


### 1.2 A low quiescent current LDO with reverse current protection

Datasheet - production data



#### **Features**

- Input voltage from 1.6 to 5.5 V
- Very low-dropout voltage (300 mV typ. at 1 A load)
- Low quiescent current (35 μA typ. at no-load, 1 μA max. in off mode)
- Output voltage tolerance: ± 2.0% at 25 °C
- 1.2 A guaranteed output current
- Wide range of output voltages available on request: 0.8 V to 5 V with 50 mV step and adjustable
- Logic-controlled electronic shutdown
- Compatible with ceramic capacitor  $C_{\text{OUT}} = 1 \ \mu F$
- Internal current and thermal limit
- Available in DFN6 (2x2), DFN6 (3x3) mm, SO8-batwing and PPAK packages
- Temperature range: -40 °C to 125 °C
- Reverse current protection
- Output discharge function (optional)

### **Applications**

- Consumer
- Computer
- Battery-powered systems
- Low voltage point-of-load
- USB-powered devices

### **Description**

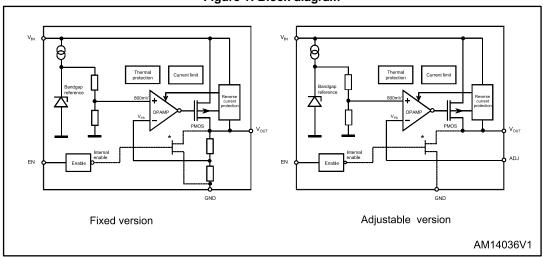
The LDL112 is a low-dropout linear regulator, which can provide a maximum current of 1.2 A, with a typical dropout voltage of 300 mV.

It is stabilized with a ceramic capacitor on the output.

The very low drop voltage, low quiescent current and reverse current protection features make it suitable for low power battery-powered applications.

The enable logic control function puts the LDL112 in shutdown mode allowing a total current consumption lower than 1  $\mu$ A.

The device is equipped with current limit and thermal protection.


### **Contents**

| 1  | Diagran  | n                                      | 3  |
|----|----------|----------------------------------------|----|
| 2  | Pin con  | figuration                             | 4  |
| 3  |          | application                            |    |
| 4  |          | ım ratings                             |    |
| 5  | Electric | al characteristics                     | 7  |
| 6  |          | tion information                       |    |
|    | 6.1      | Thermal and short-circuit protections  |    |
|    | 6.2      | Output voltage setting for ADJ version | 9  |
|    | 6.3      | Reverse current protection             | 10 |
| 7  | Typical  | performance characteristics            | 11 |
| 8  | Package  | e information                          | 15 |
|    | 8.1      | DFN6 (3x3) package information         | 15 |
|    | 8.2      | DFN6 (3x3) packing information         | 17 |
|    | 8.3      | DFN6 (2x2) package information         | 19 |
|    | 8.4      | DFN6 (2x2) packing information         | 22 |
|    | 8.5      | SO8-batwing package information        | 23 |
|    | 8.6      | SO8-batwing packing information        | 25 |
|    | 8.7      | PPAK package information               |    |
|    | 8.8      | PPAK packing information               |    |
| 9  | Orderin  | g information                          | 30 |
| 10 | Revisio  | n history                              | 31 |

LDL112 Diagram

# 1 Diagram

Figure 1: Block diagram





(\*) The output discharge function is optional.

Pin configuration LDL112

## 2 Pin configuration

Figure 2: Pin connection DFN6 (3x3) and DFN6 (2x2) (top view)

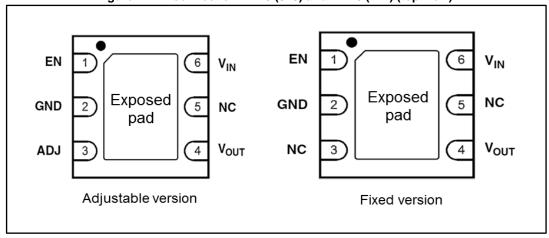
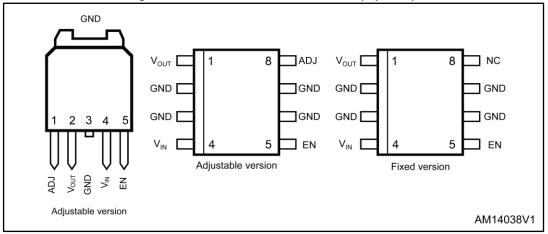
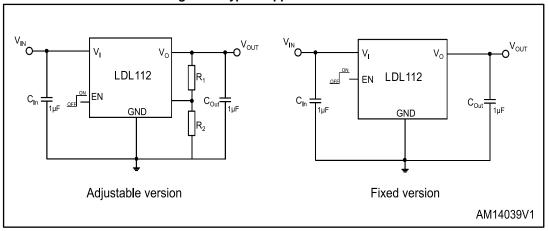



Figure 3: Pin connection PPAK and SO8 (top view)





Table 1: Pin description

| Symbol                                     | Function                                              |  |  |
|--------------------------------------------|-------------------------------------------------------|--|--|
| V <sub>IN</sub>                            | LDO input voltage                                     |  |  |
| GND                                        | Common ground                                         |  |  |
| EN                                         | Enable pin logic input: low = shutdown, high = active |  |  |
| ADJ Adjustable pin (on adjustable version) |                                                       |  |  |
| Vout LDO output voltage                    |                                                       |  |  |
| Exposed pad Must be connected to GND       |                                                       |  |  |
| NC                                         | Not connected                                         |  |  |

LDL112 Typical application

# 3 Typical application

Figure 4: Typical application circuits



Maximum ratings LDL112

## 4 Maximum ratings

Table 2: Absolute maximum ratings

| Symbol           | Parameter                            | Value                         | Unit |
|------------------|--------------------------------------|-------------------------------|------|
| V <sub>IN</sub>  | DC input voltage                     | - 0.3 to 7                    | V    |
| V <sub>OUT</sub> | DC output voltage                    | - 0.3 to V <sub>I</sub> + 0.3 | V    |
| V <sub>EN</sub>  | Enable input voltage                 | - 0.3 to V <sub>I</sub> + 0.3 | V    |
| V <sub>ADJ</sub> | ADJ pin voltage                      | 2                             | V    |
| l <sub>out</sub> | Output current                       | Internally limited            | mA   |
| PD               | Power dissipation                    | Internally limited            | mW   |
| Tstg             | Storage temperature range            | - 65 to 150                   | °C   |
| Тор              | Operating junction temperature range | - 40 to 125                   | °C   |



Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All values are referred to GND.

Table 3: Thermal data

| Symbol     | Parameter                           | DFN6 (3x3) | DFN6 (2x2) | SO8               | PPAK | Unit |
|------------|-------------------------------------|------------|------------|-------------------|------|------|
| $R_{thJA}$ | Thermal resistance junction-ambient | 55         | 65         | 55 <sup>(1)</sup> | 100  | °C/W |
| RthJC      | Thermal resistance junction-case    | 10         | 15         | 20                | 8    | °C/W |

#### Notes:

<sup>(1)</sup>Considering 6 cm<sup>2</sup> of copper board heatsink.

LDL112 Electrical characteristics

### 5 Electrical characteristics

 $T_{J}=25~^{\circ}C,~V_{IN}=V_{OUT(NOM)}+0.5~V~(for~V_{OUT(NOM)}\leq 1~V,~V_{IN}=2.1~V),~C_{IN}=C_{OUT}=1~\mu F,\\ I_{OUT}=5~mA,~V_{EN}=V_{IN},~unless~otherwise~specified.$ 

Table 4: LDL112 electrical characteristics (fixed version)

| Symbol            | Parameter                  | Test conditions                                                                                                                                             | Min. | Тур. | Max. | Unit              |
|-------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|-------------------|
| Vin               | Operating input voltage    |                                                                                                                                                             | 1.6  |      | 5.5  | V                 |
| Va=               | Vaur goourgov              | I <sub>OUT</sub> = 5 mA, T <sub>J</sub> = 25 °C                                                                                                             | -2.0 |      | 2.0  | %                 |
| Vouт              | V <sub>оит</sub> accuracy  | I <sub>OUT</sub> = 5 mA, -40 °C < T <sub>J</sub> < 125 °C                                                                                                   | -3.0 |      | 3.0  | %                 |
| ΔVουτ             | Static line regulation (1) | $V_{OUT(NOM)} + 0.5 \text{ V} < V_{IN} \le 5.5 \text{ V}$ (2)                                                                                               |      | 0.05 | 0.1  | %/V               |
| ΔVουτ             | Static load regulation     | I <sub>OUT</sub> = 0 mA to 1.2 A, V <sub>IN</sub> > 2.1 V                                                                                                   |      | 15   | 30   | mV                |
|                   |                            | Iout = 1 A, Vout = 3.3 V                                                                                                                                    |      | 300  |      |                   |
| V <sub>DROP</sub> | Dropout voltage (3)        | IOUT = 1.2 A, VOUT = 3.3 V<br>40 °C < T <sub>J</sub> < 125 °C                                                                                               |      | 350  | 600  | mV                |
| ем                | Output noise voltage       | 10 Hz to 100 kHz, I <sub>OUT</sub> = 10 mA                                                                                                                  |      | 135  |      | μV <sub>RMS</sub> |
| SVR               | Supply voltage rejection   | $V_{IN} = V_{OUT(NOM)} + 0.5 \text{ V}^{(2)}$ +/- $V_{RIPPLE}$<br>$V_{RIPPLE} = 0.2 \text{ V}$<br>$f_{IPPLE} = 0.2 \text{ KHz}$ , $f_{OUT} = 10 \text{ mA}$ |      | 57   |      | dB                |
|                   |                            | I <sub>OUT</sub> = 0 mA,-40 °C < T <sub>J</sub> <125 °C                                                                                                     |      | 35   | 70   |                   |
| IQ                | Quiescent current          | I <sub>OUT</sub> = 1.2 A, V <sub>OUT(NOM)</sub> + 1 V <sup>(2)</sup><br>40 °C < T <sub>J</sub> < 125 °C                                                     |      | 250  | 400  | μA                |
|                   |                            | $V_{IN}$ input current in off mode:<br>$V_{EN} = GND$                                                                                                       |      | 0.1  | 1    |                   |
| Isc               | Short-circuit current      | $R_L = 0, V_{IN} > 2.1 V$                                                                                                                                   | 1.4  | 2    |      | Α                 |
| V <sub>EN</sub>   | Enable input logic low     | $V_{IN} = V_{OUT(NOM)} + 0.5 \text{ V}^{(2)} \text{ to } 5.5 \text{ V},$<br>-40 °C < T <sub>J</sub> < 125 °C                                                |      |      | 0.35 | V                 |
| VEN               | Enable input logic high    | V <sub>IN</sub> = V <sub>OUT(NOM)</sub> + 0.5 V <sup>(2)</sup> to 5.5 V<br>-40 °C < T <sub>J</sub> < 125 °C                                                 | 1.4  |      |      | V                 |
| IEN               | Enable pin input current   | VEN = VIN                                                                                                                                                   |      |      | 100  | nA                |
| Tourse            | Thermal shutdown           |                                                                                                                                                             |      | 165  |      | °C                |
| Tshdn             | Hysteresis                 |                                                                                                                                                             |      | 20   |      | C                 |
| Соит              | Output capacitor           | Capacitance (see Section 7: "Typical performance characteristics")                                                                                          | 1    |      | 10   | μF                |

#### Notes:

 $<sup>^{(1)}</sup>Not$  applicable for  $V_{out(nom)} > 4.5 \ V.$ 

 $<sup>^{(2)}</sup> For \ V_{OUTNOM}$  lower than or equal to 1 V, V\_{IN} = 2.1 V.

<sup>&</sup>lt;sup>(3)</sup>Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value.

Electrical characteristics LDL112

 $T_J$  = 25 °C,  $V_{IN}$  = 2.1 V,  $C_{IN}$  =  $C_{OUT}$  = 1  $\mu F,\ I_{OUT}$  = 5 mA,  $V_{EN}$  =  $V_{IN},\ unless$  otherwise specified.

Table 5: LDL112 electrical characteristics (adjustable version)

| Symbol            | Parameter                 | Test conditions                                                                                                         | Min. | Тур.  | Max. | Unit          |
|-------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------|------|-------|------|---------------|
| Vin               | Operating input voltage   |                                                                                                                         | 1.6  |       | 5.5  | V             |
| V                 | V 000Ur00V                | I <sub>ОUТ</sub> = 5 mA, T <sub>J</sub> = 25 °C                                                                         | 784  | 800   | 816  | mV            |
| $V_{ADJ}$         | V <sub>ADJ</sub> accuracy | I <sub>OUT</sub> = 5 mA, -40 °C < T <sub>J</sub> < 125 °C                                                               | -3.0 |       | 3.0  | %             |
| ΔVουτ             | Static line regulation    | $2.1 \text{ V} \stackrel{(2)}{\sim} \leq V_{\text{IN}} \leq 5.5 \text{ V},$ $I_{\text{OUT}} = 1 \text{ mA}$             |      | 0.05  | 0.1  | %/V           |
| $\Delta V_{OUT}$  | Static load regulation    | I <sub>OUT</sub> = 0 mA to 1.2 A,V <sub>IN</sub> > 2.1 V                                                                |      | 6     | 20   | mV            |
|                   |                           | Іоит = 1 A, V <sub>оит</sub> = 3.3 V                                                                                    |      | 300   |      |               |
| V <sub>DROP</sub> | Dropout voltage (3)       | I <sub>OUT</sub> = 1.2 A,V <sub>OUT</sub> = 3.3 V<br>40 °C < T <sub>J</sub> < 125 °C                                    |      | 350   | 600  | mV            |
| e <sub>N</sub>    | Output noise voltage      | 10 Hz to 100 kHz, I <sub>OUT</sub> = 10 mA                                                                              |      | 60    |      | $\mu V_{RMS}$ |
| I <sub>ADJ</sub>  | Adjust pin current        |                                                                                                                         |      | 0.130 | 1    | μA            |
| SVR               | Supply voltage rejection  | $V_{IN} = V_{OUTNOM} + 0.5 \text{ V}^{(2)} + /-V_{RIPPLE} V_{RIPPLE} = 0.2 \text{ V}$<br>frequency = 1 kHz lout = 10 mA |      | 53    |      | dB            |
|                   | Quiescent current         | Iоит = 0 mA,-40 °C < T <sub>J</sub> < 125 °C                                                                            |      | 35    | 70   |               |
| lα                |                           | Iout = 1.2 A,<br>2.1 V < V <sub>IN</sub> < 5.5 V,<br>-40 °C < T <sub>J</sub> < 125 °C                                   |      | 240   | 400  | μΑ            |
|                   |                           | V <sub>IN</sub> input current in off mode:<br>V <sub>EN</sub> = GND                                                     |      | 0.1   | 1    |               |
| Isc               | Short-circuit current     | R <sub>L</sub> = 0, V <sub>IN</sub> > 2.1 V                                                                             | 1.4  | 2     |      | Α             |
| .,                | Enable input logic low    | V <sub>IN</sub> = 2 V <sup>(2)</sup> to 5.5 V,<br>-40 °C < T <sub>J</sub> < 125 °C                                      |      | 0     | 0.35 |               |
| Ven               | Enable input logic high   | V <sub>IN</sub> = 2 V <sup>(2)</sup> to 5.5 V,<br>-40 °C < T <sub>J</sub> < 125 °C                                      | 1.4  |       |      | V             |
| I <sub>EN</sub>   | Enable pin input current  | Ven = Vin                                                                                                               |      |       | 100  | nA            |
| _                 | Thermal shutdown          |                                                                                                                         |      | 165   |      | °C            |
| T <sub>SHDN</sub> | Hysteresis                |                                                                                                                         |      | 20    |      |               |
| Соит              | Output capacitor          | Capacitance (see Section 7: "Typical performance characteristics")                                                      | 1    |       | 10   | μF            |

#### Notes:

 $<sup>^{(1)}</sup>$ Not applicable for  $V_{out(nom)} > 4.5 \text{ V}$ .

 $<sup>^{(2)}</sup>$ For V<sub>OUT</sub> lower than or equal to 1 V, V<sub>IN</sub> = 2.1 V.

 $<sup>^{(3)}</sup>$ Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value.

### 6 Application information

### 6.1 Thermal and short-circuit protections

The LDL112 is self-protected from short-circuit condition and overtemperature. When the output load is higher than the one supported by the device, the output current increases until the limit of typically 2 A is reached, at this point the current is kept constant even when the load impedance is zero.

Thermal protection acts when the junction temperature reaches 165 °C, therefore the IC shuts down. As soon as the junction temperature falls again below the thermal hysteresis value the device starts working again.

In order to calculate the maximum power that the device can dissipate, keeping the junction temperature below the  $T_{\text{OP}}$ , the following formula is used:

#### **Equation 1**

$$P_{DMAX} = (125 - T_{AMB})/R_{THJA}$$

### 6.2 Output voltage setting for ADJ version

In the adjustable version, the output voltage can be set from 0.8 V up to the input voltage minus the voltage drop across the pass transistor (dropout voltage), by connecting a resistor divider between the ADJ pin and the output, thus allowing remote voltage sensing.

The resistor divider could be selected by the following equation:

#### **Equation 2**

$$V_{OUT} = V_{ADJ} (1 + R1 / R2)$$
, with  $V_{ADJ} = 0.8 V (typ.)$ 

It is recommended to use resistors with values in the range of 10 k $\Omega$  to 50 k $\Omega$ . Lower values can also be suitable, but current consumption increases.

10/32

### 6.3 Reverse current protection

The device avoids the reverse current to flow from output to input during any operating condition (with enable pin in high or low status). The reverse current protection acts in particular during fast turning on/off operations or when another power supply (with higher voltage than the input one) is connected to the output port. If a power supply with lower voltage than the LDO output voltage is connected to V<sub>OUT</sub> pin, LDO enters the current protection status, causing high power dissipation.

In the application, the LDL112 reverse current protection acts in the following cases:

- Off-state, EN pin is at GND level, V<sub>OUT</sub> > [V<sub>IN</sub> + 100 mV]. In this case the device power pass element (MOSFET) is off, the bulk and gate are switched to V<sub>OUT</sub> and therefore all possible current paths from V<sub>OUT</sub> to V<sub>IN</sub> are interrupted.
- 2. On-state, EN pin is at high level and V<sub>OUT</sub> > V<sub>OUT(nominal)</sub>. In this condition, V<sub>OUT</sub> is higher than the nominal level, so the device op-amp works in open loop and the power element is off. V<sub>GS</sub> is zero, the bulk and gate are switched to V<sub>OUT</sub> (where V<sub>OUT</sub> > [V<sub>IN</sub> + 100 mV]) therefore all possible current paths from V<sub>OUT</sub> to V<sub>IN</sub> are interrupted.
- 3. On-state, EN pin is at high level and V<sub>OUT</sub>< V<sub>OUT(nominal)</sub>. In this condition V<sub>OUT</sub> is lower than the nominal level, so the op-amp works in open loop with the power MOSFET on. V<sub>GS</sub> is maximal so the power channel conducts with very low R<sub>DS(on)</sub>. When V<sub>OUT</sub> > V<sub>IN</sub> the current can flow from V<sub>OUT</sub> to V<sub>IN</sub> until the condition V<sub>OUT</sub> > (V<sub>IN</sub> + 100 mV) is reached.

### 7 Typical performance characteristics

( $C_{IN} = C_{OUT} = 1 \mu F$ ,  $V_{EN}$  to  $V_{IN}$ ,  $T = 25 \,^{\circ}C$  unless otherwise specified)

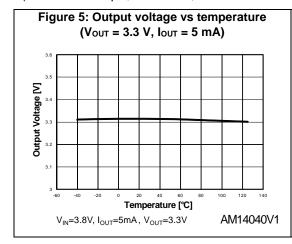
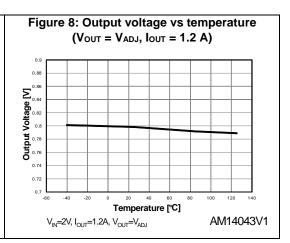
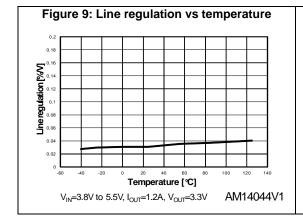
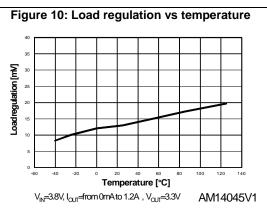





Figure 7: Output voltage vs temperature
(Vout = Vadd, lout = 5 mA)

Property of the property o







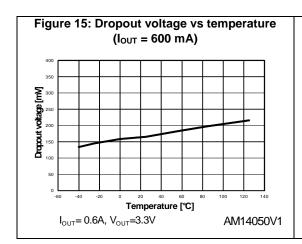
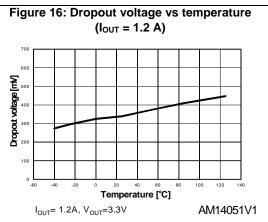
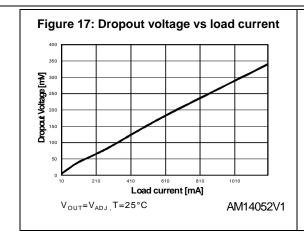
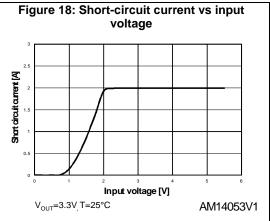
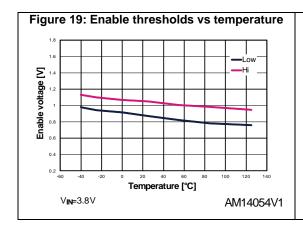


Figure 11: Quiescent current vs temperature (lout = 0 mA)

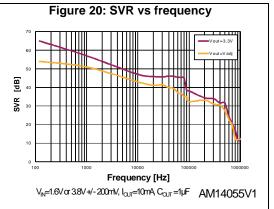
Figure 12: Quiescent current vs temperature (I<sub>OUT</sub> = 1.2 A)

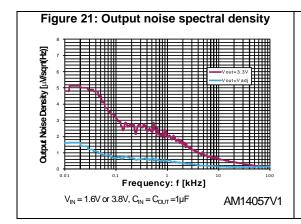

Figure 13: Shutdown current vs temperature

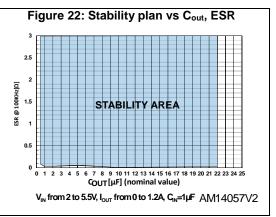

Figure 14: Quiescent current vs load current

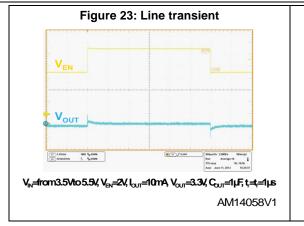

| VIN=2V, VOUT=VADJ, T=25°C AM14049V1

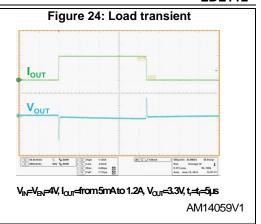


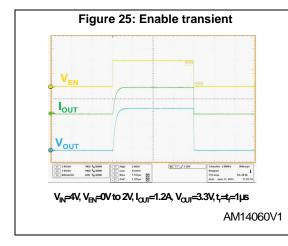


12/32

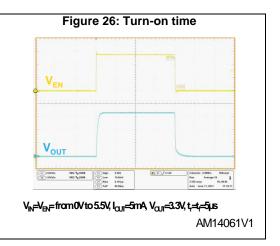













## 8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

### 8.1 DFN6 (3x3) package information

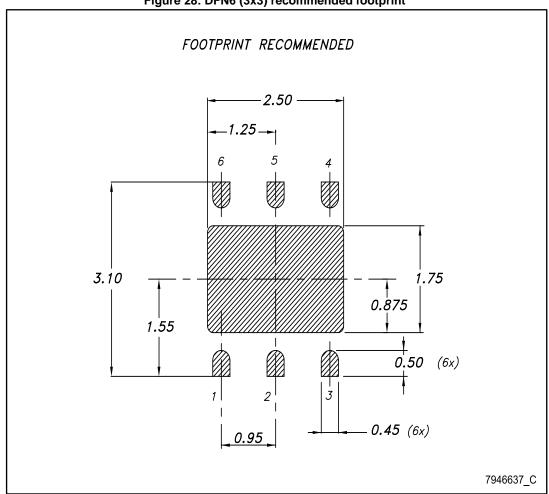

BOTTOM VIEW D2 EXPOSED PAD PIN 1 ID **b** (6x) // 0.1 C A3 SEATING PLANE A1 c 0.08 C LEADS COPLANARITY E/2PIN 1 ID D/2-OP VIEW 7946637\_C

Figure 27: DFN6 (3x3) package outline

Table 6: DFN6 (3x3) mechanical data

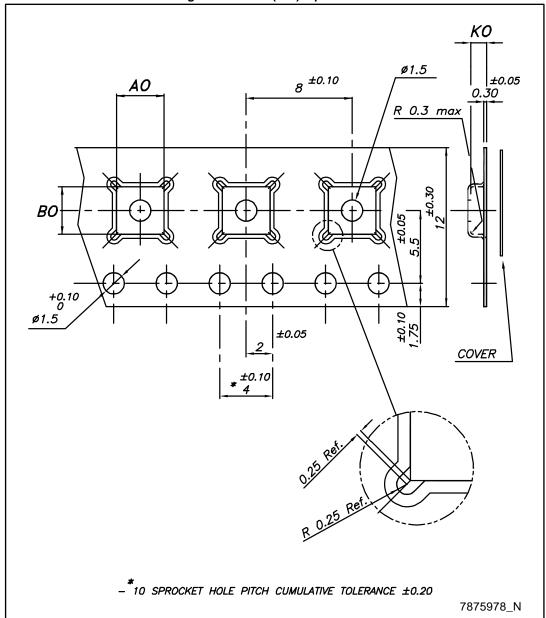

| Dim.   | mm   |      |      |  |
|--------|------|------|------|--|
| Dilli. | Min. | Тур. | Max. |  |
| А      | 0.80 |      | 1    |  |
| A1     | 0    | 0.02 | 0.05 |  |
| A3     |      | 0.20 |      |  |
| b      | 0.23 |      | 0.45 |  |
| D      | 2.90 | 3    | 3.10 |  |
| D2     | 2.23 |      | 2.50 |  |
| E      | 2.90 | 3    | 3.10 |  |
| E2     | 1.50 |      | 1.75 |  |
| е      |      | 0.95 |      |  |
| L      | 0.30 | 0.40 | 0.50 |  |

Figure 28: DFN6 (3x3) recommended footprint



# 8.2 DFN6 (3x3) packing information

Figure 29: DFN6 (3x3) tape outline



Package information LDL112

Figure 30: DFN6 (3x3) reel outline

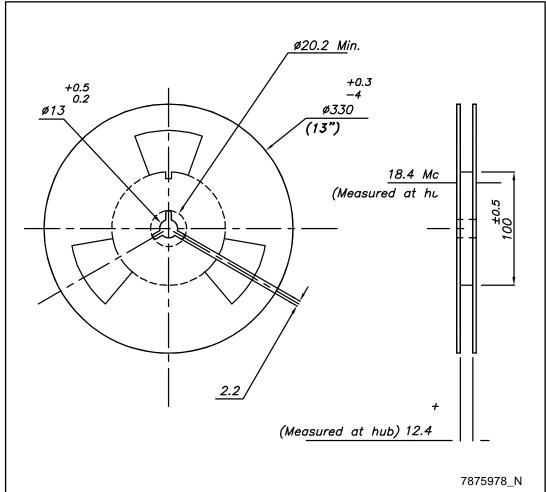



Table 7: DFN6 (3x3) tape and reel mechanical data

| Dim.   |      | mm   |      |
|--------|------|------|------|
| Dilli. | Min. | Тур. | Max. |
| A0     | 3.20 | 3.30 | 3.40 |
| В0     | 3.20 | 3.30 | 3.40 |
| K0     | 1    | 1.10 | 1.20 |

18/32

# 8.3 DFN6 (2x2) package information

Figure 31: DFN6 (2x2) package outline

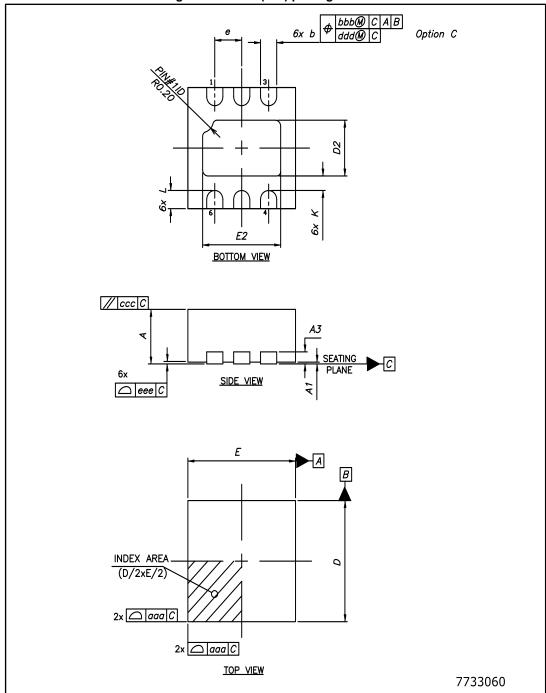



Table 8: DFN6 (2x2) mechanical data

| Table 6. Bi No (EXZ) moonamen aaa |      |           |      |  |  |
|-----------------------------------|------|-----------|------|--|--|
| Dim.                              |      | mm        |      |  |  |
| Dilli.                            | Min. | Тур.      | Max. |  |  |
| Α                                 | 0.70 | 0.75      | 0.80 |  |  |
| A1                                | 0.00 | 0.02      | 0.05 |  |  |
| А3                                | -    | 0.203 ref | -    |  |  |
| b                                 | 0.25 | 0.30      | 0.35 |  |  |
| D                                 | -    | 2.00      | -    |  |  |
| E                                 | -    | 2.00      | -    |  |  |
| е                                 | -    | 0.50      | -    |  |  |
| D2                                | 0.77 | 0.92      | 1.02 |  |  |
| E2                                | 1.30 | 1.45      | 1.55 |  |  |
| K                                 | 0.15 | -         | -    |  |  |
| L                                 | 0.20 | 0.30      | 0.40 |  |  |
| aaa                               | -    | 0.05      | -    |  |  |
| bbb                               | -    | 0.10      | -    |  |  |
| ccc                               | -    | 0.10      | -    |  |  |
| ddd                               | -    | 0.05      | -    |  |  |
| eee                               | -    | 0.08      | -    |  |  |

Figure 32: DFN6 (2x2) recommended footprint

Package information LDL112

# 8.4 DFN6 (2x2) packing information

Figure 33: DFN6 (2x2) reel outline

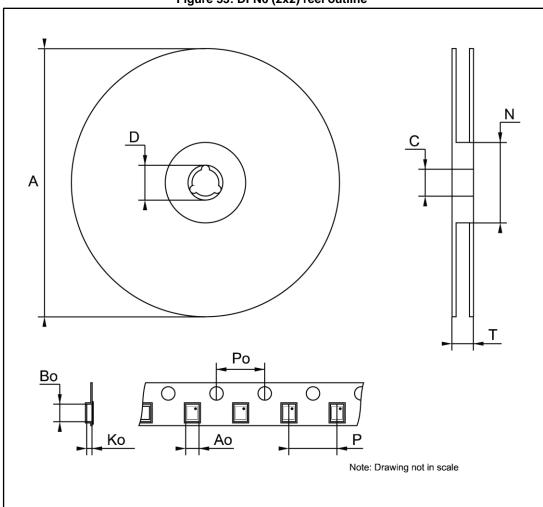



Table 9: DFN6 (2x2) tape and reel mechanical data

| Dim.   | , , 1 | mm   |      |
|--------|-------|------|------|
| Dilli. | Min.  | Тур. | Max. |
| А      |       |      | 180  |
| С      | 12.8  |      | 13.2 |
| D      | 20.2  |      |      |
| N      | 60    |      |      |
| Т      |       |      | 14.4 |
| A0     |       | 2.4  |      |
| В0     |       | 2.4  |      |
| K0     |       | 1.3  |      |
| P0     |       | 4    |      |
| Р      |       | 4    |      |

# 8.5 SO8-batwing package information

Figure 34: SO-8 batwing package outline

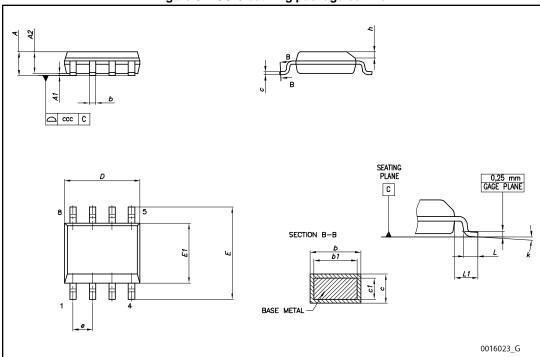



Table 10: SO-8 batwing mechanical data

| Dim  |      | mm   |      |
|------|------|------|------|
| Dim. | Min. | Тур. | Max. |
| A    |      |      | 1.75 |
| A1   | 0.10 |      | 0.25 |
| A2   | 1.25 |      |      |
| b    | 0.31 |      | 0.51 |
| b1   | 0.28 |      | 0.48 |
| С    | 0.10 |      | 0.25 |
| c1   | 0.10 |      | 0.23 |
| D    | 4.80 | 4.90 | 5.00 |
| Е    | 5.80 | 6.00 | 6.20 |
| E1   | 3.80 | 3.90 | 4.00 |
| е    |      | 1.27 |      |
| h    | 0.25 |      | 0.50 |
| L    | 0.40 |      | 1.27 |
| L1   |      | 1.04 |      |
| L2   |      | 0.25 |      |
| k    | 0°   |      | 8°   |
| ccc  |      |      | 0.10 |

Package information LDL112

Figure 35: SO-8 batwing recommended footprint

O.6 (x8)

O.6 (x8)

O.6 (x8)

O.6 (x8)

O.7 (x8)

O.8 (x8)

O.9 (x8)

0016023\_GU

# 8.6 SO8-batwing packing information

Figure 36: SO8-batwing tape and reel outline

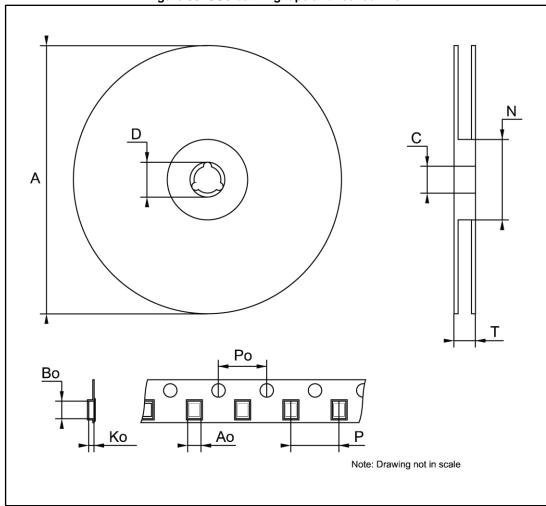



Table 11: SO8-batwing mechanical data

| Dim. |      | mm   |      |
|------|------|------|------|
| Dim. | Min. | Тур. | Max. |
| А    |      |      | 330  |
| С    | 12.8 |      | 13.2 |
| D    | 20.2 |      |      |
| N    | 60   |      |      |
| Т    |      |      | 22.4 |
| A0   | 8.1  |      | 8.5  |
| В0   | 5.5  |      | 5.9  |
| K0   | 2.1  |      | 2.3  |
| P0   | 3.9  |      | 4.1  |
| Р    | 7.9  |      | 8.1  |

Package information LDL112

## 8.7 PPAK package information

Figure 37: PPAK package outline

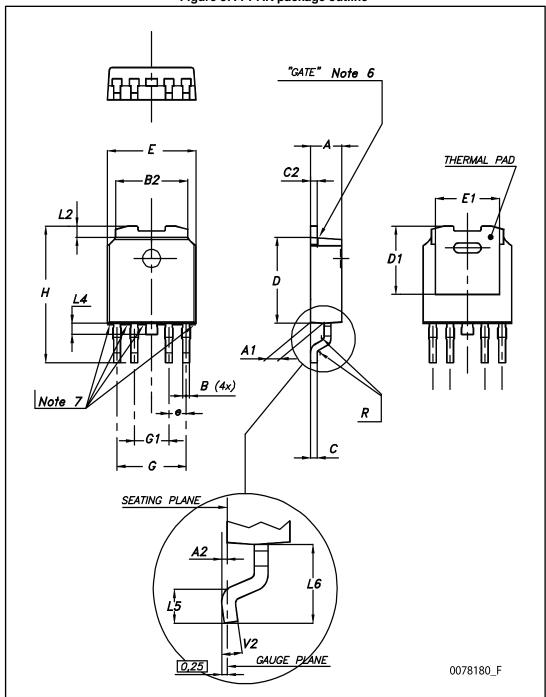



Table 12: PPAK mechanical data

| Dim. | mm   |      |      |  |
|------|------|------|------|--|
|      | Min. | Тур. | Max. |  |
| A    | 2.2  |      | 2.4  |  |
| A1   | 0.9  |      | 1.1  |  |
| A2   | 0.03 |      | 0.23 |  |
| В    | 0.4  |      | 0.6  |  |
| B2   | 5.2  |      | 5.4  |  |
| С    | 0.45 |      | 0.6  |  |
| C2   | 0.48 |      | 0.6  |  |
| D    | 6    |      | 6.2  |  |
| D1   |      | 5.1  |      |  |
| Е    | 6.4  |      | 6.6  |  |
| E1   |      | 4.7  |      |  |
| е    |      | 1.27 |      |  |
| G    | 4.9  |      | 5.25 |  |
| G1   | 2.38 |      | 2.7  |  |
| Н    | 9.35 |      | 10.1 |  |
| L2   |      | 0.8  | 1    |  |
| L4   | 0.6  |      | 1    |  |
| L5   | 1    |      |      |  |
| L6   |      | 2.8  |      |  |
| R    |      | 0.20 |      |  |
| V2   | 0°   |      | 8°   |  |

Package information LDL112

## 8.8 PPAK packing information

Figure 38: PPAK tape outline

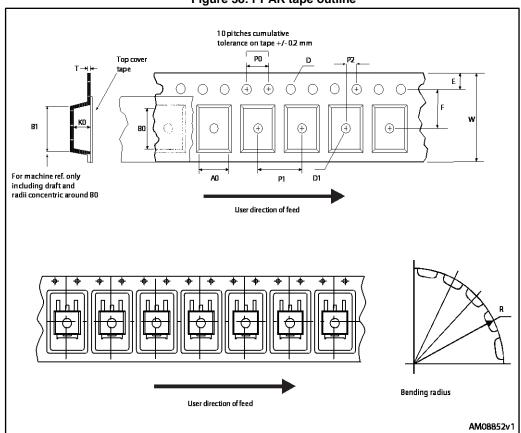



Figure 39: PPAK reel outline

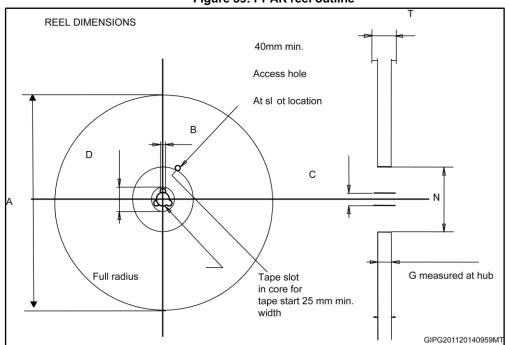



Table 13: PPAK mechanical data

|      | Таре |      | Reel |        |      |  |
|------|------|------|------|--------|------|--|
| Dim. | mm   |      | Dim  | r      | mm   |  |
|      | Min. | Max. | Dim. | Min.   | Max. |  |
| A0   | 6.8  | 7    | А    |        | 330  |  |
| В0   | 10.4 | 10.6 | В    | 1.5    |      |  |
| B1   |      | 12.1 | С    | 12.8   | 13.2 |  |
| D    | 1.5  | 1.6  | D    | 20.2   |      |  |
| D1   | 1.5  |      | G    | 16.4   | 18.4 |  |
| E    | 1.65 | 1.85 | N    | 50     |      |  |
| F    | 7.4  | 7.6  | Т    |        | 22.4 |  |
| K0   | 2.55 | 2.75 |      |        |      |  |
| P0   | 3.9  | 4.1  | Bas  | e qty. | 2500 |  |
| P1   | 7.9  | 8.1  | Bas  | e qty. | 2500 |  |
| P2   | 1.9  | 2.1  |      |        |      |  |
| R    | 40   |      |      |        |      |  |
| Т    | 0.25 | 0.35 |      |        |      |  |
| W    | 15.7 | 16.3 |      |        |      |  |

Ordering information LDL112

# 9 Ordering information

Table 14: Order codes

| DFN6 (3x3)  | DFN6 (2x2)  | SO8-batwing | PPAK        | Output voltage (V) |
|-------------|-------------|-------------|-------------|--------------------|
| LDL112PV10R | LDL112PU10R | LDL112D10R  |             | 1.0                |
| LDL112PV12R | LDL112PU12R | LDL112D12R  |             | 1.2                |
| LDL112PV15R | LDL112PU15R | LDL112D15R  |             | 1.5                |
| LDL112PV18R | LDL112PU18R | LDL112D18R  |             | 1.8                |
| LDL112PV25R | LDL112PU25R | LDL112D25R  |             | 2.5                |
| LDL112PV30R | LDL112PU30R | LDL112D30R  |             | 3.0                |
| LDL112PV33R | LDL112PU33R | LDL112D33R  |             | 3.3                |
| LDL112PVR   | LDL112PUR   | LDL112DR    | LDL112PT-TR | Adj                |

LDL112 Revision history

# 10 Revision history

Table 15: Document revision history

| Date        | Revision | Changes                                                                                                  |
|-------------|----------|----------------------------------------------------------------------------------------------------------|
| 21-Nov-2014 | 1        | Initial release.                                                                                         |
| 28-Oct-2016 | 2        | Updated Figure 31: "DFN6 (2x2) package outline".  Modified Table 14: "Order codes".  Minor text changes. |

#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

## **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

### STMicroelectronics:

<u>LDL112PUR LDL112DR LDL112PV33R LDL112PT-TR LDL112PVR LDL112D33R LDL112PV18R</u> LDL112PU33R LDL112PU18R LDL112D12R