5 Output Ultra Low Jitter LVCMOS Fan out Buffer

Description

The SiT92113 is a 5 output low-jitter clock, fan-out buffer, intended to be used in low jitter, high frequency clock/data distribution. The low impedance LVCMOS outputs are designed to drive 50 Ω series or parallel terminated transmission lines.

The buffer can choose a clock input from primary, secondary or crystal source. The primary and secondary clock sources can be single ended or fully differential. The selected clock is distributed to 5 LVCMOS output drivers.

The SiT92113 operates from a 3.3 V/2.5 V core supply and 3.3 V/2.5 V output supply. The core supply and output supply are independent of each other and no supply sequencing is required.

Applications

- Carrier Ethernet
- 5G Wireless Infrastructure, Small Cells

Nomenclature:

SiT92113: 24 pin, 4 mm x 4 mm, QFN

Features

- Additive jitter performance of 50 fs RMS.
- Typical output skew between clock outputs is 30 ps
- Level translation with core supply voltage of 3.3 V/2.5 V and 3.3 V/2.5 V / 1.8 V/ 1.5 V output supply for LVCMOS output drivers.

Si Time

- The device inputs consists of primary, secondary and crystal inputs.
- The inputs are selected by programming input select pins of SiT92113. The input clock receiver in SiT92113 can accept LVPECL, LVDS, LVCMOS, SSTL, HCSL and OSC waveforms.
- Crystal frequencies from 8 MHz to 50 MHz are supported.
- Crystal input can be over driven with frequency up to 250 MHz in crystal bypass mode
- SiT92113 buffer is available in a 24-pin, 4 mm x 4 mm QFN package.

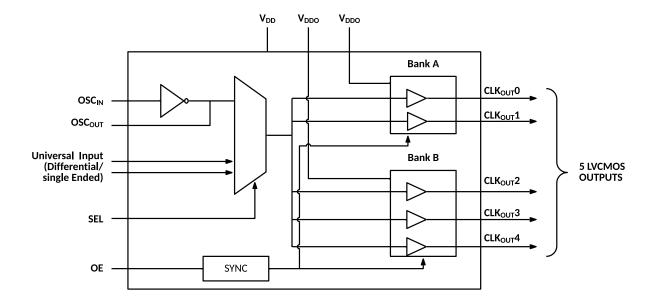


Figure 1. SiT92113 Block Diagram

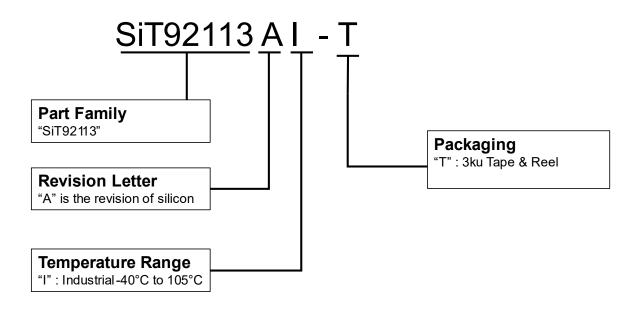


Table of Contents

Description	
Applications	
Features	
Ordering Information	
Electrical Characteristics	
Functional Description	
Functional Block Diagram	
VDD and VDDO Power Supplies	
Clock Inputs	
Clock States (Input vs Output States)	
Output Enable	
Application Information	
Driving the Clock Inputs	
Driving Clock Inputs with LVCMOS Driver (AC coupled)	
Driving Clock Inputs with LVCMOS Driver (DC coupled)	
Driving OSC_IN with LVCMOS Driver (AC coupled)	
LVDS (DC coupled)	
HCSL (DC coupled)	
LVPECL (DC coupled)	
SSTL (DC coupled)	
LVDS (AC coupled)	
LVPECL (AC coupled)	
Termination of Output Driver of SiT92113 for Various Load Configurations	
SiT92113 Output ODR Termination for AC Coupled mode	
SiT92113 Output ODR Termination for DC Coupled mode	
CMOS (Capacitive load)	
Power Considerations	
Core Current in XO Mode	
Parameter Measurement Information	
Differential Input Level	
Skew and Input to Output Delay	
Rise and Fall Times	
Hot Swap Recommendations	
Introduction	
Typical Differential Input Clock	
Input Clock Termination with Hot Swap Protection	
LVPECL Termination Example	
LVDS Input Clock Termination Example	
HCSL Input Clock Termination Example	
LVCMOS Input Clock Termination with Hot Swap Protection	
LVCMOS Output Clock Termination with Hot Swap Protection	
LVCMOS Input Clock and Power Supply Sequencing	
Operation in Multiple VDDO Supply Domains	
Package Information	

Ordering Information

Electrical Characteristics

Table 1 Absolute Maximum Ratings

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Core Supply Voltage		V _{DD}	-0.5		3.6	V
Output Supply Voltage		V _{DDO}	-0.5		3.6	V
Input voltage, All Inputs, except OSC_IN		V _{IN}	-0.3		VDD+0.3	V
OSC_IN		V _{IN}	-0.3		1.5	V
Storage temperature		T _{STG}	-55		150	О°
Junction Temperature		TJ			125	°C
Moisuture Saturation Level		MSL		3		

Notes:

1. Exceeding maximum ratings may shorten the useful life of the device.

2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or at any other conditions beyond those indicated under the DC Electrical Characteristics is not implied. Exposure to Absolute-Maximum-Rated conditions for extended periods may affect device reliability or cause permanent device damage.

Table 2 Recommended Operating Supply Temperatures

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Ambient Temperature		T _A	-40	27	105 ^[1]	°C
Core Supply Voltage		M	3.135	3.3	3.465	V
		V _{DD}	2.375	2.5	2.625	V
		V _{ddo}	3.135	3.3	3.465	V
Output Supply Voltage			2.375	2.5	2.625	V
Output Supply Voltage			1.6	1.8	2	V
			1.35	1.5	1.65	V

Notes:

1. Junction temperature should be less than 125 $^{\circ}\text{C}$

Table 3 ESD Ratings

Parameter	Conditions	Symbol	Value	Units
Electrostatic Discharge	Human Body Model		2000	V
	Charged Body Model		500	V

Table 4 Thermal Characteristics

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Junction to ambient thermal resistance		θ _{JA}		43.4		°C/W

Table 5 DC Electrical Characteristics

 $\begin{array}{l} \mbox{Unless otherwise specified: V_{DD} = 3.3 V \pm 5\%, $2.5 V \pm 5\%, V_{DDO} = $3.3 V \pm 5\%, $2.5 V \pm 5\%, $1.8 V \pm 10\%, $1.5 V \pm 10\%, $-40 \ ^\circ\text{C} \leq TA \leq 85 \ ^\circ\text{C}, $CLK0/1$ driven differentially, input slew} \end{array}$

rate \geq 2 V/ns. Typical values represent most likely parametric norms at V_DD = 3.3 V, V_DDO = 3.3 V, TA = 25 °C.

Parameters	Conditions	Sym	Min	Тур	Max	Units
	Cu	rrent Consum	otion			
Static current taken by core supply when no toggling	$V_{\text{DD}} = 3.3 \text{ V}, V_{\text{DDO}} = 3.3 \text{ V},$ $F_{\text{IN}} = 0$	I _{CORE,STATIC}		16	19.8	mA
Static current taken by output driver supply when no toggling	$V_{\text{DD}} = 3.3 \text{ V}, V_{\text{DDO}} = 3.3 \text{ V},$ $F_{\text{IN}} = 0$	I _{ODR,STATIC}		3.5	4.2	mA
Current taken by core supply, if OSC is enabled	$V_{\text{DD}} = 3.3 \text{ V}, V_{\text{DDO}} = 3.3 \text{ V},$ $F_{\text{OSC}} = 25 \text{ MHz}$	I _{CORE,STATIC,O} SC(1)		11.5	14	mA
Power Dissipation Capacitance per output	$V_{DD} = 3.3 \text{ V}, V_{DDO} = 3.3 \text{ V},$ $F_{IN} = 200 \text{ MHz}$	C _{PD(1)}		4	5.2	pF
Dynamic current taken by core supply	$V_{DD} = 3.3 \text{ V}, V_{DDO} = 3.3 \text{ V},$ $F_{IN} = 100 \text{ MHz}$	I _{CORE,DYN}		1.3	1.56	mA
	Input Co	ontrol Pin Chara	acteristics	•		•
High level input voltage		V _{IH}	0.7^*V_{DD}		V _{DD}	V
Low level input voltage		V _{IL}	GND		0.3*V _{DD}	V
High level input current	$V_{IH} = V_{DD} = 3.3 V$	I _{IH}		30	50	uA
Low level input current		I _{IL}	-20	0.1		uA
Pull down resistance		RPULLDOWN		200		KΩ
Input capacitance		C _{IN}		2		pF

Notes:

1. Specification is guaranteed by Characterization and not tested in production

Table 6 Digital Inputs (0E, SEL)

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Input Low Voltage		V _{IL}	GND		0.3*VDD	V
		VIH	0.7*VDD		VDD	V
Input High Voltage						
High Level Input Current	$V_{IH} = V_{DD} = 3.3 V$	Цн		30	50	uA
Low Level Input Current		IIL	-20	0.1		uA

Table 7 Input Clock Characteristics

rate \geq 2 V/ns. Typical values represent most likely parametric norms at V_DD = 3.3 V, V_DDO = 3.3 V, TA = 25 °C.

Parameters	Conditions	Sym	Min	Тур	Мах	Units
	DC Character	istics of universal	input clock pir	าร		
High level input current	$V_{IH} = V_{DD} = 3.465 V$	l _{IH}			650	uA
Low level input current		I _{IL}	-650			uA
Pull up or pull down resistor on CLK0/1		R _{PULLUP_PULLDOWN}		7.5		ΚΩ
Differential Input Voltage Swing (peak to peak) ⁽¹⁾		VIDIFF	0.15		1.3	V
Differential Input Common Mode Voltage ⁽²⁾	V _{IDIFF} = 150 mV	V _{ICM}	0.25		V _{DD} -0.85	V
Single Ended Input High Voltage ⁽²⁾	Inverting differential input held at VDD/2, $V_{DD} = 3.3$ V	VIHSE	2		V _{DD} +0.3	V
	Inverting differential input held at VDD/2, V _{DD} = 2.5V		1.6		V _{DD} +0.3	V
Single Ended Input Low Voltage ⁽²⁾	Inverting differential input held at VDD/2, V _{DD} = 3.3V	V _{ILSE}	-0.3		1.3	V
	Inverting differential input held at VDD/2, V _{DD} = 2.5V		-0.3		0.9	V
	AC Character	istics of universal	input clock pir	ıs		
Input slew rate	20% to 80%	Δνί/Δτ		2		V/ns
Input Capacitance	Single ended	C _{IN}		700	_	fF
Input Frequency Range ⁽⁴⁾	LVDS and LVPECL outputs	f _{IN}	_	—	250	MHz
	HCSL outputs		_	_	250	MHz
	LVCMOS outputs		_	—	250	MHz
Input duty cycle, such that output duty cycle is equal to input duty cycle ⁽⁵⁾	The pass condition for the measurement is that output duty cycle is within ±5% of input duty cycle. The input clock amplitude is same as LVPECL standard.	I _{DC}	40		60	%
	C	Crystal Characteris	tics		· · ·	
Equivalent series resistance		ESR		35	60	Ω
load capacitance		CL	6	8	10	pF

Parameters	Conditions	Sym	Min	Тур	Мах	Units
Shunt Capacitance		Co		2	3	pF
Drive level				100	200	uW
Mode of oscillation				fundamental		
Supported crystal frequency range ⁽³⁾		Frequency	8		50	MHz
Maximum swing level on OSC_IN/ OSC_OUT pins	Bypass mode	V _{max}			1.5	V
F _{osc} = 8 MHz	Settling time required for output in crystal mode	t _{settle}		14		ms
F _{osc} = 25, 50 MHz				8		ms
XO bypass AC coupled mode additive jitter ⁽³⁾	$V_{DDO} = 3.3 V$ Slew Rate > 2 V/ns $F_{IN} = 48 MHz$	t _{jit}		100		fs
	V _{DDO} = 2.5 V Slew Rate > 2 V/ns Fin = 48 MHz			115		fs
	$V_{DDO} = 1.8 V$ Slew Rate > 2 V/ns $F_{IN} = 48 MHz$			230		fs
Additive jitter ⁽³⁾	RMS, integration BW 12 KHz to 5 MHz, F _{crystal} = 25 MHz. Crystal input select	t _{jit}		155		fs
Notosi	Measured at $V_{DD} = V_{DDO} = 2.5 \text{ V}$					

Notes:

1. Inverting differential input clock pin biased at VDD/2

2. Input common mode defined as VIH.

3. Specification is guaranteed by characterization and is not tested in production

4. If the input clock is initially absent when the chip is just powered up, it will take at least 2 falling edge of clock cycles for the output to appear. Therefore, the buffer level translates DC only after it sees two consecutive falling edge of input clock

5. Output duty cycle equals input duty cycle. ATE measurement done with 80% on time and 20% off time waveform to make sure that output duty cycle is equal to input duty cycle even with skewed input duty cycle.

Parameters	Conditions	Sym	Min	Тур	Мах	Units
Maximum output frequency	Universal clock input	F			250	MHz
	OSC ⁽¹⁾	F _{out}			50	MHz
	For F _{IN} ≤ 200 MHz		45		55	
Output duty cycle	For 200 MHz < F _{IN} < 250 MHz	Odc	40		60	%

Table 8 Output Clock Characteristics - LVCMOS

Г					1	
	V _{DDO} =3.3 ± 5%, 12 mA pull down current		2.6			V
	V _{DDO} = 2.5 ± 5%, 8 mA pull down current	N/	1.8			V
Output high level voltage	$V_{DDO} = 1.8 \text{ V} \pm 200 \text{ mV},$ 2 mA pull down current	V _{он}	1.2			V
	$V_{DDO} = 1.5 V \pm 150 mV,$ 2 mA pull down current		0.95			V
Output low level voltage	$V_{DDO} = 3.3 \pm 5\%$, 12 mA pull up current				0.5	V
	V _{DDO} = 2.5 ± 5%, 8 mA pull up current				0.5	V
	$V_{DDO} = 1.8 V \pm 200 mV,$ 2 mA pull up current	V _{OL}			0.4	V
	$V_{DDO} = 1.5 V \pm 150 mV,$ 2mA pull up current				0.35	V
Effective output	V _{DDO} = 3.3 V			15		Ω
	V _{DDO} = 2.5 V	R _{out}		18		Ω
impedance, for maximum slice strength	V _{DDO} = 1.8 V			23		Ω
	V _{DDO} = 1.5 V			28		Ω
	V _{DDO} = 3.465 V			40		ps
	V _{DDO} = 2.5V			35		ps
Output skew ⁽¹⁾	V _{DDO} = 1.62 V	• t _{sk}		31		ps
	V _{DDO} = 1.35 V			36		ps
Time for output enable or disable ⁽¹⁾		t _{en}			4	cycle
	V_{DDO} = 3.465 V, PCB trace of 5 inch, 10 pF capacitor AC coupled 50 Ω load			1.4		ns
Input to clock edge to	V_{DDO} = 2.5 V, PCB trace of 5 inch, 10 pF capacitor AC coupled 50 Ω load			1.5		ns
output clock edge delay	V_{DDO} = 1.62 V, PCB trace of 5 inch, 10 pF capacitor AC coupled 50 Ω load	• t _d		2		ns
	V_{DDO} = 1.35 V, PCB trace of 5 inch, 10 pF capacitor AC coupled 50 Ω load			2.5		ns

	I	1	1	1	[1
	V _{DD0} = 3.465 V Slew rate (SiT92113) ≥ 2 V/ns			21		fs
A 1 1111 1111 (1)	V _{DDO} = 2.5 V Slew rate (SiT92113) ≥ 2 V/ns	t _{jit}		37		fs
Additive jitter ⁽¹⁾	V _{DDO} = 1.62 V Slew rate (SiT92113) ≥ 2 V/ns			87		fs
	V _{DDO} = 1.35 V Slew rate (SiT92113) ≥ 2 V/ns			233		fs
	Output rise time 20% to 80 % Load cap 5 pF, V _{DDO} = 3.3 V, AC coupled 50 Ω load				605	ps
	Output rise time 20% to 80 % Load cap 5 pF, V _{DDO} = 2.5 V, AC coupled 50 Ω load				605	ps
Rise time ⁽¹⁾	Output rise time 20% to 80 % Load cap 5 pF, V _{DDO} = 1.62 V, AC coupled 50 Ω load	t _R			605	ps
	Output rise time 20% to 80 % Load cap 5 pF, V _{DD0} = 1.35 V, AC coupled 50 Ω load				605	ps
	Output fall time 20% to 80 % Load cap 5 pF, $V_{DDO} = 3.3 V$				605	ps
Fall time ⁽¹⁾	Output fall time 20% to 80 % Load cap 5 pF, $V_{DDO} = 2.5 V$				605	ps
	Output fall time 20% to 80 % Load cap 5 pF, V_{DDO} = 1.62 V	t _F			605	ps
	Output fall time 20% to 80 % Load cap 5 pF, $V_{DDO} = 1.35 V$				605	ps

Notes: Specification is guaranteed by Characterization and is not tested in production

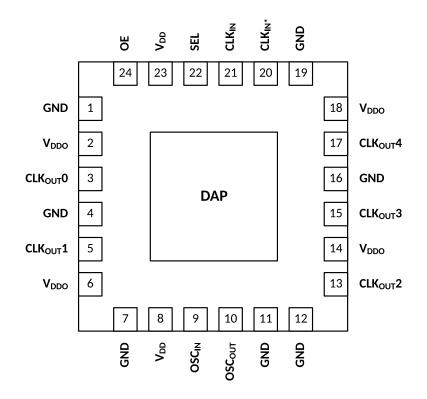
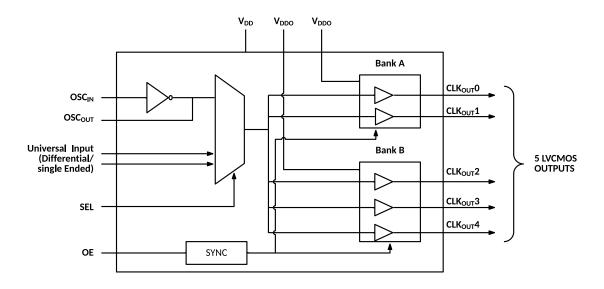
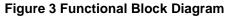


Figure 2. SiT92113 Top View

Table 3. Detailed Fill Description				
Pin Name	I/О Туре	SiT92113	Functionality SiT92113	
DAP	_	DAP	The DAP should be grounded	
V _{DDO}	Power	2, 6	Power Supply for Bank A (CLK_{OUT} 0 and CLK_{OUT} 1) CLK_{OUT} pins	
CLK _{OUT0}	Output	3	LVCMOS Output	
GND	GND	1,4,7,11, 12, 16,19	Ground	
CLK _{OUT1}	Output	5	LVCMOS Output	
V _{DD}	Power	8,23	Supply for operating core and input buffer	
OSC _{IN}	Input	9	Input for Crystal	
OSC _{OUT}	Output	10	Output for Crystal	
CLK _{OUT2}	Output	13	LVCMOS Output	
V _{DDO}	Power	14,18	Power Supply for Bank B (CLK _{OUT} 2 to CLK _{OUT} 4) CLK _{OUT} pins	
CLK _{OUT3}	Output	15	LVCMOS Output	
CLK _{OUT4}	Output	17	LVCMOS Output	
CLK _{IN*}	Input	20	Complementary Input pin	
CLK _{IN}	Input	21	Input Pin	
SEL	Input	22	Input Clock Selection. This pin has an internal pulldown resistor ⁽¹⁾	
OE	Input	24	Output Enable. This pin has an internal pulldown resistor ⁽¹⁾	


Table 9. Detailed Pin Description


Page 12 of 37

Functional Description

Functional Block Diagram

The SiT92113 is a 5-output differential clock fan out buffer with low additive jitter that can operate up to 250 MHz. It features a 2:1 input multiplexer with either a differential/single ended input clock or crystal oscillator input and five LVCMOS outputs. The input selection and output buffer modes are controlled via pin strapping. The device is offered in a 24-pin QFN package.

VDD and VDDO Power Supplies

The SiT92113 has separate 3.3 V/2.5 V core (VDD) and 3.3 V/2.5 V/1.8 V/1.5 V output power supply (VDDO). Output supply operation at 2.5 V/1.8 V/1.5 V enables lower power consumption and output-level compatibility with 2.5 V/1.8 V/1.5 V receiver devices. The output levels LVCMOS (VOH) is referenced to its respective VDDO supply.

Clock Inputs

The input clock can be selected from primary universal clock input, secondary universal clock input, or Xin. Clock input selection is controlled using the SEL[0] inputs as shown in Table 10

Table 10 Input Clock Selection

SEL	Selected Clock
0	CLK
1	Crystal Or Crystal bypass AC coupled mode

Clock States (Input vs Output States) Table 11 Input vs Output Stages

State of Selected Clock input	Output State
Inputs are floating	Logic Low
Inputs are logic low	Logic Low
Inputs are logic high	Logic High

Output Enable

Pulling OE to LOW, forces the outputs to the highimpedance state after the four falling edge of the input signal. The outputs remain in the high-impedance state as long as OE is LOW. The OE signal is internally synchronized to the selected input clock. This allows disabling the output clock at the falling edge of input clock in a glitch free manner.

When OE goes from low to high, the output clock is enabled within a time delay td, where td is given by the following equation.

 $t_{d,refout_en} = 0.5n + 4 * T_{in}$. T_{in} is the time period of the input clock.

Table 12 OE Functionality

OE	Output State
0	Disabled (HIZ)
1	Enabled

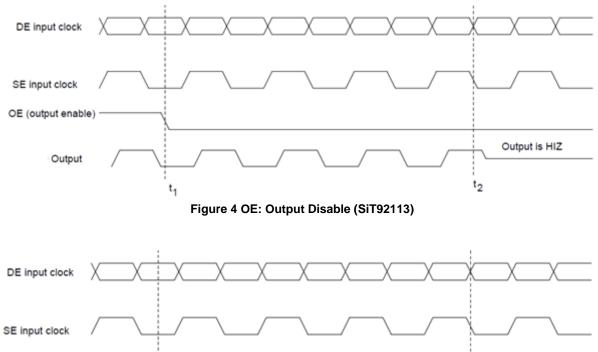


Figure 5 OE: Output Enable

Application Information

Driving the Clock Inputs

The SiT92113 has two universal clock inputs (CLK0/nCLK0 and CLK1/nCLK1) SiT92113 can accept 3.3 V/2.5 V LVPECL, LVDS, CML, SSTL, and other differential and single-ended signals that meet input common mode, slew rate and swing requirements specified in the Electrical Characteristics. The SiT92113 supports a wide common mode voltage range and input signal swing

To achieve the best possible phase noise and jitter performance, it is mandatory for the input to have high slew rate of 2 V/ns (differential) or higher. Driving the input with a lower slew rate will degrade the noise floor and jitter.

It is recommended to drive the input signal differentially for better slew rate and jitter. The user can also drive a single ended clock. If the user is driving the single ended clock signal on say CLK0, then nCLK0 pin need to be connected to a 0.1 uF capacitor on the PCB.

Driving Clock Inputs with LVCMOS Driver (AC coupled)

Figure 6 shows how a differential input can be wired to accept LVCMOS single ended levels in AC coupled mode. The bypass capacitor (C1) is used to help filter noise on the DC bias on the inverting pin of the clock input. This bypass should be located as close to the input pin as possible. Two

resistors R_{T1} and R_{T2} set the common mode voltage at the output of the LVCMOS driver to VDD/2. This prevents average DC leakage current from the LVCMOS driver and avoids unnecessary power dissipation.

For example, if the input clock is driven from a single-ended 2.5 V LVCMOS driver and the DC offset (or swing center) of this signal is 1.25 V, the R_{T1} and R_{T2} values should be adjusted to set the V1 at 1.25 V. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in the following way. First, R_{T1} and R_{T2} in parallel should equal the transmission line impedance. For most 50 Ω applications, R_{T1} and R_{T2} can be 100 Ω .

$$Z_o = R_o + R_s = 50 \ \Omega$$

 $\frac{R_{T1} * R_{T2}}{R_{T1} + R_{T2}} = 50 \ \Omega$

$$\frac{VDD * R_{T2}}{R_{T1} + R_{T2}} = \frac{VDD}{2}$$

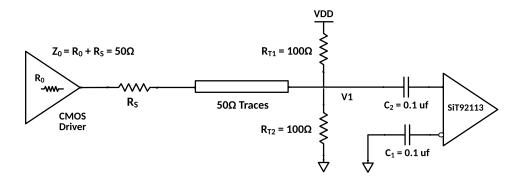
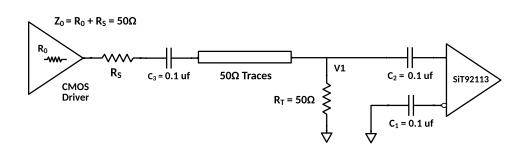
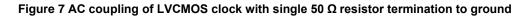


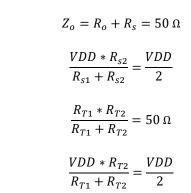
Figure 6 AC coupling LVCMOS clock to SiT92113


The inverting differential input can be connected to a 0.1 uF bypass capacitor. This pin is biased internally to a voltage close to VDD/2.


Another variant of the AC coupling of LVCMOS input clock is shown in Figure 7. We use single termination resistor of

50 Ω to ground. A 0.1 uF AC coupling capacitor is connected in series with the LVCMOS clock source to prevent DC leakage current.

$$Z_o=R_o+R_s=50\,\Omega$$



Driving Clock Inputs with LVCMOS Driver (DC coupled)

Figure 8 shows how a differential input can be wired to accept LVCMOS single ended clock signals in DC coupled mode. The reference voltage V1 = VDD/2 is generated by the bias resistors R_{S1} and R_{S2} . The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R_{S1} and R_{S2} might need to be adjusted to position the bias voltage V2 in the center of the input voltage swing. Typical values of bias circuit resistance are $R_{S1} = 1 \ K\Omega$

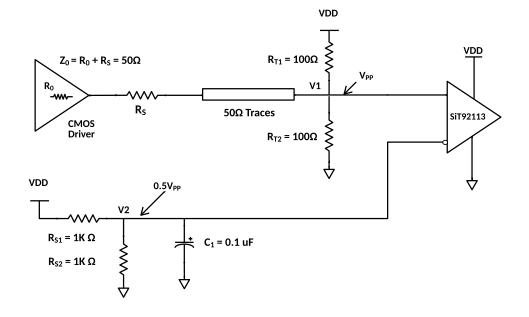


Figure 8 DC coupling of LVCMOS clock to SiT92113 – configuration 1

For example, if the input clock is driven from a single-ended 2.5 V LVCMOS driver and the DC offset (or swing center) of this signal is 1.25 V, the R_{S1} and R_{S2} values should be adjusted to set the V2 at 1.25 V. The values below are for

when both the single ended swing and VDD are at the same voltage.

This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition,

matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R_{T1} and R_{T2} in parallel should equal the transmission line impedance. For most 50 Ω applications, R_{T1} and R_{T2} can be 100 Ω . The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver.

Figure 9 shows a second input clock configuration where R_{T1}, R_{T2} are removed and replaced with a 50 Ω termination resistor RT to ground. It is possible that LVCMOS driver (or clock source) may not be able to drive 50 Ω load in DC coupled mode. The user can use series RC termination to overcome this limitation. The design equations for the input clock configuration shown in Figure 9 is given below.

$$Z_o = R_o + R_s = 50 \Omega$$
$$\frac{VDD * R_{s2}}{R_{s1} + R_{s2}} = \frac{Vpp}{2}$$

The LVCMOS single ended clock input with series RC termination near the buffer is shown in Figure 10. There is a single termination resistor RT which is connected to ground through a capacitor C_{AC} . The value of series capacitor is given by a formula.

$$C_{AC} \ge \frac{3T_D}{50\Omega}$$
 T_D is the transmission line delay

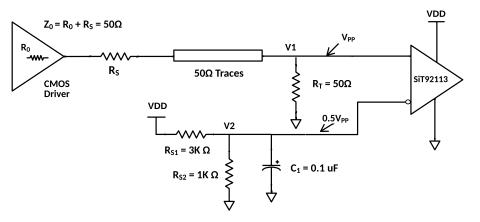
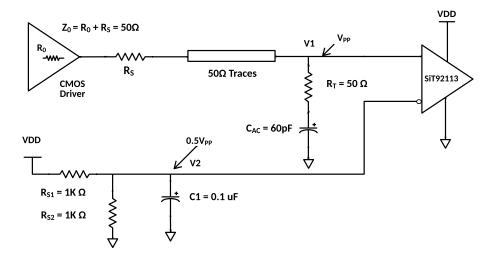



Figure 9 DC coupled LVCMOS input clock configuration – configuration 2

For low frequencies we can direct couple the LVCMOS clock to SiT92113 input clock pin as shown in Figure 11

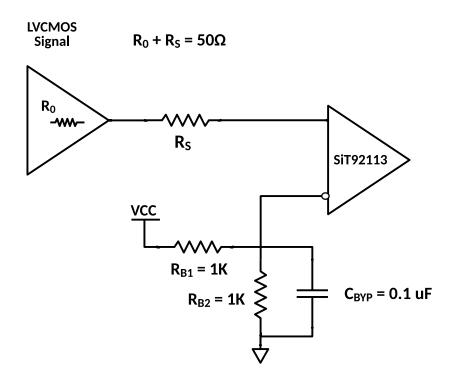


Figure 11: Direct coupling of LVCMOS clock to SiT92113

Driving OSC_IN with LVCMOS Driver (AC coupled)

The crystal input OSC_IN can be overdriven with single ended clock (LVCMOS driver or one side of a differential driver). The peak swing at OSC_IN should be limited to 1.5 V. The OSC_OUT pin, in this case can be floating. The SEL should be 1. The maximum voltage at OSC_IN should not exceed1.5 V and minimum voltage should not go below -0.3 V. The slew rate at OSC_IN should be greater than 0.2 V/ns.

For 3.3 V LVCMOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. Figure 12 shows an example of the interface diagram for a high speed 3.3 V LVCMOS driver. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R_{T1} and R_{T2} in parallel should equal the transmission line impedance. For most 50 Ω applications, R_{T1} and R_{T2} can be 100 Ω .

$$Z_o = R_o + R_s = 50 Ohm$$

$$\frac{R_{T1} * R_{T2}}{R_{T1} + R_{T2}} = 50 \ Ohm$$

$$\frac{VDD * R_{T2}}{R_{T1} + R_{T2}} = \frac{VDD}{2}$$

For both the AC coupled configurations, the maximum peak to peak swing before the ac coupling capacitor is 1.65 V. The maximum DC bias voltage of OSC_IN is 0.675V. Therefore the maximum swing at the OSC_IN pin is given by the equation given below.

$$W_{swing,pk,XTAL_{IN}} = 0.675 + 0.5 * 1.65 = 1.5V$$

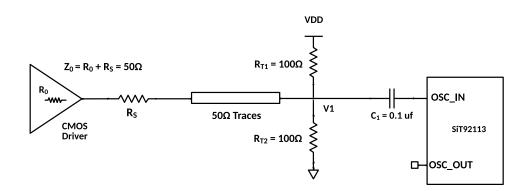


Figure 12 Single ended LVCMOS input – configuration 1, AC coupling to crystal input

Figure 13 shows a second input clock configuration where R_{T1} , R_{T2} are removed and replaced with a 50 Ω termination resistor RT to ground. A 0.1 uF is in series with the CMOS driver to prevent any DC leakage current.

Figure 13 Single ended LVCMOS input – configuration 2, AC coupling to crystal input

LVDS (DC coupled)

Terminate with a differential 100 Ω as close to the receiver as possible. This is shown in Figure 14

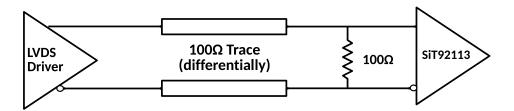


Figure 14 Termination scheme for DC coupled LVDS

HCSL (DC coupled)

Termination resistor is 50 Ω to ground, close to the output driver. A series resistance Rs is sometimes used to limit the overshoot during fast transients. The termination scheme is shown in Figure 15

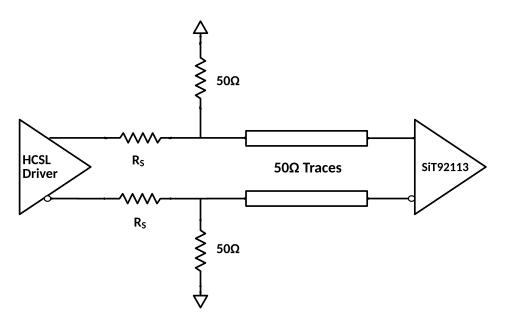


Figure 15 Termination scheme for DC coupled HCSL

LVPECL (DC coupled)

For DC coupled operation, the 50 Ω termination resistors are placed close to the receiver. The termination resistors are biased with a voltage source VTT.

$$V_{TT} = V_{DDO} - 2V.$$

This termination scheme is shown in Figure 16. Alternatively, the user can also implement a Thevenin equivalent of VTT using a resistor divider. This scheme and the values of the resistors in the resistor divider are given in Figure 17.

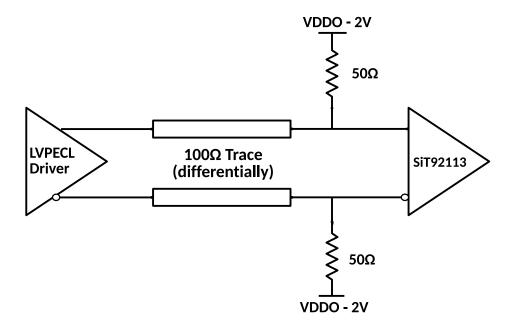
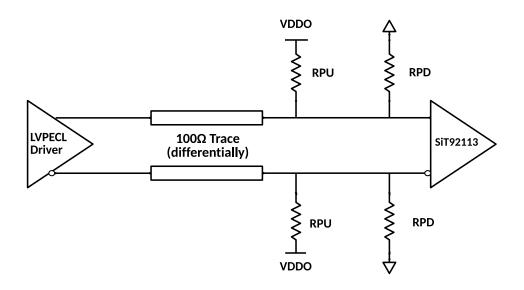



Figure 16 Termination scheme for DC coupled LVPECL

V _{DDO}	RPU	RPD	VTT
3.3 V	120 Ω	82 Ω	~ 1.3 V
2.5 V	250 Ω	62.5 Ω	0.5 V

Figure 17 Termination scheme for DC coupled LVPECL, Thevenin equivalent

The design equations for the LVPECL Thevenin equivalent termination are given below.

$$\frac{R_{PD} * R_{PU}}{R_{PD} + R_{PU}} = 50\Omega$$

$$\frac{R_{PD} * VDDO}{R_{PD} + R_{PII}} = VDDO - 2V$$

SSTL (DC coupled)

The SSTL input clock configuration is shown in Figure 18. The transmission line impedance is 60 Ω in the application example given. Therefore, we use two 120 Ω resistors from

VDDO to ground for biasing the clock input pins. The effective termination impedance in this case is 60 Ω .

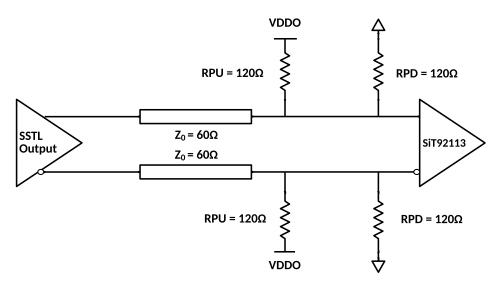
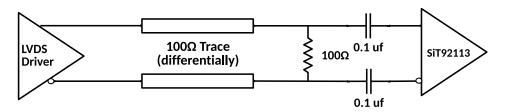


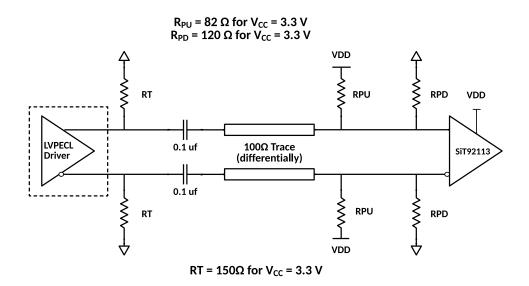
Figure 18 Example of input clock termination for SSTL clock.

LVDS (AC coupled)

The load termination resistor should be placed before the AC coupling capacitors. The load termination resistor and

the AC coupling capacitors should be placed close to the receiver. The termination scheme is shown in Figure 19.




Figure 19 Termination scheme for AC coupled LVDS

LVPECL (AC coupled)

The LVPECL should have a DC path to ground. So, the user must place a resistance R_T , close to the output driver. The

LVPECL AC coupling and Thevenin equivalent VTT termination scheme is shown in Figure 20.

The pull up resistance R_{PU} and pull down resistance R_{PD} sets the input common mode voltage for SiT92113. The value of the input common mode voltage can be estimated by the equation given below

$$V_{ICM} = \frac{VDD * R_{PD}}{R_{PU+R_{PD}}} = \frac{3.3 * 120}{120 + 82} = 1.961V$$

The differential input common mode specification of SiT92113 (from data sheet) is VDD -1.1 = 2.2 V, therefore the input common mode set by LVPECL AC coupled

termination meets the SiT92113 input common mode specification.

The LVPECL driver chip has resistance RT providing DC path for the output driver current in the LVPECL driver.

The effective load impedance at the input side of SiT92113 (receiver side) is formed by parallel combination of R_{PU} , R_{PD} .

The effective termination resistor value is given by the equation below

$$R_{termination} = \frac{R_{PU} * R_{PD}}{R_{PU} + R_{PD}} = \frac{120 * 82}{120 + 82} = 48.7\Omega$$

Termination of Output Driver of SiT92113 for Various Load Configurations

SiT92113 Output ODR Termination for AC Coupled mode

AC coupling of SiT92113 LVCMOS output driver is shown in Figure 21. We use single termination resistor of 50 Ω s to ground. A 0.1 uF AC coupling capacitor is connected in series with the LVCMOS clock source to prevent DC leakage current. The receiver side is terminated with a single 50 Ω resistance to ground. The clock signal is then

AC coupled to the receiver, in this example. C1 is a bypass capacitor that is used to suppress noise on the inverting differential input of the receiver.

$$Z_o = R_o + R_s = 50 \ \Omega$$

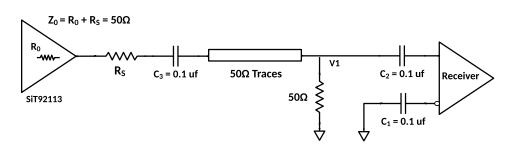


Figure 21 AC coupling of LVCMOS clock with single 50 Ω resistor termination to ground

SiT92113 Output ODR Termination for DC Coupled mode

Figure 22 shows how SiT92113 LVCMOS output drive can be terminated to send clock signals in DC coupled mode. The reference voltage V1= VDD/2 is generated by the bias resistors R_{S1} and R_{S2} . The bypass capacitor (C₁) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R_{S1} and R_{S2} might need to be adjusted to position the bias voltage V2 in the center of the input voltage swing.

$$Z_o = R_o + R_s = 50 \ \Omega$$

$$\frac{VDD * R_{s2}}{R_{s1} + R_{s2}} = \frac{VDD}{2},$$

Typical value of
$$R_{s1} = R_{s2} = 1K\Omega$$

$$\frac{R_{T1} * R_{T2}}{R_{T1} + R_{T2}} = 50 \ Ohm,$$

Typical value of $R_{T1} = R_{T2} = 100\Omega$

$$\frac{VDD * R_{T2}}{R_{T1} + R_{T2}} = \frac{VDD}{2}$$

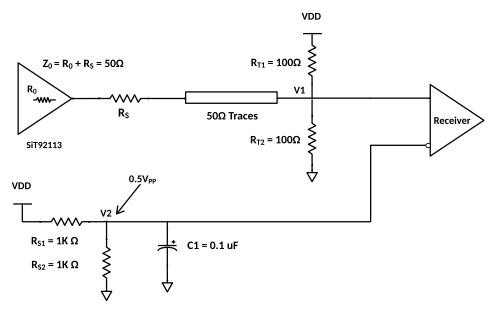


Figure 22 DC coupling of LVCMOS output clock termination – configuration 1

For example, if the SiT92113 supply is 2.5 V then the DC offset (or swing center) of this signal is 1.25 V, the R_{S1} and R_{S2} values should be adjusted to set the V2 at 1.25 V. The values below are for when both the single ended swing and VDD are at the same voltage.

This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, RT₁ and RT₂ in parallel should equal the transmission line impedance. For most 50 Ω applications, RT₁ and RT₂ can be 100 Ω . The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver.

Figure 23 shows a second input clock configuration where RT1, RT2 are removed and replaced with a 50 Ω termination resistor RT to ground. There will be DC leakage current from SiT92113, for the output termination shown in Figure 23

The user can use series RC termination to overcome this limitation. The design equations for the input clock configuration shown in Figure 23

$$Z_o = R_o + R_s = 50 \ Ohm$$

 $\frac{VDD * R_{s2}}{R_{s1} + R_{s2}} = \frac{Vpp}{2} = \frac{VDD}{4},$

Typical value of $R_{s1} = 3K\Omega$, $R_{s2} = 1K\Omega$

The SiT92113 LVCMOS output driver termination with series RC termination near the buffer is shown in Figure 24. There is a single termination resistor RT which is connected to ground through a capacitor CAC. The value of series capacitor is given by a formula.

 $C_{AC} \ge \frac{3T_D}{50\Omega}$, T_D is the transmission line delay Typical value for C_{AC} is 60 pF, assuming delay of $T_D = 200$ ps/inch and 5 inch input clock route length.

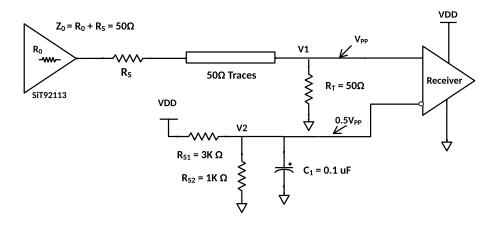
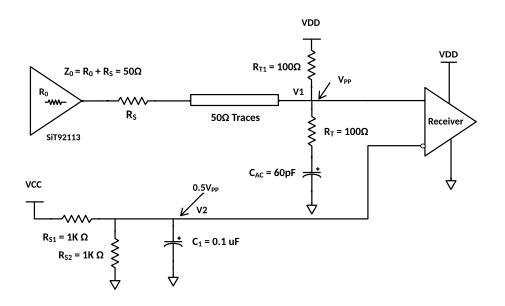



Figure 23 DC coupled LVCMOS output clock configuration – configuration 2

Figure 24 DC coupled LVCMOS output clock with series RC termination – configuration 3

The typical value of R_{S1} and R_{S2} in this case is 1 K Ω and that of C_{AC} is 60 pF.

CMOS (Capacitive load)

The capacitive load can be driven as shown in Figure 25. Rs = 33 Ω for VDDO = 3.3 V.

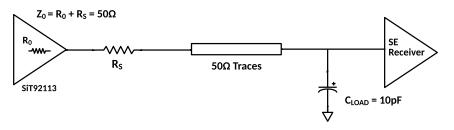


Figure 25 Typical application load

Power Considerations

The following power consideration refers to the deviceconsumed power consumption only. The device power consumption is the sum of static power and dynamic power. The dynamic power usage consists of two components: Power used by the device as it switches states Power required to charge any output load. The output load can be capacitive-only or capacitive and resistive. Use the following formula to calculate the power consumption of the device:

$$P_{DEV} = P_{STATIC} + P_{DYNAMIC} + P_{CLOAD}$$

$$P_{STATIC} = I_{CORE \ STATIC} * VDD + I_{ODR, \ STATIC} * VDDO$$

 $P_{DYNAMIC} = I_{CORE_DYNAMIC_100MHZ} * VDD * \frac{F_{in}(units in MHz)}{100} + C_{PD} * 5 * F_{in} * VDDO^{2}$

$$P_{CLOAD} = C_{LOAD} * 5 * F_{in} * VDDO^2$$

Let us calculate typical power dissipation for C_{LOAD} of 2 pF at input clock of 100 MHZ. Assume that VDD = VDDO = 3.3 V.

$$P_{STATIC} = 16mA * 3.3V + 3.5mA * 3.3V = 64.35mW$$

$$P_{DYNAMIC} = 1.5mA * \frac{100}{100} * 3.3V + 4.0pF * 5 * 100MHz * 3.3V * 3.3V = 26.73 mW$$

 $P_{CLOAD} = 2pF * 5 * 100MHz * 3.3V * 3.3V = 10.89mW$

 $P_{DEV} = 102m$

Core Current in XO Mode

The crystal mode standalone block current is measured in ATE. We can calculate total VDD core current in crystal mode, in typical condition using the below equation. The worst case VDD core current will be 14 mA, in crystal mode.

 $I_{core_crystal} = 8.5 + I_{xo_standalone} = 11.5 mA$, typical

Parameter Measurement Information

Differential Input Level

The parameter definitions related to differential input level is shown in Figure 26.

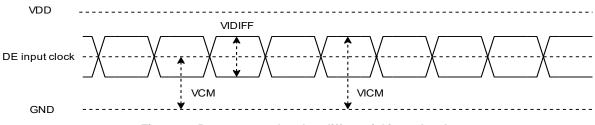


Figure 26 Parameters related to differential input level

Skew and Input to Output Delay

The parameter definitions related to propagation delay and skew are shown in Figure 27

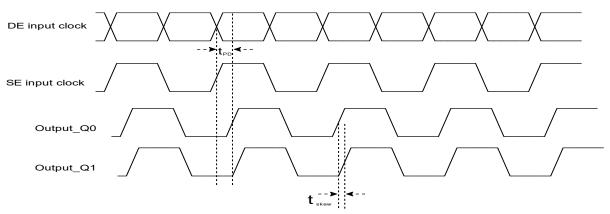


Figure 27 Parameter definitions of propagation delay and skew

Rise and Fall Times

The parameter definitions related to propagation rise and fall times are shown in Figure 28.

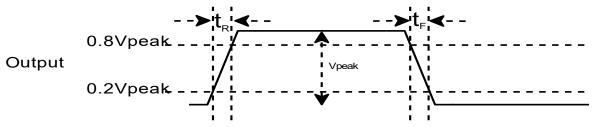
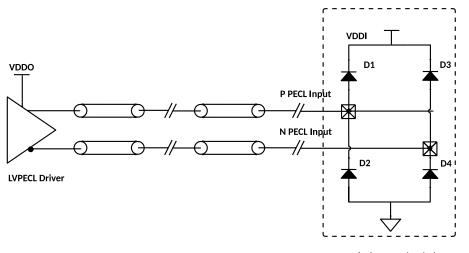


Figure 28 Parameter definitions related to rise and fall times


Hot Swap Recommendations

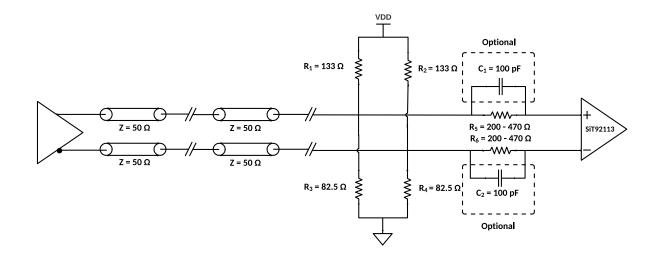
Introduction

Hot-swap is a term used to refer to the insertion and removal of a daughter card from a backplane without powering down the system power. With today's high speed data and redundancy requirements, many systems are required to run continuously without being powered down. If special considerations are not taken, the device can be damaged.

Typical Differential Input Clock

For example, Figure 29 shows a typical LVPECL driver and differential input. If the power of the driver (VDDO) is turned on before the input supply (VDDI), there is a possibility that the input current could exceed the limit and damage diode D1.

SiT92113 Clock Input Pin Diodes (Pull Up/Pull Down Resistor. Input Termination not shown)


Figure 29 Typical input differential clock

To ensure the input current does not exceed its limit and damage the device, a current limiting resistor can be used. Below are examples of the most common termination topologies using a series current limiting resistor. Though it's not necessary, but if board space allows, some of the examples have an optional 100pf capacitor which assists with the integrity of the rise time. It is also recommended that the current limiting resistor be as close to the receiver as possible

Input Clock Termination with Hot Swap Protection

LVPECL Termination Example

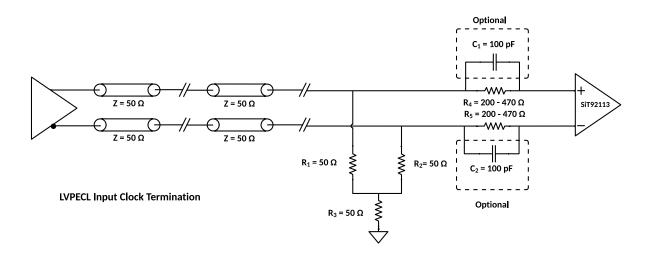


Figure 30 LVPECL termination with hot swap protection

LVDS Input Clock Termination Example

Figure 31 LVDS termination with hot swap protection

HCSL Input Clock Termination Example

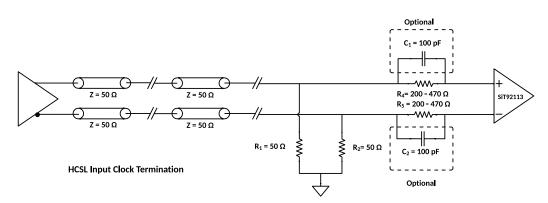
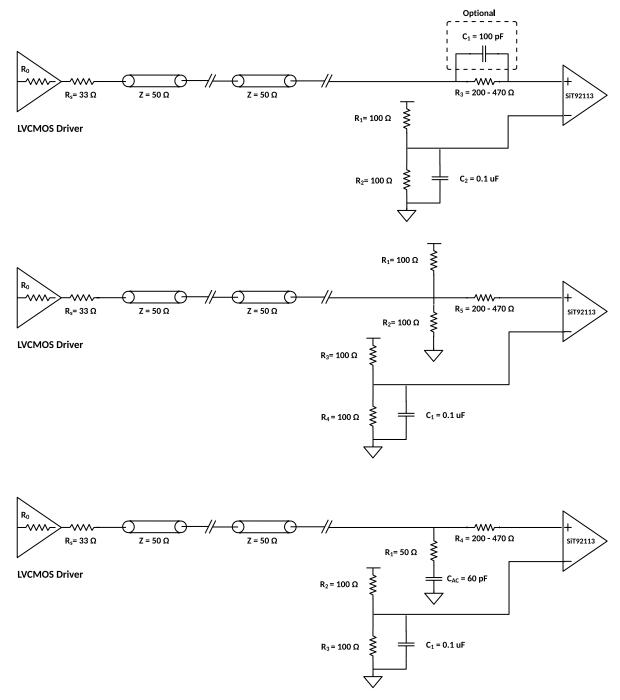



Figure 32 HCSL termination with hot swap protection

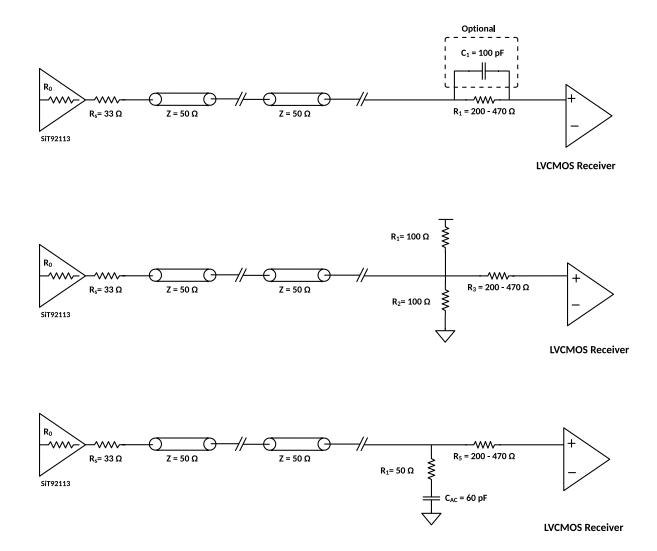

LVCMOS Input Clock Termination with Hot Swap Protection

Figure 33 LVCMOS Input Clock Termination with Hot Swap Protection

LVCMOS Output Clock Termination with Hot Swap Protection

Figure 34 Different types of LVCMOS output clock termination with hot swap protection

LVCMOS Input Clock and Power Supply Sequencing

Figure 35 shows LVCMOS applications driving the input clock of SiT92113 without a 50 Ω load termination, which present a purely capacitive load to the LVCMOS driver.

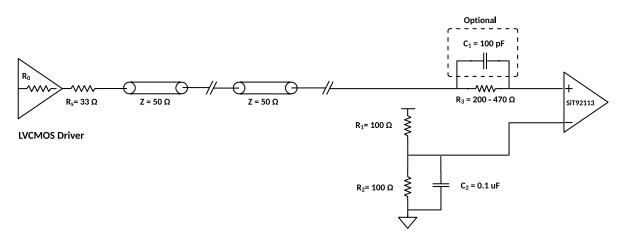


Figure 35 LVCMOS Input Clock without 50 Ω Load Termination

For the applications shown in Figure 35, LVCMOS input clock to the SiT92113 buffer should come after the power

supply ramp. Figure 36 shows the timing requirement of Input Clock start versus VDD ramp.

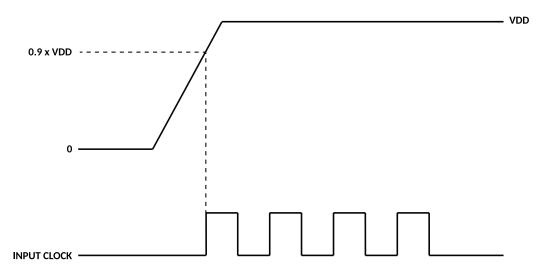
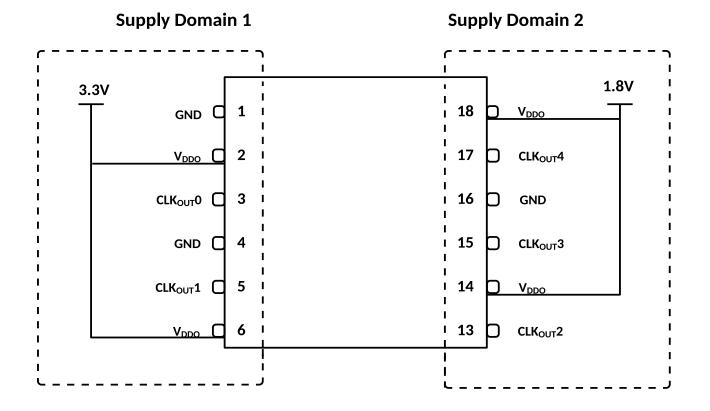
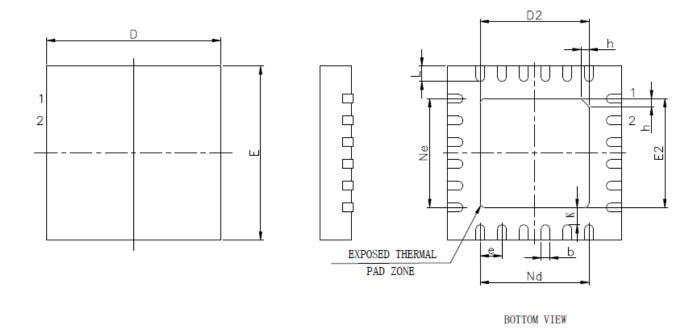



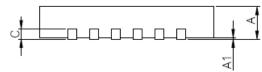
Figure 36 LVCOMS Input clock to VDD ramp timing requirement for SiT92113

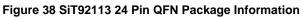
Operation in Multiple VDDO Supply Domains

The V_{DDO} pins, 2 and 6 on the left side are shorted internally. These pins along with ODR CLK_{OUT}0 to CLK_{OUT}1 belong to a single supply domain. The V_{DDO} pins, 18 and 14 on the left side are shorted internally. These pins along with ODR CLK_{OUT}2 to CLK_{OUT}4 belong to a single supply domain.

These two supply domains are totally independent of each other. Pin 2, 6 can be connected to say 3.3 V while pin 18, 14 can be connected to 1.8 V. In this example, CLK_{OUT}0 to CLK_{OUT}1 will be 3.3 V LVCMOS driver. CLK_{OUT}2 to CLK_{OUT}4 will be 1.8 V LVCMOS driver.




Figure 37 Example of multi supply operation of SiT92113


Note:

1. Supply Domain 1 and Supply Domain 2 are independent of each other.

Package Information

	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
А	0.70	0.75	0.80	
A1	-	0.02	0.05	
b	0.18	0.25	0.30	
С	0.18	0.20	0.25	
D	3.90	4.00	4.10	
D2	2.40	2.50	2.60	
е	0.50 BSC			
Ne	2.50 BSC			
Nd	2.50 BSC			
E	3.90	4.00	4.10	
E2	2.40	2.50	2.60	
L	0.35	0.40	0.45	
К	0.27	0.35	0.43	
h	0.30	0.35	0.40	

Table 13. Revision History

Revisions	Release Date	Change Summary
0.5	Nov 9, 2023	Initial Release

SiTime Corporation, 5451 Patrick Henry Drive, Santa Clara, CA 95054, USA | Phone: +1-408-328-4400 | Fax: +1-408-328-4439

© SiTime Corporation 2018-2023. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. Products sold by SiTime are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

SiTime:

SiT92113AI-X SiT92113AI-Y SiT92113AI-T SiT92113AI SiT92113AI-N