

# EVAL6207Q

### Dual full bridge with integrated PWM current controllers

#### Data brief



### Description

The EVAL6207Q is a dual full bridge driver board allowing the user to test the L6207Q functions.

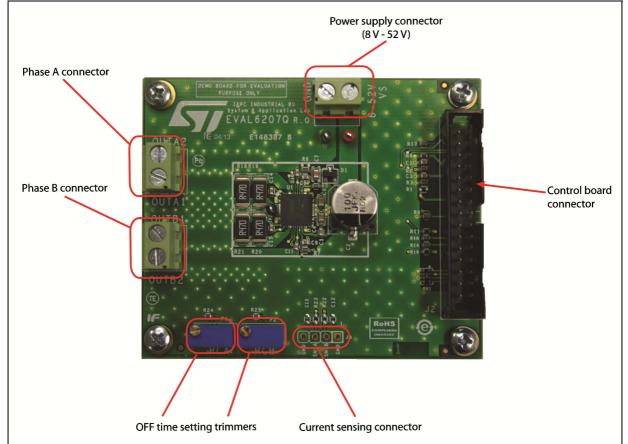
The dual full bridges integrated into the L6207Q can be used to drive a single two phase stepper motor or up to four DC motors (unidirectional). The device also includes two independent constant OFF time PWM current controllers.

The board can be driven using the STEVAL-PCC009V2 communication board and the PractiSPIN<sup>TM</sup> 2 evaluation software.

### Features

- Voltage range from 8 V to 52 V
- Phase current up to 2.5 A<sub>r.m.s.</sub>
- Adjustable constant t<sub>OFF</sub> PWM current control
- Logic inputs 5 V / 3.3 V compliant
- Small application footprint with high thermal performance
- Suitable to be used in combination with PractiSPIN<sup>TM</sup> 2 software

1/10


### 1 Board description

| Parameter                                                  | Value                      |  |
|------------------------------------------------------------|----------------------------|--|
| Supply voltage (VS)                                        | 8 to 52 V                  |  |
| Maximum output current (each phase)                        | 2.5 A <sub>r.m.s.</sub>    |  |
| Low level logic inputs voltage                             | 0 V                        |  |
| High level logic input voltage                             | 5 V / 3.3 V <sup>(1)</sup> |  |
| Maximum VREF <sub>A</sub> /VREF <sub>B</sub> input voltage | 3.3 V <sup>(2)</sup>       |  |
| Switching frequency                                        | Up to 100 kHz              |  |
| Operating temperature                                      | -25 to +125 °C             |  |
| L6207Q thermal resistance junction-to-ambient              | 17° C/W                    |  |

#### Table 1. Electrical specifications

1. Logic inputs are 3.3 V and 5 V compliant.

2. Equivalent to about 3.1 A peak current.



#### Figure 1. Trimmers and connectors location

DocID025098 Rev 1

| Pin    | Туре           | Function                                      |  |
|--------|----------------|-----------------------------------------------|--|
| 2      | Ground         | Ground                                        |  |
| 3      | Logic input    | Input IN1A of L6207Q                          |  |
| 4      | Logic input    | Input IN2A of L6207Q                          |  |
| 5      | Logic input    | Input IN1B of L6207Q                          |  |
| 6      | Logic input    | Input IN2B of L6207Q                          |  |
| 11     | Analog input   | Overcurrent threshold regulation for A bridge |  |
| 12     | Analog input   | Overcurrent threshold regulation for B bridge |  |
| 13     | Ground         | Ground                                        |  |
| 14     | Supply voltage | 3.3 V supply voltage                          |  |
| 16     | Logic input    | Input ENA of L6207Q                           |  |
| 23     | Ground         | Ground                                        |  |
| 24     | Analog output  | Board identification system ID0               |  |
| 25     | Analog output  | Board identification system ID1               |  |
| 27     | Logic output   | Fault output for B bridge                     |  |
| 28     | Ground         | Ground                                        |  |
| 29     | Logic output   | Fault output for A bridge                     |  |
| 30     | Logic input    | Input ENB of L6207Q                           |  |
| Others | Unconnected    |                                               |  |

Table 2. Control board connector pinout (J2)

#### Table 3. Current sensing connector (J9)

| Pin | Туре          | Function                             |
|-----|---------------|--------------------------------------|
| 1   | Ground        | Ground                               |
| 2   | Analog output | SENSEA pins of L6207Q <sup>(1)</sup> |
| 3   | Analog output | SENSEB pins of L6207Q <sup>(1)</sup> |
| 4   | Ground        | Ground                               |

1. R22/23 resistors and C12/13 capacitors must be added when output is used. The value of RC network should be chosen according to the target low pass frequency of the filter.



#### 2 Schematic

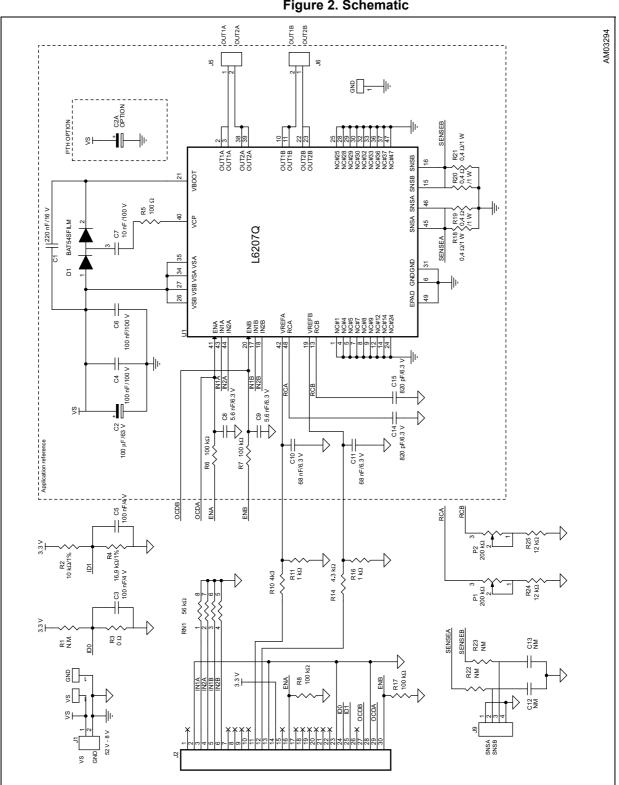



Figure 2. Schematic

DocID025098 Rev 1



# 3 Bill of material

| Index | Quantity | Reference          | Value                                  | Package              |
|-------|----------|--------------------|----------------------------------------|----------------------|
| 1     | 1        | C2                 | 100 μF/63 V                            | CAPES-R10H10         |
| 2     | 1        | C2A                | 100 μF/63 V (option)                   | CAPE-R8H12-P35       |
| 3     | 1        | C1                 | 220 nF/16 V                            | CAPC-0603            |
| 4     | 2        | C3, C5             | 100 nF/4 V                             | CAPC-0603            |
| 5     | 2        | C4, C6             | 100 nF/100 V                           | CAPC-0805            |
| 6     | 1        | C7                 | 10 nF/100 V                            | CAPC-0805            |
| 7     | 2        | C8, C9             | 5.6 nF/6.3 V                           | CAPC-0603            |
| 8     | 2        | C10, C11           | 68 nF/6.3 V                            | CAPC-0603            |
| 9     | 2        | C14, C15           | 820 pF/6.3 V                           | CAPC-0603            |
| 10    | 2        | C12, C13           | NM                                     | CAPC-0603            |
| 11    | 1        | D1                 | BAT54SFILM                             | SOT-23               |
| 12    | 3        | J1, J5, J6         | Screw connector 2 poles                | MORSV-508-2P         |
| 13    | 1        | J2                 | Pol. IDC male header vertical 30 poles | CON-FLAT-15X2-180M   |
| 14    | 1        | J9                 | N.M.                                   | STRIP254P-M-4        |
| 15    | 1        | RN1                | 56 kΩ                                  | RESN-CAY16           |
| 16    | 1        | R1                 | N.M.                                   | RESC-0603            |
| 17    | 1        | R2                 | 10 kΩ/1%                               | RESC-0603            |
| 18    | 1        | R3                 | 0                                      | RESC-0603            |
| 19    | 1        | R4                 | 16.9 kΩ/1%                             | RESC-0603            |
| 20    | 1        | R5                 | 100                                    | RESC-0603            |
| 21    | 4        | R6, R7, R8, R17    | 100 kΩ                                 | RESC-0603            |
| 22    | 2        | R10, R14           | 4.3 kΩ                                 | RESC-0603            |
| 23    | 2        | R11, R16           | 1 kΩ                                   | RESC-0603            |
| 24    | 4        | R18, R19, R20, R21 | 0.4 Ω/1 W                              | RESC-2512            |
| 25    | 2        | R22, R23           | N.M.                                   | RESC-0603            |
| 26    | 2        | P1, P2             | 200 kΩ                                 | TRIMM-100X50X110-64W |
| 27    | 2        | R24, R25           | 12 kΩ                                  | RESC-0603            |
| 28    | 1        | TP1                | TPTH-RING-1MM RED                      | TPTH-RING-1MM        |
| 29    | 2        | TP2, TP3           | TPTH-RING-1MM BLACK                    | TPTH-RING-1MM        |
| 30    | 1        | U1                 | L6207Q                                 | QFN7X7_48L           |

#### Table 4. Bill of material



## 4 Layout

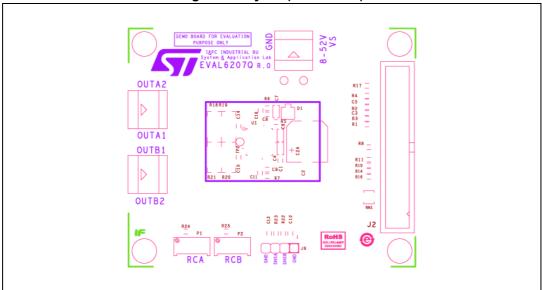
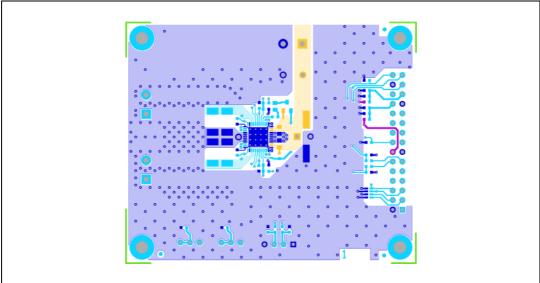




Figure 3. Layout (silk screen)

### Figure 4. Layout (top layer)





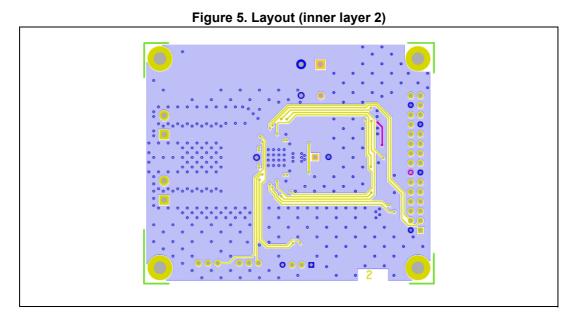
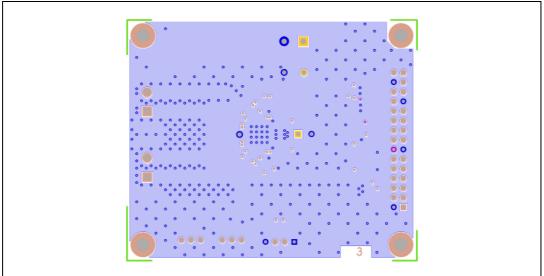
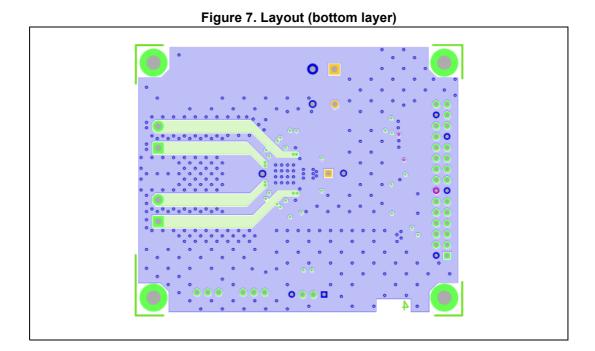
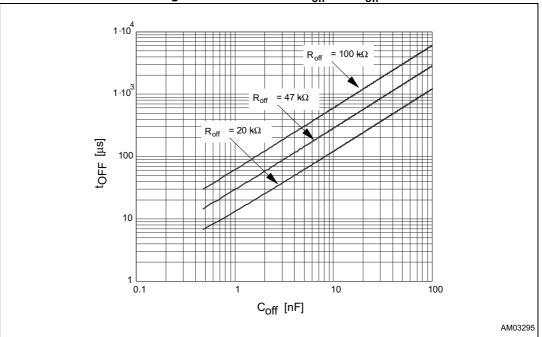





Figure 6. Layout (inner layer 3)










ev 1



# 5 OFF time setting





## 6 Revision history

| Date        | Revision | Changes          |
|-------------|----------|------------------|
| 07-Aug-2013 | 1        | Initial release. |



#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

> ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

mormation in this document supersedes and replaces an information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

#### STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID025098 Rev 1



# **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: EVAL6207Q