constant} = 100\text{ms} \\ &R_{\text{source}} \geq 0.5\Omega \\ &\text{Field Decay:} \\ &5\text{ms} \leq t_{\text{fall}} \leq 10\text{ms}, \ R_{\text{source}} \geq \Omega \end{aligned} $	- 80	V
	$τ_r$ Rise Time Constant = 33ms Low Energy Spike: $t_{rise} = 1μs$, $t_{fall} = 2ms$, $R_{source} > 10Ω$	± 100	V
T _j , T _{stg}	Junction and Storage Temperature Range	- 55 to 150	°C

THERMAL DATA

Symbol	Parameter	SO8	Minidip	Unit	
R _{th j-amb}	Thermal Resistance Junction-ambient	Max.	180	100	°C/W

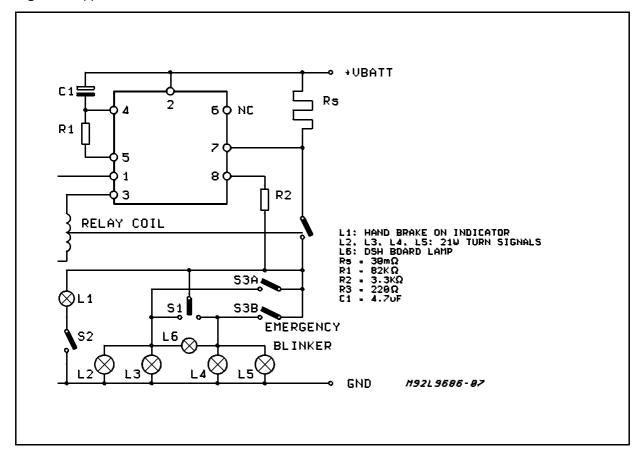
2/7

ELECTRICAL CHARACTERISTICS ($-20^{\circ}C \leq T_{amb} \leq$	100°C, 8V ≤ V _S ≤	18V unless otherwise speci-
fied.)			·

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Operating Voltage		8		18	V
V2 – V1	Clamping Voltage	see note 1	27		34	V
V2 – V3	Output Saturation Voltage	I _{RL} = 250mA			1.7	V
R2	Starter Resistance	see note 2			3.6	ΚΩ
K _N	Oscillator Constant K _N (normal Operation)	Fn = 1/KnRoCo Osc. Frequency	1.27		1.74	
Ст	Temperature Coefficient of Kn	See Note 3		-1.5 · 10-3		1/°C
D.C.	Duty Cycle (normal operation)		45	50	55	%
K _C	Oscillator Constant K _C (lamp failure detection)	F _C = 1KcRoCo Osc. Frequency	0.53		0.74	
DC _{LF}	Duty Cicle (lamp failure detection)		35	40	45	%
IQ	Current Consumption Relay off I _{pin 1}	V _S = 8V V _S = 13.5V V ^S = 18V		2.2 2.7 3.3	3.9 4.3 4.7	mA mA mA
V _{th}	Lamp Failure Threshold (see note 4)	$R_3 = 220\Omega$ $V_S = 13.5V$ $-20 \le T_{amb} \le 100^{\circ}C$	65	85	95	mV

- Notes :1. This voltage is the threshold used to protect the circuit against overvoltage : if V_{bat} is > than this threshold, the relay will be on and the voltage across the circuit will maintain constant increasing the current in the protective resistor R₃.
 - 2. This is the maximum value for operation. This value must be higher than 1 K Ohms in order to limit the current in pin 8 during dumps. A recommended value for application should be 1,5 K Ohms.
 - 3. The external leakage from the blinker unit to ground must be with an equivalent resistor higher than 5,6 K Ohms to avoid parasitic operation when the switch S₁ is off.
 - 4. This temperature coefficient is usefull to compensate the drift of the external timing network $(R_1,\,C_1)$.
 - 5. This threshold is calculated for a 20 m Ohm shunt. The threshold is dependant of V_{bat} as the bulb current.

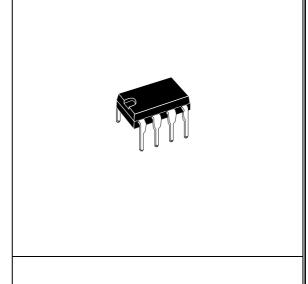
FUNCTIONAL DESCRIPTION

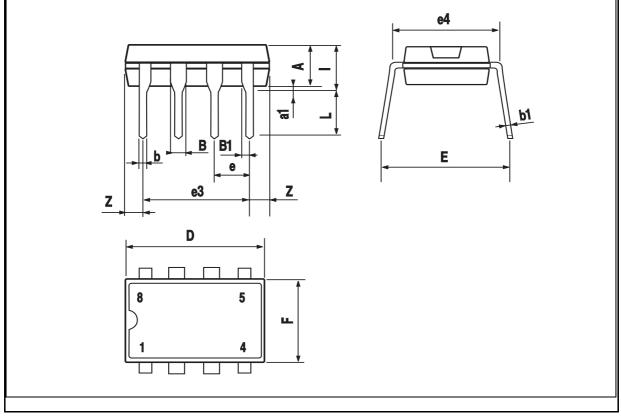

The circuit is designed to drive the direction indicator flasher relay. The application circuit shows the typical system configuration with the external components. Its consists of a network (R_1 C_1) to determine the oscillator frequency, shunt resistor (R_3) to detect defective bulbs and two current limiting resistors (R_2/R_3) to protect the IC against load dump transients.

The lightbulbs L_2 , L_3 , L_4 , L_5 , are the turn signal indicators with the dashboard-light L_6 . The S_1 switch position is sensed across resistor R_2 and R_{lamp} by input 8. The flashing cycle is started

by closing S_1 : then, after a delay time t_d typically equal to 1.5 ms, the relay is actuated and the pin 3 goes high switching on the corresponding lamps L_2 , L_3 , (or L_4 , L_5). These lamps will flash at the oscillator frequency not depending on the battery voltage value (8 - 18 V). The flashing cycle stops and the circuit is reset to the initial position when the switch S_1 is open.

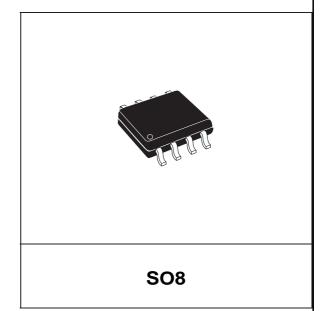
The lamp failure detection function senses the current through the shunt resistor $R_{\rm S}$. When one of the lightbulbs is defective the voltage drop across $R_{\rm S}$ is reduced to a half and the failure is indicated by doubling the flashing frequency.


Figure 1: Application Circuit.

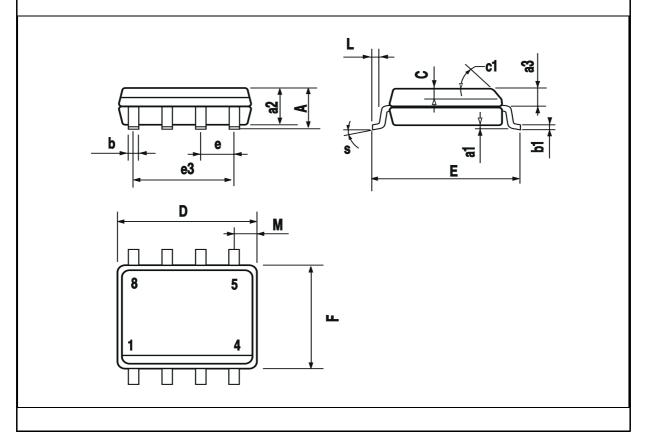

4/7

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α		3.32			0.131		
a1	0.51			0.020			
В	1.15		1.65	0.045		0.065	
b	0.356		0.55	0.014		0.022	
b1	0.204		0.304	0.008		0.012	
D			10.92			0.430	
Е	7.95		9.75	0.313		0.384	
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			6.6			0.260	
I			5.08			0.200	
L	3.18		3.81	0.125		0.150	
Z			1.52			0.060	

OUTLINE AND MECHANICAL DATA



Minidip



DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			1.75			0.069	
a1	0.1		0.25	0.004		0.010	
a2			1.65			0.065	
аЗ	0.65		0.85	0.026		0.033	
b	0.35		0.48	0.014		0.019	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.020	
c1			45° ((typ.)			
D (1)	4.8		5.0	0.189		0.197	
Е	5.8		6.2	0.228		0.244	
е		1.27			0.050		
еЗ		3.81			0.150		
F (1)	3.8		4.0	0.15		0.157	
L	0.4		1.27	0.016		0.050	
М			0.6			0.024	
S	8° (max.)						

OUTLINE AND MECHANICAL DATA

D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006inch).

4

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

L9686 L9686MD L9686MD013TR