

Features

- Factory programmable between 220 MHz and 625 MHz accurate to 6 decimal places
- Digital controlled pull range
- Widest pull range options: ±25, ±50, ±100, ±200, ±400, ±800, ±1600 ppm
- Superior pull range linearity of <= 1%, 10 times better than quartz
- <0.6 ps RMS phase jitter (random) over 12 kHz to 20 MHz bandwidth</p>
- Industrial and extended commercial temperature ranges
- Industry-standard packages: 3.2 mm x 2.5 mm, 5.0 mm x 3.2 mm and 7.0 mm x 5.0 mm
- For frequencies lower than 220 MHz, refer to SiT3921 datasheet

Applications

- Ideal for SONET, Video, Instrumentation, Satellite applications
- Telecom, networking, broadband

Electrical Characteristics

Frequency Stability F_stab -25 - +25 ppm Operating Temperature Range T_use - +60 ppm 40 - +85 *C Industrial Star-up Time T_uset - - 10 ms Duty Cycle DC 45 - 55 % f = 220 to 314 MHz and f = 528 to 625 MHz Pull Range PR - 25, ±5, ±5, ±100, ±00, ±800, ±1600 ppm See the last page for Absolute Pull Range, APR table Linearity Lin - 0.1 1 % Frequency Change Polarity - Positive Stope - - First Vear Aging -2 - +2 ppm 25*C Input Midb Voltage VIL - - 0.2xVdd V Input Midb Voltage VIL - - 10 10 Input Midb Voltage VIH 0.8xVdd - ns 10 Input Midb Voltage VIH 0.8xVdd	Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition
Frequency Stability -10 - +10 ppm Inclusive of initial tolerance, operating temperature, rated pov supply voltage and load change Operating Temperature Range T_use -40 - +25 ppm Start-up Time T_use -40 - +85 °C Industrial Duty Cycle DC - - 10 ms Extended Commercial Buty Cycle DC - - - 10 ms Pull Range PR ±25, 450, 4100, ±200, ±400, ±600, ±1600 ppm See the last page for Absolute Pull Range, APR table Linearity Lin - 0.1 1 % Frequency Change Polarity - Positive Slope - - Frequency Change Polarity - - 0.2x/dd V - Input tow Voltage VIL - - 0.2x/dd V - Input togo voltage VIL - - N - - Input togo voltage VIL		LVPECL and LVDS, Common DC and AC Characteristics					
Frequency Stability F_stab -25 - +25 ppm supply voltage and load change Operating Temperature Range T_use - +50 ppm 200 - +70 °C Extended Commercial Start-up Time T_start - - 100 ms Duty Cycle DC 45 - 660 % f = 422 to 502 MHz Pull Range PR ±22, ±50, ±100, ±000, ±800, ±1600 ppm See the last page for Absolute Pull Range, APR table Frequency Change Polarity - Positive Stope - +22 ppm 25°C 10-year Aging - - +22 ppm 25°C 10-year Aging - - Input High Voltage VIL - - +2 ppm 25°C Input High Voltage VIL - - ns - Input High Voltage VIH 0.8x/vdd - ns - Input High Voltage VIH 0.8x/vdd -	Output Frequency Range	f	220	-	625	MHz	For frequency coverage see last page
Pstab -2sb - +2sb ppm House and the model Operating Temperature Range T_use -50 - +50 ppm Start-up Time T_start - +70 °C Extended Commercial Duty Cycle DC 45 - 55 % f = 220 to 314 MHz and f = 528 to 625 MHz Pull Range PR 425 ± 650. ±100 % f = 422 to 502 MHz Pull Range PR +22 ± 650. ±100. ppm See the last page for Absolute Pull Range, APR table Linearity Lin - 0.1 1 % F Frequency Change Polarity - Positive Stope - - 7 Frequency Change Polarity - Positive Stope - - 1 % Input two Votage VII - - 0.2Xvdd V - Input two Votage VII - - 0.8xvdd V - Input two Votage VIII 0.8xvdd -	E		-10	-	+10	ppm	Inclusive of initial tolerance, operating temperature, rated power,
Operating Temperature Range T_use 40 - +85 *C Industrial Start-up Time T_start - - 10 ms Extended Commercial Duty Cycle DC 45 - 10 ms Extended Commercial Pull Range DC 45 - 60 % f = 220 to 314 MHz and f = 528 to 625 MHz Linearity Lin - 0.1 1 % See the last page for Absolute Pull Range, APR table Frequency Change Polarity - Positive Stope - - F Positive Stope - First Vear Aging - 2 - +22 ppm 25°C 10-year Aging - 0.42v0d 4V Input High Voltage VIL - - 0.2xvdd V Input High Voltage VIL - - N Input High Voltage VIL - - ns Input High Voltage VIL - - ns Input High Voltage VIL - - ns	Frequency Stability	F_stab	-25	-	+25	ppm	supply voltage and load change
Operating Temperature Range T_use - - +70 *C Extended Commercial Start-up Time T_start - - 10 ms Duty Cycle DC 45 - 55 % f = 220 to 314 MHz and f = 528 to 625 MHz Pull Range PR ±25, ±50, ±100, ±200, ±400, ±800, ±1600 ppm See the last page for Absolute Pull Range, APR table Linearity Lin - 0.1 1 % Ferequency Change Polarity - Positive Slope - - Frequency Change Polarity - Positive Slope - + 25°C 1000 To 1 % Input Kiddle Voltage VIL - - 0.2xVdd V - - 100 1000 1000 1000 1000 1000 1000 1000 10000 10000 10000 10000 10000 10000 10000 100000 100000 100000 100000 100000 1000000 1000000 1000000 100000000 <			-50	-	+50	ppm	
Line - - +70 *C Extended Commercial Start-up Time T_start - - 10 ms - Duty Cycle DC 45 - 55 % f = 220 to 314 MHz and f = 528 to 625 MHz Pull Range PR ±25, ±50, ±100, ±100, ±100, ±1000 ppm See the last page for Absolute Pull Range, APR table Linearity Lin - 0.1 1 % Frequency Change Polarity - Positive Slope - - First Year Aging -2 - +2 ppm 25°C Input Kindle Voltage VIL - - 0.2xVdd V Input High Voltage VIL - - 0.2xVdd V Input High Voltage VIH 0.8xVdd - ns - Input High Voltage VIH 0.8xVdd - - ns - Input High Voltage Zin TBD - - ns - <td< th=""><th>Operating Temperature Range</th><th>Tuse</th><th>-40</th><th>-</th><th>+85</th><th>-</th><th>Industrial</th></td<>	Operating Temperature Range	Tuse	-40	-	+85	-	Industrial
Lin - 45 - 55 % f = 220 to 314 MHz and f = 528 to 625 MHz Duty Cycle DC 40 - 60 % f = 422 to 502 MHz Pull Range PR ±25 ±50 ±100, ±200, ±400, ±800, ±1600 ppm See the last page for Absolute Pull Range, APR table Linearity Lin - 0.1 1 % Frequency Change Polarity - Positive Slope - - First Year Aging -2 - +2 ppm 25°C Input Middle Voltage VIL - - 0.2xVdd V Input Middle Voltage VIL - - 0.2xVdd V Input Middle Voltage VIL 0.8xVdd - - ns Input Middle Voltage VIH 0.8xVdd - - ns Input Middle Pulse Width T_oricic 500 - - ns Input Middle Pulse Width T_oricic 500 - - ns Input M	operating reinperature range	1_030	-20	-	+70	С°	Extended Commercial
Duty Cycle DC 40 - 60 % f = 422 to 502 MHz Pull Range PR ±25,±50,±100, ±200,±600,±600,±600 ppm See the last page for Absolute Pull Range, APR table Linearity Lin - 0.1 1 % See the last page for Absolute Pull Range, APR table Frequency Change Polarity - Positive Slope - - First Year Aging -2 - +2 ppm See the last page for Absolute Pull Range, APR table Input Middle Voltage VIL - Positive Slope - - Input Kiddle Voltage VIL - +2 ppm 25°C Input Middle Voltage VIL - - 0.2xVdd V - Input High Voltage VIL 0.4xVdd - - N - Input High Voltage VIL 0.4xVdd - - NS - Input High Voltage Zin TBD - - RS Pin 1 Input High Voltage	Start-up Time	T_start	-	-	10	ms	
Hold Range PR ±25,±60,±400,±800,±1600 ±200,±400,±800,±1600 ppm See the last page for Absolute Pull Range, APR table Linearity Lin - 0.1 1 % See the last page for Absolute Pull Range, APR table Frequency Change Polarity - Positive Slope - - See the last page for Absolute Pull Range, APR table Frequency Change Polarity - Positive Slope - + See the last page for Absolute Pull Range, APR table First Year Aging - Positive Slope - + Ppm 25°C 10-year Aging - - 0.2xVdd V - - Input Kigdle VIL - - 0.2xVdd V - Input Middle Voltage VIL 0.4xVdd - - Ns - Input Middle Pulse Width T_ologic 500 - - ns - Input Middle Pulse Width T_ologic 500 - - RtΩ Pin 1 Input Middle Pulse Width T_ologic	Duty Cycle	DC	45	-	55	%	f = 220 to 314 MHz and f = 528 to 625 MHz
Linearity Lin - 0.1 1 % Frequency Change Polarity - Positive Slope - First Year Aging - - Positive Slope - 10-year Aging - - +2 ppm 25°C 10-year Aging - - +2 ppm 25°C Input High Voltage VIL - - 0.2xVdd V Input High Voltage VIL - - 0.8xVdd V Input High Voltage VIH 0.8xVdd - - V Input High or Low Pulse Width T_logic 500 - - ns Input High or Low Pulse Width T_logic 500 - - ns Input High or Low Pulse Width T_logic 500 - - ns Input High or Low Pulse Width T_logic 500 - - ns Input High or Low Pulse Width T_logic 210 - - nsQ <th></th> <td>50</td> <td>40</td> <td>-</td> <td>60</td> <td>%</td> <td>f = 422 to 502 MHz</td>		50	40	-	60	%	f = 422 to 502 MHz
Frequency Change Polarity - Positive Slope - First Year Aging -2 - +2 ppm 25°C 10-year Aging -5 - +5 ppm 25°C Input Low Voltage VIL - - 0.2xVdd V Input Middle Voltage VIH 0.4xVdd - 0.6xVdd V Input High Voltage VIH 0.8xVdd - - V Input High Voltage VIH 0.8xVdd - - N Input High Voltage VIH 0.8xVdd - - N Input High Voltage VIH 0.8xVdd - - N Input Impedance Zin TBD - - ns Input Capacitance Cin - - TBD Pin 1 Input Gapacitance Zin TBD - - KQ Pin 1 Input High Voltage Vdd 2.25 2.5 2.75 V -<	Pull Range	PR				ppm	See the last page for Absolute Pull Range, APR table
First Year Aging -2 - +2 ppm 25°C 10-year Aging -5 - +5 ppm 25°C Input Low Voltage VIL - - 0.2xVdd V Input Kiddle Voltage VIM 0.4xVdd - 0.6xVdd V Input High Voltage VIH 0.8xVdd - - V Input High Voltage VIH 0.8xVdd - - V Input High Voltage VIH 0.8xVdd - - N Input High Voltage VIH 0.8xVdd - - N Input High Voltage VIH 0.8xVdd - - ns Input Biolation T_middle 500 - - ns Pin 1 Input Capacitance Cin - - TBD P Pin 1 Input Gapacitance Cin - - TBD P Pin 1 Input Gapacitance Cin -	Linearity	Lin	-	0.1	1	%	
10-year Aging -5 - +5 ppm 25°C Input Low Voltage VIL - - 0.2xVdd V Input Middle Voltage VIM 0.4xVdd - 0.6xVdd V Input High Voltage VIH 0.8xVdd - - V Input High Voltage VIH 0.8xVdd - - N Input Middle Pulse Width T_logic 500 - - ns Input Middle Pulse Width T_middle 500 - - ns Input Middle Pulse Width T_middle 500 - - ns Input Module Pulse Width T_middle 500 - - ns Input Solation T TBD - - NΩ Pin 1 Input Capacitance Zin TBD - - RΩ Pin 1 Input Capacitance Vdd 2.25 2.5 2.75 V V Current Consumption Idd<	Frequency Change Polarity	-	F	Positive Slop	e	-	
Input Low Voltage VIL - - 0.2xVdd V Input Middle Voltage VIM 0.4xVdd - 0.6xVdd V Input High Voltage VIH 0.8xVdd - - V Input High Voltage VIH 0.8xVdd - - V Input High or Low Pulse Width T_logic 500 - - ns Input Middle Pulse Width T_logic 500 - - ns Input Isolation T - - ns - Input Impedance Zin TBD - - KΩ Pin 1 Input Capacitance Cin - - TBD pF Pin 1 LVPECL, DC and AC Characteristics Supply Voltage Vdd 2.97 3.3 3.63 V Current Consumption Idd - 61 69 mA Excluding Load Termination Current, Vdd = 3.3V or 2.5V Maximum Output Current I-driver - <	First Year Aging		-2	-	+2	ppm	25°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10-year Aging		-5	-	+5	ppm	25°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Low Voltage	VIL	-	-	0.2xVdd	V	
Input High or Low Pulse Width T_logic 500 - - ns Input Middle Pulse Width T_middle 500 - - ns Input to Output Isolation Input to Output Isolation TBD - - ns Input Capacitance Zin TBD - - kΩ Pin 1 Input Capacitance Cin - - TBD PF Pin 1 LVPECL, DC and AC Characteristics Supply Voltage Vdd 2.97 3.3 3.63 V Current Consumption Idd - 61 69 mA Excluding Load Termination Current, Vdd = 3.3V or 2.5V Maximum Output Current I-driver - - 30 mA Maximum average current drawn from OUT+ or OUT- Output High Voltage VOL Vdd-1.1 - Vdd-0.7 V See Figure 9 Output Low Voltage VOL Vdd-1.9 - Vdd-1.5 V See Figure 9 Output Differential Voltage Swing 1.2	Input Middle Voltage	VIM	0.4xVdd	-	0.6xVdd	V	
Input Middle Pulse Width T_middle 500 - - ns Input to Output Isolation TBD TBD TBD TBD Input Impedance Zin TBD - - KΩ Pin 1 Input Capacitance Cin - - TBD pF Pin 1 LVPECL, DC and AC Characteristics Supply Voltage Vdd 2.97 3.3 3.63 V Current Consumption Idd - 61 69 mA Excluding Load Termination Current, Vdd = 3.3V or 2.5V Maximum Output Current I-driver - - 30 mA Maximum average current drawn from OUT+ or OUT- Output High Voltage VOH Vdd-1.1 - Vdd-0.7 V See Figure 9 Output Low Voltage VOL Vdd-1.9 - Vd-1.5 V See Figure 9 Output Ifferential Voltage Swing 1.2 1.6 2.0 V See Figure 9 Rise/Fall Time Tr, Tf - 300 <td< th=""><th>Input High Voltage</th><th>VIH</th><th>0.8xVdd</th><th>-</th><th>-</th><th>V</th><th></th></td<>	Input High Voltage	VIH	0.8xVdd	-	-	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input High or Low Pulse Width	T_logic	500	-	-	ns	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Middle Pulse Width	T_middle	500	-	-	ns	
Input Capacitance Cin - - TBD pF Pin 1 LVPECL, DC and AC Characteristics Supply Voltage Vdd 2.97 3.3 3.63 V Current Consumption Idd - 61 69 mA Excluding Load Termination Current, Vdd = 3.3V or 2.5V Maximum Output Current I-driver - - 30 mA Maximum average current drawn from OUT+ or OUT- Output High Voltage VOH Vdd-1.1 - Vdd-0.7 V See Figure 9 Output Low Voltage VOL Vdd-1.9 - Vdd-1.5 V See Figure 9 Output Low Voltage VOL Vdd-1.9 - Vdd-1.5 V See Figure 9 Output Differential Voltage Swing V_Swing 1.2 1.6 2.0 V See Figure 9 RMS Period Jitter Tjitt - 1.2 1.7 ps f = 266 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 312.5 MHz, Vdd = 3.3V or 2.5V -<	Input to Output Isolation					TBD	
$\begin{tabular}{ c c c c c c c } \hline LVPECL, DC and AC Characteristics \\ \hline Supply Voltage Vdd & 2.97 & 3.3 & 3.63 & V$ \\ \hline 2.25 & 2.5 & 2.75 & V$ \\ \hline $Current Consumption$ & Idd$ & $-$ & 61$ & 69$ & mA & Excluding Load Termination Current, Vdd = $3.3V or $2.5V$ \\ \hline Maximum Output Current$ & I-driver $-$ & $-$ & 30 & mA & Maximum average current drawn from OUT+ or OUT-$ \\ \hline Output High Voltage$ & VOH & Vdd-1.1$ & $-$ & Vdd-0.7$ & V & See Figure 9$ \\ \hline $Output Low Voltage$ & VOL & Vdd-1.9$ & $-$ & $Vdd-1.5$ & V & See Figure 9$ \\ \hline $Output Differential Voltage Swing$ & V_Swing & 1.2 & 1.6 & 2.0 & V & See Figure 9$ \\ \hline $Rise/Fall Time$ & Tr, Tf & $-$ & 300 & 500 & ps & 20% to 80% \\ \hline $RMS Period Jitter$ & T_jitt & $-$ & 1.2 & 1.7 & ps & $f = 266 MHz, Vdd = $3.3V$ or $2.5V$ \\ \hline $-$ & 1.2 & 1.7 & ps & $f = 62.08 MHz, Vdd = $3.3V$ or $2.5V$ \\ \hline $-$ & 1.2 & 1.7 & ps & $f = 62.08 MHz, Vdd = $3.3V$ or $2.5V$ \\ \hline $f = 312.5 MHz, Integration bandwidth = 12 kHz to 20 MHz, $12$$	Input Impedance	Zin	TBD	-	-		Pin 1
Supply Voltage Vdd 2.97 3.3 3.63 V Current Consumption Idd $ 61$ 69 mA Excluding Load Termination Current, Vdd = $3.3V$ or $2.5V$ Maximum Output Current I-driver $ 30$ mA Maximum average current drawn from OUT+ or OUT- Output High Voltage VOH Vdd- 1.1 $ Vdd-0.7$ V See Figure 9 Output Low Voltage VOL Vdd- 1.9 $ Vdd-1.5$ V See Figure 9 Output Differential Voltage Swing V_Swing 1.2 1.6 2.0 V See Figure 9 Output Differential Voltage Swing V_Swing 1.2 1.6 2.0 V See Figure 9 RMS Period Jitter Tr, Tf $ 300$ 500 ps 20% to 80% $ 1.2$ 1.7 ps $f = 266$ MHz, Vdd = $3.3V$ or $2.5V$ RMS Period Jitter T_jitt $ 1.2$ 1.7 ps $f = 622.08$ MHz, Vdd = $3.3V$ or $2.5V$	Input Capacitance	Cin	-	-			
Supply Voltage Vdd Int Int <thint< th=""> <thint< th=""> <t< th=""><th></th><th></th><th>LVP</th><th>PECL, DC</th><th>and AC (</th><th>Characte</th><th>ristics</th></t<></thint<></thint<>			LVP	PECL, DC	and AC (Characte	ristics
Current Consumption Idd - 61 69 mA Excluding Load Termination Current, Vdd = 3.3V or 2.5V Maximum Output Current I-driver - - 30 mA Maximum average current drawn from OUT+ or OUT- Output High Voltage VOH Vdd-1.1 - Vdd-0.7 V See Figure 9 Output Low Voltage VOL Vdd-1.9 - Vdd-1.5 V See Figure 9 Output Differential Voltage Swing V_Swing 1.2 1.6 2.0 V See Figure 9 Res/Fall Time Tr, Tf - 300 500 ps 20% to 80% RMS Period Jitter T_jitt - 1.2 1.7 ps f = 266 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 312.5 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V	Supply Voltage	Vdd	2.97	3.3	3.63	V	
Maximum Output Current I-driver - - 30 mA Maximum average current drawn from OUT+ or OUT- Output High Voltage VOH Vdd-1.1 - Vdd-0.7 V See Figure 9 Output Low Voltage VOL Vdd-1.9 - Vdd-1.5 V See Figure 9 Output Differential Voltage Swing V_Swing 1.2 1.6 2.0 V See Figure 9 Rise/Fall Time Tr, Tf - 300 500 ps 20% to 80% RMS Period Jitter T_jitt - 1.2 1.7 ps f = 266 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 312.5 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V	Supply Voltage	vuu	2.25	2.5	2.75	V	
Output High Voltage VOH Vdd-1.1 - Vdd-0.7 V See Figure 9 Output Low Voltage VOL Vdd-1.9 - Vdd-1.5 V See Figure 9 Output Differential Voltage Swing V_Swing 1.2 1.6 2.0 V See Figure 9 Rise/Fall Time Tr, Tf - 300 500 ps 20% to 80% RMS Period Jitter T_jitt - 1.2 1.7 ps f = 266 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 312.5 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V	Current Consumption	ldd	-	61	69	mA	Excluding Load Termination Current, Vdd = 3.3V or 2.5V
Output Low Voltage VOL Vdd-1.9 - Vdd-1.5 V See Figure 9 Output Differential Voltage Swing V_Swing 1.2 1.6 2.0 V See Figure 9 Rise/Fall Time Tr, Tf - 300 500 ps 20% to 80% RMS Period Jitter T_jitt - 1.2 1.7 ps f = 266 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 312.5 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V	Maximum Output Current	I-driver	-	-	30	mA	Maximum average current drawn from OUT+ or OUT-
Output Differential Voltage Swing V_Swing 1.2 1.6 2.0 V See Figure 9 Rise/Fall Time Tr, Tf - 300 500 ps 20% to 80% RMS Period Jitter T_jitt - 1.2 1.7 ps f = 266 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 312.5 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V	Output High Voltage	VOH	Vdd-1.1	-	Vdd-0.7	V	See Figure 9
Rise/Fall Time Tr, Tf - 300 500 ps 20% to 80% RMS Period Jitter T_jitt - 1.2 1.7 ps f = 266 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 312.5 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 312.5 MHz, Vdd = 3.3V or 2.5V	Output Low Voltage	VOL	Vdd-1.9	-	Vdd-1.5	V	See Figure 9
RMS Period Jitter - 1.2 1.7 ps f = 266 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 312.5 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V	Output Differential Voltage Swing	V_Swing	1.2	1.6	2.0	V	See Figure 9
RMS Period Jitter T_jitt - 1.2 1.7 ps f = 312.5 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V - 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V	Rise/Fall Time	Tr, Tf	_	300	500	ps	20% to 80%
- 1.2 1.7 ps f = 622.08 MHz, Vdd = 3.3V or 2.5V f = 312.5 MHz, Integration bandwidth = 12 kHz to 20 MHz. f = 312.5 MHz, Integration bandwidth = 12 kHz to 20 MHz.		T_jitt	_	1.2	1.7	ps	f = 266 MHz, Vdd = 3.3V or 2.5V
f = 312.5 MHz. Integration bandwidth = 12 kHz to 20 MHz.	RMS Period Jitter		-	1.2	1.7	ps	f = 312.5 MHz, Vdd = 3.3V or 2.5V
PMS Phase litter (random) T phi 0.6 0.85 f = 312.5 MHz, Integration bandwidth = 12 kHz to 20 MHz,			-	1.2	1.7	ps	f = 622.08 MHz, Vdd = 3.3V or 2.5V
RWS Prase Sitter (random) 1_pij - 0.6 0.65 ps all Vdds	RMS Phase Jitter (random)	T_phj	_	0.6	0.85	ps	

Electrical Characteristics

Parameter and Conditions	Symbol	Min.	Тур.	Max.	Unit	Condition
		LV	DS, DC, a	and AC C	haracte	ristics
Supply Voltage	Vdd	2.97	3.3	3.63	V	
		2.25	2.5	2.75	V	
Current Consumption	ldd	-	47	55	mA	Excluding Load Termination Current, Vdd = 3.3V or 2.5V
Differential Output Voltage	VOD	200	350	500	mV	See Figure 12
VOD Magnitude Change	ΔVOD	-	-	50	mV	See Figure 12
Offset Voltage	VOS	1.125	1.2	1.375	V	See Figure 12
VOS Magnitude Change	Δ VOS	-	-	50	mV	See Figure 12
Rise/Fall Time	Tr, Tf	-	495	600	ps	20% to 80%
RMS Period Jitter	T_jitt	-	1.4	1.7	ps	f = 266 MHz, Vdd = 3.3V or 2.5V
		-	1.4	1.7	ps	f = 312.5 MHz, Vdd = 3.3V or 2.5V
		-	1.2	1.7	ps	f = 622.08 MHz, Vdd = 3.3V or 2.5V
RMS Phase Jitter (random)	T_phj	-	0.6	0.85	ps	f = 312.5 MHz, Integration bandwidth = 12 kHz to 20 MHz, al Vdds

Pin Description

Pin	Мар		Functionality	Top View
1	DP	Input	Digital programming pin	
2	NC	Input	No Connect	DP 1 6 VDD
3	GND	Power	VDD power supply ground	NC 2 5 OUT-
4	OUT+	Output	Oscillator output	NC 2 5 OUT-
5	OUT-	Output	Complementary oscillator output	GND 3 4 OUT+
6	VDD	Power	Power supply voltage	

Absolute Maximum

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
VDD	-0.5	4	V
Electrostatic Discharge	-	2000	V
Soldering Temperature (follow standard Pb free soldering guidelines)	-	260	°C

Thermal Consideration

Package	θJA, 4 Layer Board (°C/W)	θJC, Bottom (°C/W)
7050, 6-pin	142	27
5032, 6-pin	97	20
3225, 6-pin	109	20

Environmental Compliance

Parameter	Condition/Test Method
Mechanical Shock	MIL-STD-883F, Method 2002
Mechanical Vibration	MIL-STD-883F, Method 2007
Temperature Cycle	JESD22, Method A104
Solderability	MIL-STD-883F, Method 2003
Moisture Sensitivity Level	MSL1 @ 260°C

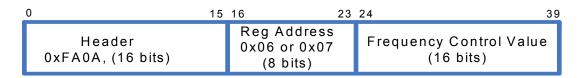
Default Startup Condition

The SiT3922 starts up at its factory programmed frequency and settings. The control register values are initialized all zeros, effectively setting the frequency to the middle of the control range.

Frequency Control Protocol Description

The device includes two DCXO registers; writing to these registers controls the output frequency. Data for each register is written to the device using a data frame.

Data Frame Format


Each frame consists of 40 bits. A frame has 3 parts:

- The header, 16 bit
- Register address, 8 bit
- The data word (represented as 2's complement numbers), 16 bit.

Bits are sent MSB first.

Frames are sent LS word first in mode 2.

The header allows the devices to recognize that the master is initiating communication. The header includes the device address, which is factory programmable. The valid header is 0xFAIA, where "I" can be a hex digits from 0 to F. If not specified at the order time, it will be defaulted to zero. In this document in all examples and text, the device address is considered to be zero (default).

Frequency Control Mode 1

In this resolution mode, only one frame per frequency update is required, and the output frequency is updated at the end of each frame. The length of the frequency control data is 16 bits, and is written to the device as shown below:

Figure 1. Frequency Control Mode 1

Resolution and Update Rate for Mode 1

Pull Range (PPM)	Step Resolution (ppb)	Max Update Rate (Updates Per Second)
±25	1	25 K
±50	1.5	25 K
±100	3	25 K
±200	6	25 K
±400	12	25 K
±800	25	25 K
±1600	49	25 K

Frequency Control Mode 2

In this mode, two frames per frequency update are required, and frequency is only updated at the end of the second frame. The frequency control value in this mode is 23 bits. This value is written to the device in two frames as follows:

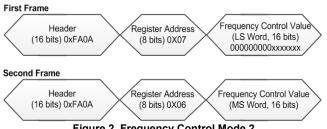


Figure 2. Frequency Control Mode 2

Resolution and Update Rate for Mode 2

Pull Range (PPM)	Step Resolution (ppb)	Max Update Rate (Updates Per Second)
±25	1	12.5 K
±50	1	12.5 K
±100	1	12.5 K
±200	1	12.5 K
±400	1	12.5 K
±800	1	12.5 K
±1600	1	12.5 K

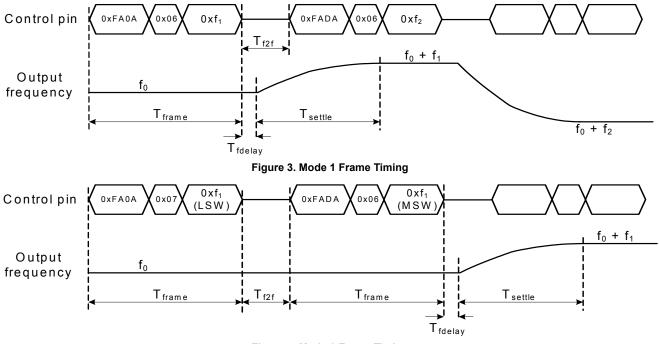


Figure 4. Mode 2 Frame Timing

Frame Timing Parameters

Parameter	Symbol	Min.	Max.	Unit
Frame Length	T _{frame}	40	_	μS
Frame to Frame Delay	T _{f2f}	2	_	μS
Frequency Settling Time	T _{settle}	_	30	μS
Frame to Frequency Delay	T _{fdelay}	—	8	μS

Calculating Pull Range PPM offset

The frequency control value must be encoded as a 2's complement number (16-bit in mode 1 and 23-bit in mode 2), representing the full scale range of the device. For example, for a \pm 1600ppm device in mode 2, the 23-bit number represents the full \pm 1600ppm range.

The upper 16 bits of the value are written to address 0x06. If the high-resolution register (address 0x07) is used, the other 7 bits are written to the lowest seven bits of address 0x07.

Here are the steps to calculate the frequency control value:

1. Find the scale factor (calculated for half of the pull range) from the tables below where PR is the Pull Range:

K (scale)Factor

Mode	K = Scale Factor
1	(2^15-1) / (PR*1.00135625)
2	(2^22-1) / (PR*1.00135625)

2. Enter the desired_PPM in equation below:

Frequency control (decimal value) = round (desired_PPM * K).

3. For any frequency shifts (positive or negative PPM), convert the frequency control value to a 2's complement binary number.

Two examples follow:

Example 1

This example shows how to shift the frequency by +245.6 ppm in a device with ± 1600 pull range using Mode 2 (23-bit):

Decimal value: round(245.6 * K) = 642954 23-bit value = 0x09CF8A

LS Word value = 0x000A (to be written to address 0x07) MS Word value = 0x139F (to be written to address 0x06) Write LS Word: 0xFA0A 07 000A (Frequency will not update)

Write MS Word: 0xFA0A 06 139F (Frequency updates after write)

Example 2

This example shows how to shift the frequency by -831.2 ppm in a device with ±1600 pull range using Mode 2 (23-bit): Decimal value: round(abs(831.2 * K) = 2175989 23-bit abs binary value: 0100001001100111110101 23-bit 2's comp binary value: 1011110110011000 0001011 LS Word value = 0x 000B MS Word value = 0x BD98 Write LS Word: 0xFA0A 07 000B (Frequency will not update) Write MS Word: 0xFA0A 06 BD98 (Frequency updates after write)

Physical Interface

The SiTime DCMO uses a serial input interface to adjust the frequency control value. The interface uses a one-wire tri-level return-to-middle signaling format. Figure 5 below shows the signal waveform of the interface.

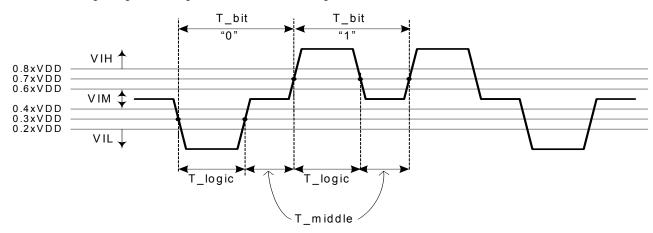


Figure 5. Serial 1-Wire Tri-Level Signaling

A logical bit "1" is defined by a high-logic followed by mid-logic. A logical bit "0" is defined by a low-logic followed by mid-logic. The voltage ranges and time durations corresponding to low-logic, high-, and mid-logic are illustrated in Figure 5 and specified in electrical specification table.

The overall baud rate is computed as below:

$$baud_rate = \frac{1}{T_bit}$$

Figure 6 shows a simple circuit to generate tri-level circuit with a general purpose IO (GPIO) with tri-state capability. Most FPGAs and micro controllers/processors include such GPIOs. If the GPIO does not support tri-state output, two IO s may be used in combination with external tri-state buffer to generate the tri-level signal; an example of such buffer is the SN74LVC1G126. The waveform at the output of the tri-state buffer is shown in Figure 7. When the GPIO drives Low or High voltage, the rise/fall times are typically fast (sub-5ns range). When the output is set to Hi-Z, the output settles at middle voltage with a RC response. The time constant is determined based on the total capacitance on frequency control pin and the parallel resistance of the pull-up and pull-down resistors. The time constant in most practical situations will be less than 50ns; this necessitate choosing longer T_middle to allow the RC waveform to settle within 5% or so.

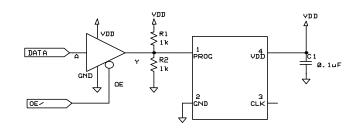


Figure 6. Circuit Diagram for Generating Tri-Level Signal with Tri-State Buffer

Figure 7. Tri-State Signal Generated with Tri-State Buffer

When using a tri-state buffer as shown above, care must be taken if the DATA and OE lines transition at the same time that there are no glitches. A glitch might occur, for example, if the OE line enables the output slightly before the data line has finished its logical transition. One way around this, albeit at the cost of some data overhead, is to use an extra OE cycle on every bit, as shown in *Figure 8*. Note that the diagram assumes an SN74LVC125, which has a low-true OE/ line (output is enabled when OE/ is low). For a high-true OE part, such as the SN74LVC126, the polarity of that signal would be reversed.

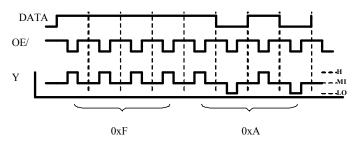


Figure 8. Signal Polarity

Termination Diagrams

LVPECL:

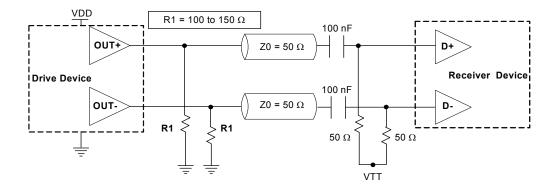



Figure 9. LVPECL Typical Termination

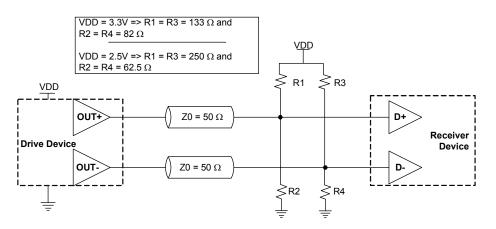


Figure 11. LVPECL with Thevenin Typical Termination

LVDS:

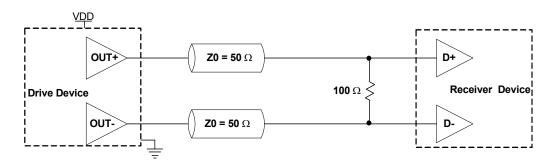
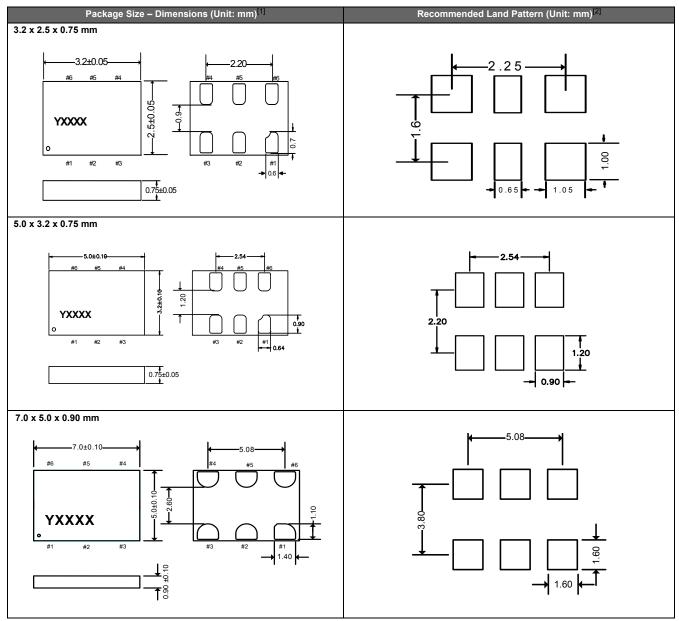



Figure 12. LVDS Single Termination (Load Terminated)

Dimensions and Patterns

Notes:

Top Marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.
 A capacitor of value 0.1 μF between Vdd and GND is recommended.

Ordering Information

Part Family	
"SiT3922"	Packaging:
Revision Letter "A" is the revision of Silicon	"T", "Y", "X", "D", "E" or "G" Refer to table below for packin method Leave Blank for Bulk
Temperature Range	Frequency
"C" Extended Commercial, -20 to 70°C "I" Industrial, -40 to 85°C	220.00000 MHz to 650.00000 MHz
Signalling Type	Pull Range Options
"1" = LVPECL	"M" for ±25 ppm
"2" = LVDS	"B" for ±50 ppm
	"E" for ±100 ppm
Package Size	"H" for ±200 ppm
"B" 3.2 x 2.5 mm	"X" for ±400 ppm
"C" 5.0 x 3.2 mm	"Y" for ±800 ppm "Z" for ±1600 ppm
"D" 7.0 x 5.0 mm	
Frequency Stability	Feature Pin
"F" for ±10 ppm	"N" for No Connect
"2" for ±25 ppm	
"3" for ±50 ppm	
	Voltage Supply
	"25" for 2.5 V ±10%
	"33" for 3.3 V ±10%

Frequencies Not Supported

Range 1: From 209.000001 MHz to 210.999999 MHz
Range 2: From 251.000001 MHz to 263.999999 MHz
Range 3: From 314.000001 MHz to 422.999999 MHz
Range 4: From 502.000001 MHz to 527.999999 MHz

APR Definition

Absolute pull range (APR) = Nominal pull range (PR) - frequency stability (F_stab) - Aging (F_aging)

APR Table

	Frequency Stability			
Nominal Pull Range	ge ± 10 ± 25			
	APR (ppm)			
± 25	± 10	—	—	
± 50	± 35	± 20	—	
± 100	± 85	± 70	± 45	
± 200	± 185	± 170	± 145	
± 400	± 385	± 370	± 345	
± 800	± 785	± 770	± 745	
± 1600	± 1585	± 1570	± 1545	

Ordering Codes for Supported Tape & Reel Packing Method

Device Size	8 mm T&R (3ku)	8 mm T&R (1ku)	8 mm T&R (250u)	12 mm T&R (3ku)	12 mm T&R (1ku)	12 mm T&R (250u)	16 mm T&R (3ku)	16 mm T&R (1ku)	16 mm T&R (250u)
7.0 x 5.0 mm	-	-	-	-	-	-	Т	Y	Х
5.0 x 3.2 mm	-	-	-	Т	Y	х	-	-	-
3.2 x 2.5 mm	D	E	G	Т	Y	х	-	-	-

Revision History

Version	Release Date	Change Summary	
0.3	3/27/12	Original	
1.0	6/6/14	Included 3225 package	
1.1	12/2/14	Modified Thermal Consideration values, removed OE options	

© SiTime Corporation 2014. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. Products sold by SiTime are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

SiTime:

SiT3922AC-1CF-33EM622.080000Y SiT3922AC-1D2-33NB220.000000Y