
Embedded Studio Reference Manual

Version: 3.10i

Copyright 2014-2016 SEGGER Microcontroller GmbH & Co. KG

Copyright 1997-2016 Rowley Associates Ltd.

Embedded Studio Reference Manual

2

Embedded Studio Reference Manual Contents

3

Contents
Introduction ... 23

What is SEGGER Embedded Studio? ... 24

What we don't tell you ... 26

Getting Started ... 27

Text conventions ... 28

Release notes .. 30

SEGGER Embedded Studio User Guide .. 37

SEGGER Embedded Studio standard layout ... 38

Menu bar .. 39

Title bar ... 40

Status bar ... 41

Editing workspace .. 43

Docking windows ... 44

Dashboard .. 45

SEGGER Embedded Studio help and assistance .. 46

Creating and managing projects ... 48

Solutions and projects .. 49

Creating a project ... 52

Adding existing files to a project .. 53

Adding new files to a project .. 54

Removing a file, folder, project, or project link ... 55

Building your application .. 56

Creating variants using configurations .. 58

Embedded Studio Reference Manual Contents

4

Project options ... 60

Configurations and project options ... 62

Project macros ... 64

Dependencies and build order ... 66

Linking and section placement .. 67

Using source control .. 70

Source control capabilities ... 71

Configuring source-control providers ... 72

Connecting to the source-control system ... 73

File source-control status .. 74

Source-control operations .. 75

Adding files to source control .. 76

Updating files ... 77

Committing files .. 78

Reverting files ... 79

Locking files .. 80

Unlocking files .. 81

Removing files from source control ... 82

Showing differences between files ... 83

Source-control properties ... 84

Subversion provider .. 85

CVS provider ... 87

Package management .. 89

Exploring your application ... 93

Project explorer ... 94

Source navigator window ... 99

References window ... 101

Symbol browser window .. 102

Memory usage window ... 107

Bookmarks window ... 110

Editing your code ... 111

Basic editing ... 112

Moving the insertion point ... 113

Adding text ... 115

Deleting text .. 116

Using the clipboard .. 117

Undo and redo .. 118

Drag and drop ... 119

Searching ... 120

Advanced editing ... 121

Indenting source code ... 122

Embedded Studio Reference Manual Contents

5

Commenting out sections of code ... 124

Adjusting letter case .. 125

Using bookmarks .. 126

Find and Replace window .. 128

Clipboard Ring window ... 130

Mouse-click accelerators ... 132

Regular expressions .. 134

Debugging windows ... 136

Locals window ... 136

Globals window .. 138

Watch window ... 140

Register window ... 143

Memory window ... 146

Breakpoints window ... 150

Call Stack window .. 154

Threads window ... 157

Execution Profile window ... 161

Execution Trace window ... 162

Debug file search editor .. 163

Breakpoint expressions .. 165

Debug expressions ... 166

Command-line options ... 167

-D (Define macro) ... 168

-noclang (Disable Clang support) .. 169

-packagesdir (Specify packages directory) .. 170

-permit-multiple-studio-instances (Permit multiple studio instances) ... 171

-rootuserdir (Set the root user data directory) .. 172

-save-settings-off (Disable saving of environment settings) ... 173

-set-setting (Set environment setting) .. 174

-templatesfile (Set project templates path) .. 175

Uninstalling SEGGER Embedded Studio ... 177

ARM target support ... 181

Target startup code ... 183

Startup code .. 185

Section Placement .. 188

C Library User Guide .. 191

Floating point ... 192

Single and double precision .. 193

Multithreading ... 195

Thread safety in the SEGGER Embedded Studio library .. 196

Implementing mutual exclusion in the C library .. 197

Embedded Studio Reference Manual Contents

6

Input and output .. 198

Customizing putchar .. 199

Locales ... 203

Unicode, ISO 10646, and wide characters ... 204

Multi-byte characters .. 205

The standard C and POSIX locales .. 206

Additional locales in source form ... 207

Installing a locale ... 208

Setting a locale directly ... 210

Complete API reference ... 211

<assert.h> .. 212

__assert ... 213

assert ... 214

<complex.h> ... 215

cabs .. 217

cabsf ... 218

cacos .. 219

cacosf ... 220

cacosh ... 221

cacoshf .. 222

carg ... 223

cargf ... 224

casin ... 225

casinf .. 226

casinh .. 227

casinhf ... 228

catan .. 229

catanf ... 230

catanh ... 231

catanhf .. 232

ccos ... 233

ccosf ... 234

ccosh .. 235

ccoshf .. 236

cexp .. 237

cexpf .. 238

cimag ... 239

cimagf ... 240

clog ... 241

clogf ... 242

conj ... 243

Embedded Studio Reference Manual Contents

7

conjf ... 244

cpow .. 245

cpowf ... 246

cproj ... 247

cprojf ... 248

creal .. 249

crealf .. 250

csin .. 251

csinf .. 252

csinh ... 253

csinhf ... 254

csqrt ... 255

csqrtf .. 256

ctan ... 257

ctanf ... 258

ctanh .. 259

ctanhf .. 260

<ctype.h> ... 261

isalnum ... 263

isalnum_l .. 264

isalpha ... 265

isalpha_l ... 266

isblank ... 267

isblank_l ... 268

iscntrl ... 269

iscntrl_l ... 270

isdigit ... 271

isdigit_l ... 272

isgraph .. 273

isgraph_l .. 274

islower ... 275

islower_l ... 276

isprint .. 277

isprint_l ... 278

ispunct .. 279

ispunct_l ... 280

isspace ... 281

isspace_l ... 282

isupper .. 283

isupper_l .. 284

isxdigit .. 285

Embedded Studio Reference Manual Contents

8

isxdigit_l ... 286

tolower .. 287

tolower_l .. 288

toupper ... 289

toupper_l ... 290

<debugio.h> ... 291

debug_abort .. 294

debug_break .. 295

debug_clearerr .. 296

debug_enabled ... 297

debug_exit .. 298

debug_fclose .. 299

debug_feof ... 300

debug_ferror .. 301

debug_fflush .. 302

debug_fgetc ... 303

debug_fgetpos .. 304

debug_fgets ... 305

debug_filesize ... 306

debug_fopen ... 307

debug_fprintf .. 308

debug_fprintf_c .. 309

debug_fputc ... 310

debug_fputs ... 311

debug_fread ... 312

debug_freopen ... 313

debug_fscanf ... 314

debug_fscanf_c ... 315

debug_fseek ... 316

debug_fsetpos .. 317

debug_ftell .. 318

debug_fwrite ... 319

debug_getargs .. 320

debug_getch .. 321

debug_getchar .. 322

debug_getd .. 323

debug_getenv ... 324

debug_getf ... 325

debug_geti .. 326

debug_getl .. 327

debug_getll .. 328

Embedded Studio Reference Manual Contents

9

debug_gets ... 329

debug_getu .. 330

debug_getul ... 331

debug_getull .. 332

debug_kbhit ... 333

debug_loadsymbols ... 334

debug_perror ... 335

debug_printf .. 336

debug_printf_c ... 337

debug_putchar ... 338

debug_puts .. 339

debug_remove .. 340

debug_rename .. 341

debug_rewind ... 342

debug_runtime_error .. 343

debug_scanf ... 344

debug_scanf_c .. 345

debug_system ... 346

debug_time .. 347

debug_tmpfile ... 348

debug_tmpnam .. 349

debug_ungetc ... 350

debug_unloadsymbols .. 351

debug_vfprintf .. 352

debug_vfscanf ... 353

debug_vprintf .. 354

debug_vscanf .. 355

<errno.h> ... 356

EDOM ... 357

EILSEQ ... 358

EINVAL .. 359

ENOMEM .. 360

ERANGE .. 361

errno .. 362

<float.h> ... 363

DBL_DIG ... 364

DBL_EPSILON ... 365

DBL_MANT_DIG .. 366

DBL_MAX ... 367

DBL_MAX_10_EXP ... 368

DBL_MAX_EXP ... 369

Embedded Studio Reference Manual Contents

10

DBL_MIN .. 370

DBL_MIN_10_EXP .. 371

DBL_MIN_EXP .. 372

DECIMAL_DIG .. 373

FLT_DIG .. 374

FLT_EPSILON .. 375

FLT_EVAL_METHOD .. 376

FLT_MANT_DIG ... 377

FLT_MAX .. 378

FLT_MAX_10_EXP .. 379

FLT_MAX_EXP .. 380

FLT_MIN ... 381

FLT_MIN_10_EXP ... 382

FLT_MIN_EXP ... 383

FLT_RADIX ... 384

FLT_ROUNDS .. 385

<iso646.h> ... 386

and .. 387

and_eq .. 388

bitand .. 389

bitor .. 390

compl ... 391

not ... 392

not_eq ... 393

or ... 394

or_eq .. 395

xor ... 396

xor_eq ... 397

<limits.h> ... 398

CHAR_BIT ... 399

CHAR_MAX .. 400

CHAR_MIN ... 401

INT_MAX .. 402

INT_MIN .. 403

LLONG_MAX ... 404

LLONG_MIN .. 405

LONG_MAX ... 406

LONG_MIN ... 407

MB_LEN_MAX .. 408

SCHAR_MAX ... 409

SCHAR_MIN .. 410

Embedded Studio Reference Manual Contents

11

SHRT_MAX .. 411

SHRT_MIN .. 412

UCHAR_MAX .. 413

UINT_MAX ... 414

ULLONG_MAX .. 415

ULONG_MAX .. 416

USHRT_MAX ... 417

<locale.h> .. 418

lconv .. 419

localeconv ... 421

setlocale ... 422

<math.h> .. 423

acos .. 427

acosf ... 428

acosh .. 429

acoshf .. 430

asin ... 431

asinf .. 432

asinh ... 433

asinhf ... 434

atan .. 435

atan2 .. 436

atan2f .. 437

atanf ... 438

atanh .. 439

atanhf .. 440

cbrt ... 441

cbrtf .. 442

ceil ... 443

ceilf ... 444

copysign ... 445

copysignf ... 446

cos ... 447

cosf ... 448

cosh .. 449

coshf ... 450

erf .. 451

erfc .. 452

erfcf .. 453

erff .. 454

exp .. 455

Embedded Studio Reference Manual Contents

12

exp2 ... 456

exp2f .. 457

expf .. 458

expm1 ... 459

expm1f .. 460

fabs ... 461

fabsf ... 462

fdim .. 463

fdimf ... 464

floor .. 465

floorf .. 466

fma .. 467

fmaf .. 468

fmax ... 469

fmaxf .. 470

fmin .. 471

fminf ... 472

fmod ... 473

fmodf ... 474

fpclassify .. 475

frexp ... 476

frexpf ... 477

hypot ... 478

hypotf .. 479

ilogb ... 480

ilogbf ... 481

isfinite .. 482

isgreater ... 483

isgreaterequal .. 484

isinf ... 485

isless ... 486

islessequal ... 487

islessgreater ... 488

isnan ... 489

isnormal .. 490

isunordered .. 491

ldexp .. 492

ldexpf .. 493

lgamma ... 494

lgammaf ... 495

llrint .. 496

Embedded Studio Reference Manual Contents

13

llrintf .. 497

llround ... 498

llroundf ... 499

log ... 500

log10 .. 501

log10f .. 502

log1p .. 503

log1pf .. 504

log2 .. 505

log2f ... 506

logb .. 507

logbf ... 508

logf ... 509

lrint ... 510

lrintf .. 511

lround .. 512

lroundf .. 513

modf ... 514

modff ... 515

nearbyint ... 516

nearbyintf .. 517

nextafter ... 518

nextafterf ... 519

pow ... 520

powf ... 521

remainder .. 522

remainderf .. 523

remquo ... 524

remquof .. 525

rint .. 526

rintf ... 527

round ... 528

roundf ... 529

scalbln ... 530

scalblnf .. 531

scalbn .. 532

scalbnf ... 533

signbit ... 534

sin .. 535

sinf .. 536

sinh ... 537

Embedded Studio Reference Manual Contents

14

sinhf ... 538

sqrt ... 539

sqrtf .. 540

tan ... 541

tanf ... 542

tanh .. 543

tanhf ... 544

tgamma .. 545

tgammaf ... 546

trunc ... 547

truncf ... 548

<setjmp.h> .. 549

longjmp .. 550

setjmp ... 551

<stdarg.h> ... 552

va_arg ... 553

va_copy .. 554

va_end .. 555

va_start ... 556

<stddef.h> ... 557

NULL .. 558

offsetof ... 559

ptrdiff_t .. 560

size_t .. 561

<stdio.h> .. 562

getchar .. 563

gets ... 564

printf .. 565

putchar ... 570

puts .. 571

scanf ... 572

snprintf ... 576

sprintf .. 577

sscanf ... 578

vprintf .. 579

vscanf .. 580

vsnprintf ... 581

vsprintf .. 582

vsscanf .. 583

<stdlib.h> ... 584

EXIT_FAILURE ... 586

Embedded Studio Reference Manual Contents

15

EXIT_SUCCESS ... 587

MB_CUR_MAX .. 588

RAND_MAX ... 589

abs .. 590

atexit .. 591

atof ... 592

atoi .. 593

atol .. 594

atoll .. 595

bsearch ... 596

calloc .. 597

div ... 598

div_t ... 599

exit .. 600

free ... 601

itoa .. 602

labs ... 603

ldiv .. 604

ldiv_t .. 605

llabs .. 606

lldiv ... 607

lldiv_t ... 608

lltoa .. 609

ltoa .. 610

malloc .. 611

mblen .. 612

mblen_l ... 613

mbstowcs ... 614

mbstowcs_l ... 615

mbtowc ... 616

mbtowc_l ... 617

qsort ... 618

rand .. 619

realloc .. 620

srand .. 621

strtod ... 622

strtof .. 623

strtol ... 624

strtoll ... 626

strtoul .. 628

strtoull ... 630

Embedded Studio Reference Manual Contents

16

ulltoa .. 632

ultoa ... 633

utoa .. 634

<string.h> .. 635

memccpy .. 637

memchr .. 638

memcmp .. 639

memcpy .. 640

memcpy_fast .. 641

memmove ... 642

mempcpy ... 643

memset ... 644

strcasecmp .. 645

strcasestr .. 646

strcat .. 647

strchr .. 648

strcmp ... 649

strcpy ... 650

strcspn ... 651

strdup .. 652

strerror .. 653

strlcat ... 654

strlcpy .. 655

strlen .. 656

strncasecmp ... 657

strncasestr ... 658

strncat ... 659

strnchr ... 660

strncmp .. 661

strncpy .. 662

strndup ... 663

strnlen ... 664

strnstr .. 665

strpbrk ... 666

strrchr .. 667

strsep ... 668

strspn ... 669

strstr ... 670

strtok ... 671

strtok_r ... 672

<time.h> ... 673

Embedded Studio Reference Manual Contents

17

asctime .. 674

asctime_r ... 675

clock_t ... 676

ctime .. 677

ctime_r .. 678

difftime ... 679

gmtime ... 680

gmtime_r ... 681

localtime .. 682

localtime_r .. 683

mktime .. 684

strftime ... 685

time_t .. 687

tm .. 688

<wchar.h> .. 689

WCHAR_MAX ... 691

WCHAR_MIN ... 692

WEOF ... 693

btowc ... 694

btowc_l ... 695

mbrlen ... 696

mbrlen_l ... 697

mbrtowc ... 698

mbrtowc_l ... 699

mbsrtowcs ... 700

mbsrtowcs_l ... 701

msbinit .. 702

wchar_t ... 703

wcrtomb ... 704

wcrtomb_l ... 705

wcscat .. 706

wcschr ... 707

wcscmp ... 708

wcscpy ... 709

wcscspn .. 710

wcsdup .. 711

wcslen ... 712

wcsncat ... 713

wcsnchr ... 714

wcsncmp .. 715

wcsncpy .. 716

Embedded Studio Reference Manual Contents

18

wcsnlen ... 717

wcsnstr .. 718

wcspbrk .. 719

wcsrchr .. 720

wcsspn .. 721

wcsstr ... 722

wcstok ... 723

wcstok_r ... 724

wctob ... 725

wctob_l ... 726

wint_t .. 727

wmemccpy .. 728

wmemchr ... 729

wmemcmp .. 730

wmemcpy .. 731

wmemmove .. 732

wmempcpy ... 733

wmemset ... 734

wstrsep ... 735

<wctype.h> ... 736

iswalnum .. 738

iswalnum_l .. 739

iswalpha ... 740

iswalpha_l .. 741

iswblank ... 742

iswblank_l .. 743

iswcntrl ... 744

iswcntrl_l .. 745

iswctype ... 746

iswctype_l .. 747

iswdigit ... 748

iswdigit_l .. 749

iswgraph .. 750

iswgraph_l ... 751

iswlower ... 752

iswlower_l ... 753

iswprint ... 754

iswprint_l ... 755

iswpunct ... 756

iswpunct_l ... 757

iswspace ... 758

Embedded Studio Reference Manual Contents

19

iswspace_l ... 759

iswupper .. 760

iswupper_l ... 761

iswxdigit ... 762

iswxdigit_l ... 763

towctrans ... 764

towctrans_l ... 765

towlower .. 766

towlower_l .. 767

towupper ... 768

towupper_l .. 769

wctrans ... 770

wctrans_l .. 771

wctype ... 772

<xlocale.h> .. 773

duplocale ... 774

freelocale ... 775

localeconv_l .. 776

newlocale ... 777

C++ Library User Guide .. 779

Standard template library .. 781

Subset API reference ... 782

<new> - memory allocation .. 783

operator delete ... 784

operator new .. 785

set_new_handler .. 786

Utilities Reference ... 787

Compiler driver .. 788

File naming conventions .. 789

Command-line options .. 790

-ansi (Warn about potential ANSI problems) ... 791

-ar (Archive output) .. 792

-arch (Set ARM architecture) ... 793

-be (Big Endian) .. 794

-c (Compile to object code, do not link) .. 795

-d (Define linker symbol) .. 796

-D (Define macro symbol) .. 797

-e (Set entry point symbol) .. 798

-E (Preprocess) ... 799

-exceptions (Enable C++ Exception Support) .. 800

-fabi (Floating Point Code Generation) .. 801

Embedded Studio Reference Manual Contents

20

-fpu (Set ARM FPU) ... 802

-F (Set output format) .. 803

-g (Generate debugging information) .. 804

-g1 (Generate minimal debugging information) ... 805

-help (Display help information) ... 806

-io (Select I/O library implementation) ... 807

-I (Define user include directories) ... 808

-I- (Exclude standard include directories) ... 809

-J (Define system include directories) ... 810

-K (Keep linker symbol) ... 811

-L (Set library directory path) ... 812

-l- (Do not link standard libraries) .. 813

-make (Make-style build) .. 814

-M (Display linkage map) ... 815

-n (Dry run, no execution) .. 816

-nostderr (No stderr output) ... 817

-o (Set output file name) .. 818

-oabi (Use oabi compiler) ... 819

-O (Optimize output) .. 820

-printf (Select printf capability) ... 821

-rtti (Enable C++ RTTI Support) ... 822

-R (Set section name) ... 823

-scanf (Select scanf capability) ... 824

-sd (Treat double as float) .. 825

-Thumb (Generate Thumb code) .. 826

-v (Verbose execution) ... 827

-w (Suppress warnings) ... 828

-we (Treat warnings as errors) ... 829

-Wa (Pass option to tool) .. 830

-x (Specify file types) .. 831

-y (Use project template) .. 832

-z (Set project property) ... 833

Command-Line Project Builder .. 834

Building with a SEGGER Embedded Studio project file ... 835

Building without a SEGGER Embedded Studio project file .. 837

Command-line options .. 838

-batch (Batch build) .. 839

-config (Select build configuration) ... 840

-clean (Remove output files) ... 841

-D (Define macro) .. 842

-echo (Show command lines) ... 843

Embedded Studio Reference Manual Contents

21

-file (Build a named file) ... 844

-packagesdir (Specify packages directory) ... 845

-project (Specify project to build) .. 846

-property (Set project property) ... 847

-rebuild (Always rebuild) .. 848

-show (Dry run, don't execute) .. 849

-solution (Specify solution to build) .. 850

-studiodir (Specify SEGGER Embedded Studio directory) .. 851

-template (Specify project template) .. 852

-time (Time the build) .. 853

-threadnum (Specify number of build threads) .. 854

-type (Specify project type) ... 855

-verbose (Show build information) .. 856

Command-Line Scripting .. 857

Command-line options .. 858

-define (Define global variable) ... 859

-help (Show usage) ... 860

-load (Load script file) .. 861

-define (Verbose output) .. 862

emScript classes .. 863

Example uses .. 864

Embed .. 865

Header file generator .. 866

Using the header generator .. 867

Command line options .. 868

-regbaseoffsets (Use offsets from peripheral base) .. 869

-nobitfields (Inhibit bitfield macros) ... 870

Linker script file generator ... 871

Command-line options .. 872

-check-segment-overflow ... 873

-memory-map-file .. 874

-memory-map-macros ... 875

-section-placement-file .. 876

-section-placement-macros ... 877

-symbols ... 878

Package generator ... 879

Appendices ... 881

Technical ... 882

File formats ... 882

Memory Map file format ... 883

Section Placement file format .. 885

Embedded Studio Reference Manual Contents

22

Project file format .. 887

Project Templates file format ... 888

Property Groups file format .. 890

Package Description file format .. 892

External Tools file format ... 896

Environment Options ... 899

Building Environment Options .. 899

Debugging Environment Options .. 901

IDE Environment Options .. 903

Programming Language Environment Options ... 908

Source Control Environment Options ... 911

Text Editor Environment Options ... 912

Windows Environment Options .. 921

Project Options ... 926

General Build Options ... 926

Compilation Options .. 933

Debugging Options .. 940

Executable Project Options ... 947

Macros ... 951

System Macros .. 951

Build Macros ... 953

Script classes .. 956

BinaryFile ... 956

CWSys .. 957

Debug .. 958

ElfFile ... 960

TargetInterface .. 961

WScript ... 966

Embedded Studio Reference Manual Introduction

23

Introduction
This guide is divided into a number of sections:

Introduction
Covers installing SEGGER Embedded Studio on your machine and verifying that it operates correctly,

followed by a brief guide to the operation of the SEGGER Embedded Studio integrated development

environment, debugger, and other software supplied in the product.

SEGGER Embedded Studio User Guide
Contains information on how to use the SEGGER Embedded Studio development environment to manage

your projects, build, and debug your applications.

C Library User Guide
Contains documentation for the functions in the standard C library supplied in SEGGER Embedded Studio.

ARM target support
Contains a description of system files used for startup and debugging of ARM applications.

ide_target_interfaces
Contains a description of the support for programming ARM microcontrollers.

Embedded Studio Reference Manual Introduction

24

What is SEGGER Embedded Studio?
SEGGER Embedded Studio is a complete C/C++ development system for ARM and Cortex, microcontrollers and

microprocessors that runs on Windows, Mac OS and Linux.

C/C++ Compiler

SEGGER Embedded Studio comes with pre-built versions of both GCC and Clang/LLVM C and C++ compilers

and assemblers. The GNU linker and librarian are also supplied to enable you to immediately begin developing

applications for ARM.

SEGGER Embedded Studio C Library

SEGGER Embedded Studio has its own royalty-free ANSI and ISO C compliant C library that has been specifically

designed for use within embedded systems.

SEGGER Embedded Studio C++ Library

SEGGER Embedded Studio supplies a C++ library that implements STL containers, exceptions and RTTI.

SEGGER Embedded Studio IDE

SEGGER Embedded Studio is a streamlined integrated development environment for building, testing, and

deploying your applications. SEGGER Embedded Studio provides:

Source Code Editor:A powerful source code editor with multi-level undo and redo, makes editing your

code a breeze.

Project System:A complete project system organizes your source code and build rules.

Build System:With a single key press you can build all your applications in a solution, ready for them to be

loaded onto a target microcontroller.

Debugger and Flash Programming:You can download your programs directly into Flash and debug them

seamlessly from within the IDE using a wide range of target interfaces.

Help system:The built-in help system provides context-sensitive help and a complete reference to the

SEGGER Embedded Studio IDE and tools.

Core Simulator:As well as providing cross-compilation technology, SEGGER Embedded Studio provides

a PC-based fully functional simulation of the target microcontroller core so you can debug parts of your

application without waiting for hardware.

Embedded Studio Reference Manual Introduction

25

SEGGER Embedded Studio Tools

SEGGER Embedded Studio supplies command line tools that enable you to build your application on the

command line using the same project file that the IDE uses.

Embedded Studio Reference Manual Introduction

26

What we don't tell you
This documentation does not attempt to teach the C or assembly language programming; rather, you should

seek out one of the many introductory texts available. And similarly the documentation doesn't cover the ARM

architecture or microcontroller application development in any great depth.

We also assume that you're fairly familiar with the operating system of the host computer being used.

C programming guides

These are must-have books for any C programmer:

Kernighan, B.W. and Ritchie, D.M., The C Programming Language (2nd edition, 1988). Prentice-Hall,

Englewood Cliffs, NJ, USA. ISBN 0-13-110362-8.

The original C bible, updated to cover the essentials of ANSI C (1990 version).

Harbison, S.P. and Steele, G.L., C: A Reference Manual (second edition, 1987). Prentice-Hall, Englewood

Cliffs, NJ, USA. ISBN 0-13-109802-0.

A nice reference guide to C, including a useful amount of information on ANSI C. Co-authored by Guy

Steele, a noted language expert.

ANSI C reference

If you're serious about C programming, you may want to have the ISO standard on hand:

ISO/IEC 9899:1990, C Standard and ISO/IEC 9899:1999, C Standard. The standard is available from your

national standards body or directly from ISO at http://www.iso.ch/.

ARM microcontrollers

For ARM technical reference manuals, specifications, user guides and white papers, go to:

http://www.arm.com/Documentation.

GNU compiler collection

For the latest GCC documentation go to:

http://gcc.gnu.org/.

LLVM/Clang

For the latest LLVM/Clang documentation to to:

http://www.llvm.org

http://www.iso.ch/
http://www.arm.com/Documentation
http://gcc.gnu.org/
http://www.llvm.org

Embedded Studio Reference Manual Introduction

27

Getting Started
You will need to install a CPU support package:

Choose Tools > Package Manager

Choose the CPU support packages you wish to install and complete the dialog.

You will need to create a project:

Choose File > New Project

Select the appropriate Executable project type

Specify a location for the project

Complete the dialog selecting the appropriate Target Processor value

You will need to build the project:

Choose Build | Build 'Project'

To debug on the simulator

Choose Project | Edit Options to show the project options dialog

In the Search Options type in Simulator

Choose Simulator for the Target Connection option

To debug on hardware

Choose Project | Edit Options to show the project options dialog

In the Search Options type in J-Link

Choose J-Link for the Target Connection option

To start debugging

Choose Debug | Go

The debugger will stop the program at the main, you can now debug the application.

Embedded Studio Reference Manual Introduction

28

Text conventions

Menus and user interface elements

When this document refers to any user interface element, it will do so in bold font. For instance, you will often

see reference to the Project Explorer, which is taken to mean the project explorer window. Similarly, you'll see

references to the Standard toolbar which is positioned at the top of the SEGGER Embedded Studio window, just

below the menu bar on Windows and Linux.

When you are directed to select an item from a menu in SEGGER Embedded Studio, we use the form menu-

name > item-name. For instance, File > Save means that you need to click the File menu in the menu bar and

then select the Save item. This form extends to items in sub-menus, so File > Open With Binary Editor has the

obvious meaning.

Keyboard accelerators

Frequently-used commands are assigned keyboard accelerators to speed up common tasks. SEGGER Embedded

Studio uses standard Windows and Mac OS keyboard accelerators wherever possible.

Windows and Linux have three key modifiers which are Ctrl, Alt, and Shift. For instance, Ctrl+Alt+P means that

you should hold down the Ctrl and Alt buttons whilst pressing the P key; and Shift+F5 means that you should

hold down the Shift key whilst pressing F5.

Mac OS has four key modifiers which are (command), (option), (control), and (shift). Generally there is a one-

to-one correspondence between the Windows modifiers and the Mac OS modifiers: Ctrl is , Alt is , and Shift

is . SEGGER Embedded Studio on Mac OS has its own set of unique key sequences using (control) that have no

direct Windows equivalent.

SEGGER Embedded Studio on Windows and Linux also uses key chords to expand the set of accelerators. Key

chords are key sequences composed of two or more key presses. For instance, the key chord Ctrl+T, D means

that you should type Ctrl+T followed by D; and Ctrl+K, Ctrl+Z means that you should type Ctrl+T followed by

Ctrl+Z. Mac OS does not support accelerator key chords.

Code examples and human interaction

Throughout the documentation, text printed in this typeface represents verbatim communication with the

computer: for example, pieces of C text, commands to the operating system, or responses from the computer.

In examples, text printed in this typeface is not to be used verbatim: it represents a class of items, one of which

should be used. For example, this is the format of one kind of compilation command:

hcl source-file

This means that the command consists of:

The word hcl, typed exactly like that.

A source-file: not the text source-file, but an item of the source-file class, for example myprog.c.

Embedded Studio Reference Manual Introduction

29

Whenever commands to and responses from the computer are mixed in the same example, the commands

(i.e. the items which you enter) will be presented in this typeface. For example, here is a dialog with the

computer using the format of the compilation command given above:

c:\code\examples>hcl -v myprog.c

The user types the text hcl -v myprog.c and then presses the enter key (which is assumed and is not shown); the

computer responds with the rest.

Embedded Studio Reference Manual Introduction

30

Release notes

Version 3.10i

Build

Fixed C++ signbit implementation.

Fixed build not building newly imported files.

Debug

Fixed misc bugs in watch window.

Fixed crash when setting register allocated variables that are less than 4 bytes in length.

Fixed Cortex-M simulator handling of word aligned stack pointers on exception return.

Fixed crash using debug stop during download.

Updated shipped J-Link software to V6.12a.

IDE

Fixed pasting of file into a project explorer folder that is already contained within that folder.

Fixed file overwrite warning dialog not giving the option to cancel.

Fixed crash when closing all editor windows, right clicking and then moving the mouse with the empty

dock window.

Fixed editor search not clearing highlights when search string is cleared.

Version 3.10h

Build

Removed broken linker variant project property.

Debug

Fixed watch window not storing the filename and linenumber context in which to evaluate the

expression.

Updated shipped J-Link software to V6.10n.

IDE

Fixed the window group context menu sometimes being displayed higher than the mouse pointer.

Embedded Studio Reference Manual Introduction

31

Search box now focused when package manager is opened.

Fixed project importer not loading shipped jlink.dll when no other is available.

Version 3.10g

Debug

Fixed SWO tracing.

Version 3.10f

Build

Fixed crash caused by clearing build log whilst building.

Fixed ld executable being loaded into an editor on memory segment overflow linker errors (Linux and

macOS only).

Fixed setting strict-aligned clang compiler option for v4t, v5te, v6m and v8m.baseline architectures.

IDE

Fixed use of proportional fonts in code editor.

Fixed size of .emProject, .emPackage and .emArchive file icons (Linux only).

Added .svd file type detection to "Register Definition File" property.

Version 3.10e

IDE

Ctrl+C and Ctrl+A now work in project property dialog's description field.

Fixed drag not working in project explorer on new files or folders until project has been reloaded.

Version 3.10d

Debug

Fixed memory window starting in auto size mode when a fixed size is specified.

Embedded Studio Reference Manual Introduction

32

Fixed crash when opening memory window.

Version 3.10c

Debug

Fixed memory window always evaluating address expression when auto size is selected.

IDE

Fixed build summary not being fully visible when build log is larger than window.

Fixed directory chooser on IAR/Keil project import dialog.

Fixed crash when entering address in disassembly window that is not within the current visible address

range.

Fixed text editor slow down when rendering very long lines.

Find dialog auto complete is now case sensitive.

Enter key now behaves the same as return key in find dialog.

Fixed crash when dragging a project folder onto one of its own sub folders.

Register window bitfield entries now use monospace font.

Version 3.10b

Debug

Fixed crash using debug restart with the simulator target.

Updated shipped J-Link software to V6.00i.

Add "Ignore .debug_frame Section" debugging property.

Fixed crash if memory write fails during download on OS X.

Fixed crash when connecting to J-Link target interface when no J-Link is attached.

Fixed disassembly of ldr literal instructions.

Improved debug support of clang generated code.

IDE

Fixed goto definition and find references on files with paths containing UNICODE characters.

File and project history now shared between all major releases.

Fixed save prompt dialog not being displayed when modified file is closed.

Fixed close solution not stopping when the saving of a modified file has failed.

Improved appearance of debugger tooltips.

Embedded Studio Reference Manual Introduction

33

Version 3.10a

Debug

Added "Auto Refresh" to the context menu of the execution count window.

Fixed set breakpoint on variable from text editor.

Fixed modifying breakpoint properties.

Fixed crash when pressing page down on last page of the disassembly in the disassembly window.

IDE

Parallel building of files in projects now shows a progress bar and ETA, both of these can be disabled

using new environment options.

Fixed Microsoft IME support in code editor.

Removed project property "Build Dependents in Parallel", replaced it with "Project Can Build In Parallel".

Fixed saving of files from code editor using Shift-JIS encoding.

Improved appearance of build log's memory usage summary when there are many memory segments.

Fixed code completion on files with paths containing UNICODE characters.

Version 3.10

Build

Added "Keep Linker Script File" project property.

Added "Tool Chain Directory" project property.

Added "Externally Built Library" to the "Project Type" enumeration.

Added "Section Placement Segments" project property.

Added "Post-Link Output File" project property.

Added "C Compile Command", "C++ Compile Command", "Assemble Command", "Link Command" and

"Archive Command" project properties to enable user defined build steps.

Added capability to build "Externally Built Executable" and "Externally Built Library" project types using

command lines in project properties.

Supplied ascii only version of ctype functions in ctype_no_wchar.c in the $(StudioDir)/source directory.

Supplied non threaded version errno in errno_no_thread.c in the $(StudioDir)/source directory.

Fixed 0.0 >= 0.0 and 0.0 <= 0.0 not returning true on some architectures.

Fixed crash when building libraries using indirect files with no files to archive.

Opening IAR EWARM/Keil MDK project files will now create internal and external build configurations.

The external build configuration will use the IAR/Keil tools. The internal build configuration will use the

internal tools.

Fixed setting errno to EDOM with invalid arguments to acos(f), asin(f) and fmod(f).

Fixed setting errno to ERANGE when overflow occurs with ldexp(f).

Updated the GCC/BINUTILS tools build to use GCC ARM Embedded 5-2016-q2-update source release.

Embedded Studio Reference Manual Introduction

34

Link will now fail with an error if a section has been placed at the end of a segment using the

place_from_segment_start attribute and the preceding section overlaps it.

Debug

Removed "J-Link DLL File" project property.

Added "Use Built-in RTT support" project property to enable RTT to be used on all devices.

Add "Ignore .debug_aranges Section" debugging property.

Fixed crash while using memory window when not connected to target.

Added "Load ELF Sections" loader project property.

Added "Stop On Memory Error" simulator project property.

Removed "Debugger Initial Breakpoint" environment options.

Can now optionally specify the main load file to download using the "Load File" project property.

Added "Go To Disassembly" to code editor context menu when debugging.

Added "Export As Text" to variable display windows.

Variable display windows now display char * as null terminated strings by default.

Variable display windows now carry out numerical sort when sorting on size.

Fixed watch window not moving blank entry to end when using add to watch from editor.

Adding simulator project property "Stop On Memory Error".

Enabling of exception breakpoints is preserved in session file.

IDE

Project properties dialog now defaults to the active build confguration when opened.

Fixed crash when dragging a project folder onto itself.

Fixed display of string properties that contain line feeds.

The "Project Type" property can now be set on a per configuration basis.

Fixed reload project not working correctly when the project has been opened from the Recent Projects

window.

Project properties editor dialog is now modal.

Memory window address field now expands to fill available space.

Fixed blank filenames in Open File From Solution dialog.

Fixed crash when right clicking in empty area of build configuration dialog.

Fixed crash when changing configuration with a property editor focused in properties dialog.

Changed the way modified and inherited properties are shown in the properties dialog/window.

Code editor no longer displays file modified warning if file has been externally deleted.

Properties dialog, removed "All" group, deselecting the group/page will show all properties.

Properties dialog, changed the graphic to indicate that a project property has been modified or is set in

another node or configuration.

Properties dialog, removed the build macros and added a means to display the set of macros on

individual property editors.

Project explorer, added "Exclude From Build" option to folders.

Embedded Studio Reference Manual Introduction

35

Add support for ARMv8-M Mainline and ARMv8-M Baseline architecture.

Properties dialog, added option to show modified properties only.

Fixed drag and drop in project explorer only working on a new folder after project has been reloaded.

Project explorer removed automatic usage of memory map, section placement and linker script files in

the build.

Added "Use This Memory Map", "Use This Section Placement" and "Use This Linker Script File" to the

appropriate files in the project explorer context menu.

Files of type Memory Map, Section Placement and Linker Script that are added to the project now prompt

to update the appropriate project property.

Added "Use Manual Linker Script" and "Linker Script File" project properties.

Removed Calcpad, Debug Immediate, Downloads, Properties, Script Console and Terminal Emulator

windows.

Reorganised menu entries, all window show actions are avaiable on the View menu.

File path property editor now applies change when enter key is pressed.

The Application Monospace Font property editor will now only allow monospace fonts to be selected.

Embedded Studio Reference Manual Introduction

36

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

37

SEGGER Embedded Studio User Guide
This is the user guide for the SEGGER Embedded Studio integrated development environment (IDE). The SEGGER

Embedded Studio IDE consists of:

a project system to organize your source files

a build system to build your applications

programmer aids to navigate and work effectively

a target programmer to download applications into RAM or flash

a debugger to pinpoint bugs

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

38

SEGGER Embedded Studio standard layout
SEGGER Embedded Studio's main window is divided into the following areas:

Title bar:Displays the name of the current solution.

Menu bar:Menus for editing, building, and debugging your program.

Toolbars:Frequently used actions are quickly accessible on toolbars below the menu bar.

Editing area:A tabbed view of any open editor windows and the HTML viewer.

Docked windows:SEGGER Embedded Studio has many windows that dock to the left, right, or below the

editing area. You can configure which windows will be visible, and their placement, when editing and

debugging.

Status bar At the bottom of the main window, the status bar contains useful information about the

current editor, build status, and debugging environment.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

39

Menu bar
The menu bar contains menus for editing, building, and debugging your program. You can navigate menus

using the keyboard or the mouse.

Navigating menus using the mouse

To navigate menus using the mouse:

1. Click a menu title in the menu bar to show the related menu.

2. Click the desired command in the menu to execute that command.

or

1. Click and hold the mouse on a menu title in the menu bar to show the related menu.

2. Drag the mouse to the desired command in the menu.

3. Release the mouse while it is over the command to execute that command.

Navigating menus with the keyboard

To navigate menus using the keyboard:

1. Tap the Alt key activate the menu bar.

2. Tap Return to display the menu.

3. Use the Left and Right keys to select the required menu.

4. Use the Up or Down key to select the required command or submenu.

5. Press Enter to execute the selected command.

6. Press Alt or Esc at any time to cancel menu selection.

After you press the Alt key once, each menu on the menu bar has one letter underlinedits shortcut key. So, to

activate a menu using the keyboard:

While holding down the Alt key, type the desired menu's shortcut key.

After the menu appears, you can navigate it using the cursor keys:

Use Up and Down to move up and down the list of menu items.

Use Esc to cancel a menu.

Use Right or Enter to open a submenu.

Use Left or Esc to close a submenu and return to the parent menu.

Type the underlined letter in a command's name to execute that command.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

40

Title bar
The first item shown in the title bar is SEGGER Embedded Studio's name. Because SEGGER Embedded Studio

can be used to target different processors, the name of the target processor family is also shown, to help you

distinguish between instances of SEGGER Embedded Studio when debugging multi-processor or multi-core

systems.

The filename of the active editor follows SEGGER Embedded Studio's name; you can configure the presentation

of this filename as described below.

After the filename, the title bar displays status information on SEGGER Embedded Studio's state:

[building] SEGGER Embedded Studio is building a solution, building a project, or compiling a file.

[run] An application is running under control of SEGGER Embedded Studio's debugger.

[break] The debugger is stopped at a breakpoint.

[autostep] The debugger is single stepping the application without user interaction (autostepping).

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

41

Status bar
At the bottom of the window, the status bar contains useful information about the current editor, build status,

and debugging environment. The status bar is divided into two regions: one contains a set of fixed panels and

the other is used for messages.

The message area

The leftmost part of the status bar is a message area used for things such as status tips, progress information,

warnings, errors, and other notifications.

Status bar panels

You can show or hide the following panels on the status bar:

Panel Description

Target device status

Displays the connected target interface. When
connected, this panel contains the selected target
interface's name and, if applicable, the processor to
which the target interface is connected. The LED icon
flashes green when a program is running, is solid red
when stopped at a breakpoint, and is yellow when
connected to a target but not running a program.
Double-clicking this panel displays the Targets pane,
and right-clicking it invokes the Target shortcut menu.

Cycle count panel Displays the number of processor cycles used by the
executing program. This panel is only visible if the
connected target supports performance counters
that can report the total number of cycles executed.
Double-clicking this panel resets the cycle counter to
zero, and right-clicking it brings up the Cycle Count
shortcut menu.

Insert/overwrite status Indicates whether the current editor is in insert or
overwrite mode. In overwrite mode, the panel displays
"OVR"; in insert mode, the panel displays "INS".

Read-only status Indicates whether the editor is in read-only mode. If
the editor is editing a read-only file or is in read-only
mode, the panel display "R/O"; if the editor is in read-
write mode, the panel displays "R/W".

Build status Indicates the success or failure of the last build. If
the last build completed without errors or warnings,
the build status pane contains Built OK; otherwise, it
contains the number of errors and warnings reported.
If there were errors, double-clicking this panel displays
the Build Log in the Output pane.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

42

Caret position Indicates the insertion position position in the editor
window. For text files, the caret position pane displays
the line number and column number of the insertion
point in the active window; when editing binary files, it
displays the address being edited.

Time panel Displays the current time.

Configuring the status bar panels

To configure which panels are shown on the status bar:

Choose View > Status Bar.

From the status bar menu, select the panels to display and deselect the ones you want hidden.

or

Right-click the status bar.

From the status bar menu, select the panels to display and deselect the ones you want to hide.

To show or hide the status bar:

Choose View > Status Bar.

From the status bar menu, select or deselect the Status Bar item.

You can choose to hide or display the size grip when SEGGER Embedded Studio's main window is not maximized.

(The size grip is never shown in full-screen mode or when maximized.)

To show or hide the size grip

Choose View > Status Bar.

From the status bar menu, select or deselect the Size Grip item.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

43

Editing workspace
The main area of SEGGER Embedded Studio is the editing workspace. It contains any files being edited, the on-

line help system's HTML browser, and the Dashboard.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

44

Docking windows
SEGGER Embedded Studio has a flexible docking system you can use to position windows as you like them. You

can dock windows in the SEGGER Embedded Studio window or in the four head-up display windows. SEGGER

Embedded Studio will remember the position of the windows when you leave the IDE and will restore them

when you return.

Window groups

You can organize SEGGER Embedded Studio windows into window groups. A window group has multiple

windows docked in it, only one of which is active at a time. The window group displays the active window's title

for each of the windows docked in the group.

Clicking on the window icons in the window group's header changes the active window. Hovering over a

docked window's icon in the header will display that window's title in a tooltip.

To dock a window to a different window group:

Press and hold the left mouse button over the title of the window you wish to move.

As you start dragging, all window groups, including hidden window groups, become visible.

Drag the window over the window group to dock in.

Release the mouse button.

Holding Ctrl when moving the window will prevent the window from being docked. If you do not dock a

window on a window group, the window will float in a new window group.

Perspectives

SEGGER Embedded Studio remembers the dock position and visibility of each window in each perspective. The

most common use for this is to lay your windows out in the Standard perspective, which is the perspective

used when you are editing and not debugging. When SEGGER Embedded Studio starts to debug a program,

it switches to the Debug perspective. You can now lay out your windows in this perspective and SEGGER

Embedded Studio will remember how you laid them them out. When you stop debugging, SEGGER Embedded

Studio will revert to the Standard perspective and that window layout for editing; when you return to Debug

perspective on the next debug session, the windows will be restored to how you laid them out in that for

debugging.

SEGGER Embedded Studio remembers the layout of windows, in all perspectives, such that they can be restored

when you run SEGGER Embedded Studio again. However, you may wish to revert back to the standard docking

positions; to do this:

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

45

Dashboard
When SEGGER Embedded Studio starts, it presents the Dashboard, a collection of panels that provide useful

information, one-click loading of recent projects, and at-a-glance summaries of activity relevant to you.

Tasks

The Tasks panel indicates tasks you need to carry out before SEGGER Embedded Studio is fully functionalfor

instance, whether you need to activate SEGGER Embedded Studio, install packages, and so on.

Updates

The Updates panel indicates whether any packages you have installed are now out of date because a newer

version is available. You can install each new package individually by clicking the Install button under each

notification, or install all packages by clicking the Install all updates link at the bottom of the panel.

Projects

The Projects panel contains links to projects you have worked on recently. You can load a project by clicking the

appropriate link, or clear the project history by clicking the Clear List button. To manage the contents of the list,

click the Manage Projects link and edit the list of projects in the Recent Projects window.

News

The News panel summarizes the activity of any RSS and Atom feeds you have subscribed to. Clicking a link will

display the published article in an external web browser. You can manage your feed subscriptions to by clicking

the Manage Feeds link at the end of the News panel and pinning the feeds in the Favorites windowyou are only

subscribed to the pinned feeds.

Links

The Links panel is a handy set of links to your favorite websites. If you pin a link in the Favorites window, it

appears in the Links panel.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

46

SEGGER Embedded Studio help and assistance
SEGGER Embedded Studio provides context-sensitive help in increasing detail:

Tooltips
When you position the pointer over a button and keep it still, a small window displays a brief description of

the button and its keyboard shortcut, if it has one.

Status tips
In addition to tooltips, SEGGER Embedded Studio provides a longer description in the status bar when you

hover over a button or menu item.

Online manual
SEGGER Embedded Studio has links from all windows to the online help system.

The browser

Documentation pages are shown in the Browser.

Help using SEGGER Embedded Studio

SEGGER Embedded Studio provides an extensive, HTML-based help system that is available at all times.

To view the help text for a particular window or other user-interface element:

Click to select the item with which you want assistance.

Choose Help > Help or press F1.

Help within the text editor

The text editor is linked to the help system in a special way. If you place the insertion point within a word and

press F1, the help-system page most likely to be useful is displayed in the HTML browser. This a great way to

quickly find the help text for functions provided in the library.

Browsing the documentation

The Contents window lists all the topics in the SEGGER Embedded Studio documentation and gives a way to

search through them.

The highlighted entry indicates the current help topic. When you click a topic, the corresponding page appears

in the Browser window.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

47

The Next Topic and Previous Topic items in the Help menu, or the buttons on the Contents window toolbar,

help navigate through topics.

To search the online documentation, type a search phrase into the Search box on the Contents window toolbar.

To search the online documentation:

Choose Help > Contents or press Ctrl+Alt+F1.

Enter your search phrase in the Search box and press Enter (or Return on Macs).

The search commences and the table of contents is replaced by links to pages matching your query, listed in

order of relevance. To clear the search and return to the table of contents, click the clear icon in the Search box.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

48

Creating and managing projects
A SEGGER Embedded Studio project is a container for everything required to build your applications. It contains

all the assorted resources and maintains the relationships between them.

A project is a convenient place to find every file and piece of information associated with your work. You place

projects into a solution, which can contain one or more projects.

This chapter introduces the various parts of a project, shows how to create projects, and describes how to

organize the contents of a project. It describes how to use the Project Explorer and Project Manager for project-

management tasks.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

49

Solutions and projects
To develop a product using SEGGER Embedded Studio, you must understand the concepts of projects and

solutions.

A project contains and organizes everything you need to create a single application or a library.

A solution is a collection of projects and configurations.

Organizing your projects into a solution allows you to build all the projects in a solution with a single keystroke,

and to load them onto the target ready for debugging.

In your SEGGER Embedded Studio project, you

organize build-system inputs for building a product.

add information about items in the project, and their relationships, to assist you in the development

process.

Projects in a solution can reside in the same or different directories. Project directories are always relative to the

directory of the solution file, which enables you to more-easily move or share project-file hierarchies.

The Project Explorer organizes your projects and files, and provides quick access to the commands that operate

on them. A toolbar at the top of the window offers quick access to commonly used commands.

Solutions

When you have created a solution, it is stored in a project file. Project files are text files, with the file extension

emProject, that contain an XML description of your project. See Project file format for a description of the

project-file format.

Projects

The projects you create within a solution have a project type SEGGER Embedded Studio uses to determine how

to build the project. The project type is selected when you use the New Project dialog. The available project

types depend on the SEGGER Embedded Studio variant you are using, but the following are present in most

SEGGER Embedded Studio variants:

Executable: a program that can be loaded and executed.

Externally Built Executable: an executable that is not built by the SEGGER Embedded Studio internal build

process.

Library: a group of object files collected into a single file (sometimes called an archive).

Externally Built Library: a library that is not built by the SEGGER Embedded Studio internal build process.

Object File: the result of a single compilation.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

50

Staging: a project that will apply a user-defined command to each file in a project.

Combining: a project that can be used to apply a user-defined command when any files in a project have

changed.

Project options and configurations

Project options are attached to project nodes. They are usually used in the build process, for example, to define

C preprocessor symbols. You can assign different values to the same project option, based on a configuration:

for example, you can assign one value to a C preprocessor symbol for release build and a different value for a

debug build.

Folders and Dynamic Folders

Projects can contain folders, which are used to group related files. Automated grouping uses the files' extensions

to, for example, put all .c files in one folder, etc. Grouping also can be done manually by explicitly creating a

file within a folder. Note that these project folders do not map onto directories in the file system, they are used

solely to structure the display of content shown in the Project Explorer.

Projects can also contain dynamic folders which will can show the directories and files contained in the file

system in the project explorer. You can specify if the dynamic folder is recursive and use wildcards to include and

exclude files.

Source files

Source files are all the files used to build a product. These include source code files and also section-placement

files, memory-map files, and script files. All the source files you use for a particular product, or for a suite of

related products, are managed in a SEGGER Embedded Studio project. A project can also contain files that

are not directly used by SEGGER Embedded Studio to build a product but contain information you use during

development, such as documentation. You edit source files during development using SEGGER Embedded

Studio's built-in text editor, and you organize files into a target (described next) to define the build-system

inputs for creating the product.

The source files of your project can be placed in folders or directly in the project. Ideally, the paths to files

placed in a project should be relative to the project directory, but at times you might want to refer to a file in an

absolute location and this is supported by the project system.

When you add a file to a project, the project system detects whether the file is in the project directory. If a

file is not in the project directory, the project system tries to make a relative path from the file to the project

directory. If the file isn't relative to the project directory, the project system detects whether the file is relative to

the $(StudioDir) directory; if so, the filename is defined using $(StudioDir). If a file is not relative to the project

directory or to $(StudioDir), the full, absolute pathname is used.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

51

The project system will allow (with a warning) duplicate files to be put into a project.

The project system uses a file's extension to determine the appropriate build action to perform on the file:

A file with the extension .c will be compiled by a C compiler.

A file with the extension .cpp or .cxx will be compiled by a C++ compiler.

A file with the extension .s or .asm will be compiled by an assembler.

A file with the object-file extension .o will be linked.

A file with the library-file extension .a will be linked.

A file with the extension .xml will be opened and its file type determined by the XML document type.

Files with other file extensions will not be compiled or linked.

You can modify this behavior by setting a file's File Type project option with the Common configuration

selected, which enables files with non-standard extensions to be compiled by the project system.

Externally Built Executables

You can use an external build process for Externally Built Executable project types by setting the Build

Command project option, for example to make target. Alternatively you can set command lines for specific

build steps to compile/assemble and link. When you create an Externally Built Executable project type

configurations will be created that create command lines for a variety of external tool chains.

Solution links

You can create links to existing project files from a solution, which enables you to create hierarchical builds. For

example, you could have a solution that builds a library together with a stub test driver executable. You can

link to that solution from your current solution by right-clicking the solution node of the Project Explorer and

selecting Add Existing Project. Your current solution can then use the library built by the other project.

Session files

When you exit SEGGER Embedded Studio, details of your current session are stored in a session file. Session files

are text files, with the file extension emSession, that contain details such as which files you have opened in the

editor and what breakpoints you have set in the Breakpoint window.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

52

Creating a project
You can create a new solution for each project or place multiple projects in an existing solution.

To create a new project in an existing solution:

1. Choose Project > Add New Project.

2. In the New Project wizard, select the type of project you wish to create and specify where it will be

placed.

3. Ensure that Add the project to current solution is checked.

4. Click OK to go to next stage or Cancel to cancel the project's creation.

The project name must be unique to the solution and, ideally, the project directory should be relative to the

solution directory. The project system will use the project directory as the current directory when it builds your

project. Once complete, the Project Explorer displays the new solution, project, and files contained in the

project. To add another project to the solution, repeat the above steps.

To create a new project in a new solution:

1. Choose File > New Project or press Ctrl+Shift+N.

2. Select the type of project you wish to create and where it will be placed.

3. Click OK.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

53

Adding existing files to a project
You can add existing files to a project in a number of ways.

To add existing files to the active project:

Choose Project > Add Existing File or press Ctrl+P, A.

Using the Open File dialog, navigate to the directory containing the files and select the ones you wish to add to

the project.

Click OK.

The selected files are added to the folders whose filter matches the extension of each of the files. If no filter

matches a file's extension, the file is placed underneath the project node.

To add existing files to a specific project:

1. In the Project Explorer, right-click the project to which you wish to add a new file.

2. Choose Add Existing File.

To add existing files to a specific folder:

1. In the Project Explorer, right-click the folder to which you wish to add a new file.

2. Choose Add Existing File.

The files are added to the specified folder without using filter matching.

To create a dynamic folder:

1. In the Project Explore, right click on the project to which you wish to add a new folder.

2. Choose New Folder....

3. Using the New Folder dialog name the folder and then show the dynamic folder options.

4. Specify the required Source Folder and the Filter Specification.

The files that match the filter specification in the source folder will appear in the newly created folder.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

54

Adding new files to a project
You can add new files to a project in a number of ways.

To add new files to the active project:

Choose Project > Add New File or press Ctrl+N.

To add a new file to a project:

1. In the Project Explorer, right-click the project to which you wish to add a new file.

2. Choose Add New File.

When adding a new file, SEGGER Embedded Studio displays the New File dialog, from which you can choose

the type of file to add, its filename, and where it will be stored. Once created, the new file is added to the folder

whose filter matches the extension of the newly added file. If no filter matches the newly added file extension,

the new file is placed underneath the project node.

To add new files to a folder:

1. In the Project Explorer, right-click the folder to which you wish to add a new file.

2. Choose Add New File.

The new file is added to the folder without using filter matching.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

55

Removing a file, folder, project, or project link
You can remove whole projects, folders, or files from a project, or you can remove a project from a solution,

using the Remove button on the Project Explorer toolbar. Note that removing a source file from a project does

not remove it from disk.

To remove an item from the solution:

1. In the Project Explorer, select the item to remove.

2. Choose Edit > Delete or press Del.

or

1. In the Project Explorer, right-click the item to remove.

2. Choose Remove.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

56

Building your application
SEGGER Embedded Studio builds your application using the resources and build rules it finds in your solution.

When SEGGER Embedded Studio builds your application, it tries to avoid building files that have not changed

since they were last built. It does this by comparing the modification dates of the generated files with the

modification dates of the dependent files together with the modification dates of the project options that

pertain to the build. But if you are copying files, sometimes the modification dates may not be updated when

the file is copiedin this instance, it is wise to use the Rebuild command rather than the Build command.

You can see the build rationale SEGGER Embedded Studio currently is using by setting the Environment

Options > Building > Show Build Information environment option. To see the build commands themselves, set

the Environment Options > Building > Echo Build Command environment option.

You may have a solution that contains several interdependent projects. Typically, you might have several

executable projects and some library projects. The Project Dependencies dialog specifies the dependencies

between projects and to see the effect of those dependencies on the solution build order. Note that

dependencies can be set on a per-configuration basis, but the default is for dependencies to be defined in the

Common configuration.

You will also notice that a new folder titled Dependencies has appeared in the Project Explorer. This folder

contains the list of newly generated files and the files from which they were generated. To see if one of files

can be decoded and displayed in the editor, right-click the file to see if the View command is available on the

shortcut menu.

If you have the Symbols window open, it will be updated with the symbol and section information of all

executable files built in the solution.

To generalize your builds, you can define macro values that are substituted when the project options are used.

These macro values can be defined globally at the solution and project level, and can be defined on a per-

configuration basis.

The combination of configurations, project options with inheritance, dependencies, and macros provides a

very powerful build-management system. However, such systems can become complicated. To understand the

implications of changing build settings, right-click a node in the Project Explorer and select Options to view a

dialog that shows which macros and project options apply to that project node.

To build all projects in the solution:

1. Choose Build > Build Solution or press Shift+F7.

or

1. Right-click the solution in the Project Explorer window.

2. Choose Build from the shortcut menu.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

57

To build a single project:

1. Select the required project in the Project Explorer.

2. Choose Build > Build or press F7.

or

1. Right-click the project in the Project Explorer.

2. Choose Build.

To compile a single file:

1. In the Project Explorer, click to select the source file to compile.

2. Choose Build > Compile or press Ctrl+F7.

or

1. In the Project Explorer, right-click the source file to compile.

2. Choose Compile from the shortcut menu.

Correcting errors after building

The results of a build are recorded in a Build Log that is displayed in the Output window. Errors are highlighted

in red, warnings are highlighted in yellow. Double-clicking an error, warning, or note will move the insertion

point to the line of source code that triggered that log entry.

You can move forward and backward through errors using Search > Next Location and Search > Next Location.

When you build a single project in a single configuration, the Transcript will display the memory used by the

application and a summary for each memory area.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

58

Creating variants using configurations
SEGGER Embedded Studio provides a facility to build projects in various configurations. Project configurations

are used to create different software builds for your projects.

A configuration defines a set of project options. For example, the output of a compilation can be put into

different directories, dependent upon the configuration. When you create a solution, some default project

configurations are created.

Build configurations and their uses

Configurations are typically used to differentiate debug builds from release builds. For example, the compiler

options for debug builds will differ from those of a release build: a debug build will set options so the project can

be debugged easily, whereas a release build will enable optimization to reduce program size or to increase its

speed. Configurations have other uses; for example, you can use configurations to produce variants of software,

such as custom libraries for several different hardware variants.

Configurations inherit project options from other configurations. This provides a single point of change for

definitions common to several configurations. A particular project option can be overridden in a particular

configuration to provide configuration-specific settings.

When a solution is created, two configurations are generated Debug and Release and you can create additional

configurations by choosing Build > Build Configurations. Before you build, ensure that the appropriate

configuration is set using Build > Set Active Build Configuration or, alternatively, the Active Configuration

combo box in the Project Explorer.

Selecting a configuration

To set the configuration that affects your building and debugging, use the combo box in the Project Explorer or

select Build > Set Active Build Configuration

Creating a configuration

To create your own configurations, select Build > Build Configurations to invoke the Configurations dialog. The

New button will produce a dialog allowing you to name your configuration. You can now specify the existing

configurations from which your new configuration will inherit values.

Deleting a configuration

You can delete a configuration by selecting it and clicking the Remove button. This deletion cannot be undone

or canceled, so beware.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

59

Private configurations

Some configurations are defined purely for inheriting and, as such, should not appear in the Build combo box.

When you select a configuration in the Configuration dialog, you can choose to hide that configuration.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

60

Project options
For solutions, projects, folders, and files, project options can be defined that are used by the project system in

the build process. These project options can be viewed and modified by using the Options dialog in conjunction

with the Project Explorer.

Some project options are only applicable to a given item type. For example, linker project options are only

applicable to a project that builds an executable file. However, other project options can be applied either at

the file, project, or solution project node. For example, a compiler project option can be applied to a solution,

project, or individual file. By setting a project option at the solution level, you enable all files of the solution to

use that project option's value.

Unique project options

A unique project option has one value. When a build is done, the value of a unique project option is the first one

defined in the project hierarchy. For example, the Treat Warnings As Errors project option could be set to Yes

at the solution level, which would then be applicable to every file in the solution that is compiled, assembled,

and linked. You can then selectively define project options for other project items. For example, a particular

source file may have warnings you decide are allowable, so you set the Treat Warnings As Errors to No for that

particular file.

solution Treat Warnings As Errors = Yes
 project1 Treat Warnings As Errors = Yes
 file1 Treat Warnings As Errors = Yes
 file2 Treat Warnings As Errors = No
 project2 Treat Warnings As Errors = No
 file1 Treat Warnings As Errors = No
 file2 Treat Warnings As Errors = Yes

In the above example, the files will be compiled with these values for Treat Warnings As Errors:

project1/file1 Yes

project1/file2 No

project2/file1 No

project2/file2 Yes

Aggregate project options

An aggregating project option collects all the values defined for it in the project hierarchy. For example, when a

C file is compiled, the Preprocessor Definitions project option will take all the values defined at the file, project,

and solution levels.

solution Preprocessor Definitions = SolutionDef

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

61

 project1 Preprocessor Definitions =
 file1 Preprocessor Definitions =
 file2 Preprocessor Definitions = File1Def
 project2 Preprocessor Definitions = ProjectDef
 file1 Preprocessor Definitions =
 file2 Preprocessor Definitions = File2Def

In the above example, the files will be compiled with these preprocessor definitions:

project1/file1 SolutionDef

project1/file2 SolutionDef, File1Def

project2/file1 SolutionDef, ProjectDef

project2/file2 SolutionDef, ProjectDef, File2Def

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

62

Configurations and project options
Project options are defined for a configuration so you can have different values for a project option for

different builds. A given configuration can inherit the project options of other configurations. When the project

system requires a project option value, it checks for the existence of the project option value in the current

configuration and then in the set of inherited configurations. You can specify the set of inherited configurations

using the Configurations dialog.

A special configuration named Common is always inherited by a configuration. The Common configuration

allows you to set project options that will apply to all configurations you create. If you are modifying a project

option of your project, you almost certainly want each configuration to inherit it, so ensure that the Common

configuration is selected.

If the project option is unique, the build system will use the one defined for the particular configuration. If

the project option isn't defined for this configuration, the build system uses an arbitrary one from the set of

inherited configurations.

If the option is still undefined, the build system uses the value for the Common configuration. If it is still

undefined, the build system tries to find the value in the next higher level of the project hierarchy.

solution [Common] Preprocessor Definitions = CommonSolutionDef

solution [Debug] Preprocessor Definitions = DebugSolutionDef

solution [Release] Preprocessor Definitions = ReleaseSolutionDef

 project1 - Preprocessor Definitions =

 file1 - Preprocessor Definitions =

 file2 [Common] Preprocessor Definitions = CommonFile1Def

 file2 [Debug] Preprocessor Definitions = DebugFile1Def

 project2 [Common] Preprocessor Definitions = ProjectDef

 file1 Preprocessor Definitions =

 file2 [Common] - Preprocessor Definitions = File2Def

In the above example, the files will be compiled with these preprocessor definitions when in Debug

configuration

File Setting

project1/file1 CommonSolutionDef, DebugSolutionDef

project1/file2 CommonSolutionDef,
DebugSolutionDef,CommonFile1Def, DebugFile1Def

project2/file1 CommonSolutionDef, DebugSolutionDef, ProjectDef

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

63

project2/file2 ComonSolutionDef, DebugSolutionDef, ProjectDef,
File2Def

and the files will be compiled with these Preprocessor Definitions when in Release configuration:

File Setting

project1/file1 CommonSolutionDef, ReleaseSolutionDef

project1/file2 CommonSolutionDef, ReleaseSolutionDef,
CommonFile1Def

project2/file1 CommonSolutionDef, ReleaseSolutionDef, ProjectDef

project2/file2 ComonSolutionDef, ReleaseSolutionDef, ProjectDef,
File2Def

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

64

Project macros
You can use macros to modify the way the project system refers to files.

Macros are divided into four classes:

System macros defined by SEGGER Embedded Studio relay information about the environment, such as

paths to common directories.

Global macros are saved in the environment and are shared across all solutions and projects. Typically,

you would set up paths to libraries and any external items here.

Project macros are saved as project options in the project file and can define values specific to the solution

or project in which they are defined.

Build macros are generated by the project system when you build your project.

System macros

System macros are defined by SEGGER Embedded Studio itself and as such are read-only. System macros can be

used in project options, environment settings and to refer to files. See System macros list for the list of System

macros.

Global macros

Global macros are store in the environment option Build Macros.

To define a global macro:

1. Use Tools > Options to show the environment options dialog.

2. In the Environment Options dialog's Building group, select the Build Macros option.

3. Click the ellipsis button on the right.

4. Set the macro using the syntax name = replacement text.

Project macros

To define a project macro:

To set the project macros:

1. Select the appropriate solution/project in the Project Explorer.

2. Use Project > Options to show the project options dialog.

3. In the Project Options dialog's General Options group, select the Macros option.

4. Click the ellipsis button on the right.

5. Set the macro using the syntax name = replacement text.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

65

Build macros

Build macros are defined by the project system for a build of a given project node. See Build macros list for the

list of build macros.

Using macros

You can use a macro for a project option or environment setting by using the $(macro) syntax. For example, the

Object File Name option has a default value of $(IntDir)/$(InputName)$(OBJ).

You can also specify a default value for a macro if it is undefined using the $(macro:default) syntax. For example,

$(MyMacro:0) would expand to 0 if the macro MyMacro has not been defined.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

66

Dependencies and build order
You can set up dependency relationships between projects using the Project Dependencies dialog. Project

dependencies make it possible to build solutions in the correct order and, where the target permits, to load

and delete applications and libraries in the correct order. A typical usage of project dependencies is to make

an executable project dependent upon a library executable. When you elect to build the executable, the build

system will ensure that the library it depends upon is up to date. In the case of a dependent library, the output

file of the library build is supplied as an input to the executable build, so you don't have to worry about it.

Project dependencies are stored as project options and, as such, can be defined differently based upon the

selected configuration. You almost always want project dependencies to be independent of the configuration,

so the Project Dependencies dialog selects the Common configuration by default.

To make one project dependent upon another:

1. Choose Project > Project Dependencies.

2. From the Project dropdown, select the target project that depends upon other projects.

3. In the Depends Upon list box, select the projects the target project depends upon and deselect the

projects it does not depend upon.

Some items in the Depends Upon list box may be dimmed, indicating that a circular dependency would result

if any of those projects were selected. In this way, SEGGER Embedded Studio prevents you from constructing

circular dependencies using the Project Dependencies dialog.

If your target supports loading multiple projects, the Build Order also reflects the order in which projects are

loaded onto the target. Projects will load, in order, from top to bottom. Generally, libraries need to be loaded

before the applications that use them, and you can ensure this happens by making the application dependent

upon the library. With this dependency set, the library gets built and loaded before the application does.

Applications are deleted from a target in reverse of their build order; in this way, applications are removed

before the libraries on which they depend.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

67

Linking and section placement
Executable programs consist of a number of sections. Typically, there are program sections for code, initialized

data, and zeroed data. There is often more than one code section and they must be placed at specific addresses

in memory.

To describe how the program sections of your program are positioned in memory, the SEGGER Embedded

Studio project system uses memory-map files and section-placement files. These XML-formatted files are

described in Memory Map file format and Section Placement file format. They can be edited with the SEGGER

Embedded Studio text editor. The memory-map file specifies the start address and size of target memory

segments. The section-placement file specifies where to place program sections in the target's memory

segments. Separating the memory map from the section-placement scheme enables a single hardware

description to be shared across projects and also enables a project to be built for a variety of hardware

descriptions.

For example, a memory-map file representing a device with two memory segments called FLASH and SRAM

could look something like this in the memory-map editor.

<Root name="Device1">
 <MemorySegment name="FLASH" start="0x10000000" size="0x10000" />
 <MemorySegment name="SRAM" start="0x20000000" size="0x1000" />

A corresponding section-placement file will refer to the memory segments of the memory-map file and will

list the sections to be placed in those segments. This is done by using a memory-segment name in the section-

placement file that matches the corresponding memory-segment name in the memory-map file.

For example, a section-placement file that places a section called .stack in the SRAM segment and the .vectors

and .text sections in the FLASH segment would look like this:

<Root name="Flash Section Placement">
 <MemorySegment name="FLASH" >
 <ProgramSection name=".vectors" load="Yes" />
 <ProgramSection name=".text" load="Yes" />
 </MemorySegment>
 <MemorySegment name="SRAM" >
 <ProgramSection name=".stack" load="No" />
 </MemorySegment>
</Root>

Note that the order of section placement within a segment is top down; in this example .vectors is placed at

lower addresses than .text.

The memory-map file and section-placement file to use for linkage can be included as a part of the project or,

alternatively, they can be specified in the project's linker options.

You can create a new program section using either the assembler or the compiler. For the C/C++ compiler, this

can be achieved using __attribute__ on declarations. For example:

void foobar(void) __attribute__ ((section(".foo")));

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

68

This will allocate foobar in the section called .foo. Alternatively, you can specify the names for the code,

constant, data, and zeroed-data sections of an entire compilation unit by using the Section Options options.

You can now place the section into the section placement file using the editor so that it will be located after the

vectors sections as follows:

<Root name="Flash Section Placement">
 <MemorySegment name="FLASH">
 <ProgramSection name=".vectors" load="Yes" />
 <ProgramSection name=".foo" load="Yes" />
 <ProgramSection name=".text" load="Yes" />
 </MemorySegment>
 <MemorySegment name="SRAM">
 <ProgramSection name=".stack" load="No" />
 </MemorySegment>
</Root>

If you are modifying a section-placement file that is supplied in the SEGGER Embedded Studio distribution, you

will need to import it into your project using the Project Explorer.

Sections containing code and constant data should have their load project option set to Yes. Some sections

don't require any loading, such as stack sections and zeroed-data sections; such sections should have their load

project option set to No.

Some sections that are loaded then need to be copied to sections that aren't yet loaded. This is required for

initialized data sections and to copy code from slow memory regions to faster ones. To do this, the runin

attribute should contain the name of a section in the section-placement file to which the section will be copied.

For example, initialized data is loaded into the .data_load section and then is copied into the .data_run section

using:

<Root name="Flash Section Placement">
 <MemorySegment name="FLASH">
 <ProgramSection name=".vectors" load="Yes" />
 <ProgramSection name=".text" load="Yes" />
 <ProgramSection name=".data_load" load="Yes" runin="data_run" />
 </MemorySegment>
 <MemorySegment name="SRAM">
 <ProgramSection name=".data_run" load="No" />
 <ProgramSection name=".stack" load="No" />
 </MemorySegment>
</Root>

The startup code will need to copy the contents of the .data_load section to the .data_run section. To enable

this, symbols are generated marking the start and end addresses of each section. For each section, a start symbol

called __section-name_start__ and an end symbol called __section-name_end__ are generated. These symbols

can be used to copy the sections from their load positions to their run positions.

For example, the .data_load section can be copied to the data_run section using the following call to memcpy.

/* Section image located in flash */
extern const unsigned char __data_load_start__[];
extern const unsigned char __data_load_end__[];

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

69

/* Where to locate the section image in RAM. */
extern unsigned char __data_run_start__[];
extern unsigned char __data_run_end__[];

/* Copy image from flash to RAM. */
memcpy(__data_run_start__,
 __data_load_start__,
 __data_load_end__ - __data_load_start__);

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

70

Using source control
Source control is an essential tool for individuals or development teams. SEGGER Embedded Studio integrates

with several popular source-control systems to provide this feature for files in your SEGGER Embedded Studio

projects.

Source-control capability is implemented by a number of third-party providers, but the set of functions provided

by SEGGER Embedded Studio aims to be provider independent.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

71

Source control capabilities
The source-control integration capability provides:

Connecting to the source-control repository and mapping files in the SEGGER Embedded Studio project to

those in source control.

Showing the source-control status of files in the project.

Adding files in the project to source control.

Fetching files in the project from source control.

Optionally locking and unlocking files in the project for editing.

Comparing a file in the project with the latest version in source control.

Updating a file in the project by merging changes from the latest version in source control.

Committing changes made to project files into source control.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

72

Configuring source-control providers
SEGGER Embedded Studio supports Subversion, Git, and Mercurial as source-control systems. To enable

SEGGER Embedded Studio to utilize source-control features, you need to install, on your operating system, the

appropriate command line client for the source-control systems that you will use.

Once you have installed the command line client, you must configure SEGGER Embedded Studio to use it.

To configure Subversion:

1. Choose Tools > Options or press Alt+,.

2. Select the Source Control category in the options dialog.

3. Set the Executable environment option of the Subversion Options group to point to Subversion svn

command. On Windows operating systems, the Subversion command is svn.exe.

To configure Git:

1. Choose Tools > Options or press Alt+,.

2. Select the Source Control category in the options dialog.

3. Set the Executable environment option of the Git Options group to point to Git git command. On

Windows operating systems, the Git command is git.exe.

To configure Mercurial:

1. Choose Tools > Options or press Alt+,.

2. Select the Source Control category in the options dialog.

3. Set the Executable environment option of the Mercurial Options group to point to Git hg command. On

Windows operating systems, the Git command is hg.exe.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

73

Connecting to the source-control system
When SEGGER Embedded Studio loads a project, it examines the file system folder that contains the project to

determine the source-control system the project uses. If SEGGER Embedded Studio cannot determine, from the

file system, the source-control system in use, it disables source-control integration.

That is, if you have not set up the paths to the source-control command line clients, even if a working copy exists

and the appropriate command line client is installed, SEGGER Embedded Studio cannot establish source-control

integration for the project.

User credentials

You can set the credentials that the source-control system uses, for commands that require credentials, using

VCS > Options > Configure. From here you can set the user name and password. These details are saved to the

session file (the password is encrypted) so you won't need to specify this information each time the project is

loaded.

Note

SEGGER Embedded Studio has no facility to create repositories from scratch, nor to clone, pull, or checkout

repositories to a working copy: it is your responsibility to create a working copy outside of SEGGER Embedded

Studio using your selected command-line client or Windows Explorer extension.

The "Tortoise" products are a popular set of tools to provide source-control facilities in the Windows shell. Use

Google to find TortoiseSVN, TortoiseGit, and TortoiseHG and see if you like them.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

74

File source-control status
Determining the source-control status of a file can be expensive for large repositories, so SEGGER Embedded

Studio updates the source-control status in the background. Priority is given to items that are displayed.

A file will be in one of the following states:

Clean:The file is in source control and matches the tip revision.

Not Controlled:The file is not in source control.

Conflicted:The file is in conflict with changes made to the repository.

Locked:The file is locked.

Update Available:The file is older than the most-recent version in source control.

Added:The file is scheduled to be added to the repository.

Removed:The file is scheduled to be removed from the repository.

If the file has been modified, its status is displayed in red in the Project Explorer. Note that if a file is not under

the local root, it will not have a source-control status.

You can reset any stored source-control file status by choosing VCS > Refresh.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

75

Source-control operations
Source-control operations can be performed on single files or recursively on multiple files in the Project

Explorer hierarchy. Single-file operations are available on the Source Control toolbar and on the text editor's

shortcut menu. All operations are available using the VCS menu. The operations are described in terms of the

Project Explorer shortcut menu.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

76

Adding files to source control

To add files to the source-control system:

1. In the Project Explorer, select the file to add. If you select a folder, project, or solution, any eligible child

items will also be added to source control.

2. choose Source Control > Add or press Ctrl+R, A.

3. The dialog will list the files that can be added.

4. In that dialog, you can deselect any files you don't want to add to source control.

5. Click Add.

Note

Files are scheduled to be added to source control and will only be committed to source control (and seen by

others) when you commit the file.

Enabling the VCS > Options > Add Immediately option will bypass the dialog and immediately add (but not

commit) the files.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

77

Updating files

To update files from source control:

1. In the Project Explorer, select the file to update. If you select a folder, project, or solution, any eligible

child items will also be updated from source control.

2. choose Source Control > Update or press Ctrl+R, U.

3. The dialog will list the files that can be updated.

4. In that dialog, you can deselect any files you don't want to update from source control.

5. Click Update.

Note

Enabling the VCS > Options > Update Immediately option will bypass the dialog and immediately update the

files.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

78

Committing files

To commit files:

1. In the Project Explorer, select the file to commit. If you select a folder, project, or solution, any eligible

child items will also be committed.

2. Choose Source Control > Commit or press Ctrl+R, C.

3. The dialog will list the files that can be committed.

4. In that dialog, you can deselect any files you don't want to commit and enter an optional comment.

5. Click Commit.

Note

Enabling the VCS > Options > Commit Immediately option will bypass the dialog and immediately commit the

files without a comment.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

79

Reverting files

To revert files:

1. In the Project Explorer, select the file to revert. If you select a folder, project, or solution, any eligible child

items will also be reverted.

2. Choose Source Control > Revert or press Ctrl+R, V.

3. The dialog will list the files that can be reverted.

4. In that dialog, you can deselect any files you don't want to revert.

5. Click Revert.

Note

Enabling the VCS > Options > Revert Immediately option will bypass the dialog and immediately revert files.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

80

Locking files

To lock files:

1. In the Project Explorer, select the file to lock. If you select a folder, project, or solution, any eligible child

items will also be locked.

2. Choose Source Control > Lock or press Ctrl+R, L.

3. The dialog will list the files that can be locked.

4. In that dialog, you can deselect any files you don't want to lock and enter an optional comment.

5. Click Lock.

Note

Enabling the VCS > Options > Lock Immediately option will bypass the dialog and immediately lock files

without a comment.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

81

Unlocking files

To unlock files:

1. In the Project Explorer, select the file to lock. If you select a folder, project, or solution, any eligible child

items will also be unlocked.

2. Choose Source Control > Unlock or press Ctrl+R, N.

3. The dialog will list the files that can be unlocked.

4. In that dialog, you can deselect any files you don't want to unlock.

5. Click Unlock.

Note

Enabling the VCS > Options > Unlock Immediately option will bypass the dialog and immediately unlock files.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

82

Removing files from source control

To remove files from source control:

1. In the Project Explorer, select the file to remove. If you select a folder, project, or solution, any eligible

child items will also be removed.

2. choose Source Control > Remove or press Ctrl+R, R.

3. The dialog will list the files that can be removed.

4. In that dialog, you can deselect any files you don't want to remove.

5. Click Remove.

Note

Files are scheduled to be removed from source control and will still be and seen by others, giving you the

opportunity to revert the removal. When you commit the file, the file is removed from source control.

Enabling the VCS > Options > Remove Immediately option will bypass the dialog and immediately remove (but

not commit) files.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

83

Showing differences between files
To show the differences between the file in the project and the version checked into source control, do the

following:

1. In the Project Explorer, right-click the file.

2. From the shortcut menu, choose Source Control > Show Differences.

You can use an external diff tool in preference to the built-in SEGGER Embedded Studio diff tool. To define

the diff command line SEGGER Embedded Studio generates, choose Tools > Options > Source Control > Diff

Command Line. The command line is defined as a list of strings to avoid problems with spaces in arguments.

The diff command line can contain the following macros:

$(localfile):The filename of the file in the project.

$(remotefile):The filename of the latest version of the file in source control.

$(localname):A display name for $(localfile).

$(remotename):A display name for $(remotefile).

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

84

Source-control properties
When a file in the project is in source control, the Properties window shows the following properties in the

Source Control Options group:

Property Description

SEGGER Embedded Studio Status
The source-control status of working copy as viewed
by SEGGER Embedded Studio.

last Author The author of the file's head revision.

Path: Relative The item's path relative to the repository root.

Path: Repository The pathname of the file in the source-control system,
typically a URL.

Path: Working Copy The pathname of the file in the working copy.

Provider The name of the source-control system managing this
file.

Provider Status The status of the file as reported by the source-control
provider.

Revision: Local The revision number/name of the local file.

Revision: Remote The revision number/name of the most-recent version
in source control.

Status: In Conflict? If Yes, updates merged into the file using Update
conflict with the changes you made locally; if No,
the file is not locked. When conflicted, must resolve
the conflicts and mark them Resolved before
committing the file.

Status: Locked? If Yes, the file is lock by you; if No, the file is not locked.

Status: Modified? If Yes, the checked-out file differs from the version in
the source control system; if No, they are identical.

Status: Update Available? If Yes, the file in the project location is an old version
compared to the latest version in the source-control
systemuse Update to merge in the latest changes.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

85

Subversion provider
The Subversion source-control provider has been tested with SVN 1.4.3.

Provider-specific options

The following environment options are supported:

Property Description

Executable The path to the svn executable.

Lock Supported If Yes, check out and undo check out operations
are supported. Check out will issue the svn lock
command; check in and undo check out will issue the
svn unlock command.

Authentication Selects whether authentication (user name and
password) is sent with every command.

Show Updates Selects whether the update (-u flag) is sent with
status requests in order to show that new versions are
available in the repository. Note that this requires a
live connection to the repository: if you are working
without a network connection to your repository, you
can disable this switch and continue to enjoy source
control status information in the Project Explorer and
Pending Changes windows.

Connecting to the source-control system

When connecting to source control, the provider checks if the local root is in SVN control. If this is the case, the

local and remote root will be set accordingly. If the local root is not in SVN control after you have set the remote

root, a svn checkout -N command will be issued to make the local root SVN controlled. This command will

also copy any files in the remote root to the local root.

The user name and password you enter will be supplied with each svn command the provider issues.

Source control operations

The SEGGER Embedded Studio source-control operations are implemented using Subversion commands.

Mapping SEGGER Embedded Studio source-control operations to Subversion source-control operations is

straightforward:

Operation Command

Commit svn commit for the file, with optional comment.

Update svn update for each file.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

86

Revert svn revert for each file.

Resolved svn resolved for each file.

Lock svn lock for each file, with optional comment.

Unlock svn unlock for each file.

Add svn add for each file.

Remove svn remove for each file.

Source Control Explorer svn list with a remote root. svn mkdir to create
directories in the repository.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

87

CVS provider
The CVS source-control provider has been tested with CVSNT 2.5.03. The CVS source-control provider uses the

CVS rls command to browse the repositorythis command is implemented in CVS 1.12 but usage of . as the root

of the module name is not supported.

Provider-specific options

The following environment options are supported:

Property Description

CVSROOT The CVSROOT value to access the repository.

Edit/Unedit Supported If Yes, Check Out and Undo Check Out commands
are supported. Any check-out operation will issue the
cvs edit command; any check-in or undo-check-
out operation will issue the cvs unedit command;
the status operation will issue the cvs ss command.

Executable The path to the cvs executable.

Login/Logout Required If Yes, Connect will issue the cvs login command.

Connecting to the source-control system

When connecting to source control, the provider checks if the local root is in CVS control. If this is the case, the

local and remote root will be set accordingly. If the local root is not in CVS control after you have set the remote

root, a cvs checkout -l -d command will be issued to make the local root CVS controlled. This command

will also copy any files in the remote root to the local root.

Source-control operations

The SEGGER Embedded Studio source-control operations have been implemented using CVS commands. There

are no multiple-file operations, each operation is done on a single file and committed as part of the operation.

Operation Command

Get Status
cvs status and optional cvs editors for local
directories in CVS control. cvs rls -e for directories
in the repository.

Add To Source Control cvs add for each directory not in CVS control.
cvs add for the file. cvs commit for the file and
directories.

Get Latest cvs update -l -d for each directory not in CVS
control. cvs update to merge the local file. cvs
update -C to overwrite the local file.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

88

Check Out Optional cvs update -C to get the latest version.
cvs edit to lock the file.

Undo Check Out cvs unedit to unlock the file. Optional cvs
update to get the latest version.

Check In cvs commit for the file.

Source Control Explorer cvs rls -e with a remote root starting with .. cvs
import to create directories in the repository.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

89

Package management
Additional target-support functions can be added to, and removed from, SEGGER Embedded Studio with

packages.

A SEGGER Embedded Studio package is an archive file containing a collection of target-support files. Installing

a package involves copying the files it contains to an appropriate destination directory and registering the

package with SEGGER Embedded Studio's package system. Keeping target-support files separate from the

main SEGGER Embedded Studio installation allows us to support new hardware and issue bug fixes for existing

hardware-support files between SEGGER Embedded Studio releases, and it allows third parties to develop their

own support packages.

Installing packages

Use the Package Manager to automate the download, installation, upgrade and removal of packages.

To activate the Package Manager:

Choose Tools > Manage Packages.

In some situations, such as using SEGGER Embedded Studio on a computer without Internet access or when you

want to install packages that are not on the website, you cannot use the Package Manager to install packages

and it will be necessary to manually install them.

To manually install a package:

1. Choose Tools > Manually Install Packages.

2. Select one or more package files you want to install.

3. Click Open to install the packages.

Choose Tools > Show Installed Packages to see more information on the installed packages.

The Package Manager window will remove manually installed packages.

The package manager

The Package Manager manages the support packages installed on your system. It lists the available packages,

shows the installed packages, and allows you to install, update, reinstall, and remove them.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

90

To activate the Package Manager:

Choose Tools > Manage Packages.

Filtering the package list

By default, the Package Manager lists all available and installed packages. You can filter the displayed packages

in a number of ways.

To filter by package status:

Click on the disclosure icon near the top-right corner of the dialog.

Use the pop-up menu to choose how to filter the list of packages.

The list-filter choices are:

Display All Show all packages irrespective of their status.

Display Not Installed Show packages that are available but are not currently installed.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

91

Display Installed Only show packages that are installed.

Display Updates Only show packages that are installed but are not up-to-date because a newer version is

available.

You can also filter the list of packages by the text in the package's title and documentation.

To filter packages by keyword:

Type the keyword into the Search Packages box at the top-left corner of the dialog.

Installing a package

The package-installation operation downloads a package to $(PackagesDir)/downloads, if it has not been

downloaded already, and unpacks the files contained within the package to their destination directory.

To install a package:

1. Choose Tools > Package Manager and set the status filter to Display Not Installed.

2. Select the package or packages you wish to install.

3. Right-click the selected packages and choose Install Selected Packages from the shortcut menu.

4. Click Next; you will be see the actions the Package Manager is about to carry out.

5. Click Next and the Package Manager will install the selected packages.

6. When installation is complete, click Finish to close the Package Manager.

Updating a package

The package-update operation first removes existing package files, then it downloads the updated package to

$(PackagesDir)/downloads and unpacks the files contained within the package to their destination directory.

To update a package:

1. Choose Tools > Package Manager and set the status filter to Display Updates.

2. Select the package or packages you wish to update.

3. Right-click the selected packages and choose Update Selected Packages from the shortcut menu.

4. Click Next; you will see the actions the Package Manager is about to carry out.

5. Click Next and the Package Manager will update the package(s).

6. When the update is complete, click Finish to close the Package Manager.

Removing a package

The package-remove operation removes all the files that were extracted when the package was installed.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

92

To remove a package:

1. Choose Tools > Package Manager and set the status filter to Display Installed.

2. Select the package or packages you wish to remove.

3. Right-click the selected packages and choose Remove Selected Packages from the shortcut menu.

4. Click Next; you will see the actions the Package Manager is about to carry out.

5. Click Next and the Package Manager will remove the package(s).

6. When the operation is complete, click Finish to close the Package Manager.

Reinstalling a package

The package-reinstall operation carries out a package-remove operation followed by a package-install

operation.

To reinstall a package:

1. Choose Tools > Package Manager and set the status filter to Display Installed.

2. Select the package or packages you wish to reinstall.

3. Right-click the packages to reinstall and choose Reinstall Selected Packages from the shortcut menu.

4. Click Next; you will see the actions the Package Manager is about to carry out.

5. Click Next and the Package Manager will reinstall the packages.

6. When the operation is complete, click Finish to close the Package Manager.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

93

Exploring your application
In this section, we discuss the SEGGER Embedded Studio tools that help you examine how your application is

built.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

94

Project explorer
The Project Explorer is the user interface of the SEGGER Embedded Studio project system. It organizes your

projects and files and provides access to the commands that operate on them. A toolbar at the top of the

window offers quick access to commonly used commands for the selected project node or the active project.

Right-click to reveal a shortcut menu with a larger set of commands that will work on the selected project node,

ignoring the active project.

The selected project node determines what operations you can perform. For example, the Compile operation

will compile a single file if a file project node is selected; if a folder project node is selected, each of the files in

the folder are compiled.

You can select project nodes by clicking them in the Project Explorer. Additionally, as you switch between files

in the editor, the selection in the Project Explorer changes to highlight the file you're editing.

To activate the Project Explorer:

Choose View > Project Explorer or press Ctrl+Alt+P.

Left-click operations

The following operations are available in the Project Explorer with a left-click of the mouse:

Action Description

Single click
Select the node. If the node is already selected and
is a solution, project, or folder node, a rename editor
appears.

Double click Double-clicking a solution node or folder node will
reveal or hide the node's children. Double-clicking a
project node selects it as the active project. Double-
clicking a file opens the file with the default editor for
that file's type.

Toolbar commands

The following buttons are on the toolbar:

Button Description

Add a new file to the active project using the New File
dialog.

Add existing files to the active project.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

95

Remove files, folders, projects, and links from the
project.

Create a new folder in the active project.

Menu of build operations.

Disassemble the active project.

Menu of Project Explorer options.

Display the properties dialog for the selected item.

Shortcut menu commands

The shortcut menu, displayed by right-clicking, contains the commands listed below.

For solutions:

Item Description

Build and Batch Build
Build all projects under the solution in the current or
batch build configuration.

Rebuild and Batch Rebuild Rebuild all projects under the solution in the current or
batch build configuration.

Clean and Batch Clean Remove all output and intermediate build files for the
projects under the solution in the current or batch
build configuration.

Export Build and Batch Export Build Create an editor with the build commands for the
projects under the solution in the current or batch
build configuration.

Add New Project Add a new project to the solution.

Add Existing Project Create a link from an existing solution to this solution.

Paste Paste a copied project into the solution.

Remove Remove the link to another solution from the solution.

Rename Rename the solution node.

Source Control Operations Source-control operations on the project file and
recursive operations on all files in the solution.

Edit Solution As Text Create an editor containing the project file.

Save Solution As Change the filename of the project filenote that the
saved project file is not reloaded.

Properties Show the Properties dialog with the solution node
selected.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

96

For projects:

Item Description

Build and Batch Build
Build the project in the current or batch build
configuration.

Rebuild and Batch Rebuild Reuild the project in the current or batch build
configuration.

Clean and Batch Clean Remove all output and intermediate build files for the
project in the current or batch build configuration.

Export Build and Batch Export Build Create an editor with the build commands for the
project in the current or batch build configuration.

Link Perform the project node build operation: link for an
Executable project type, archive for a Library project
type, and the combine command for a Combining
project type.

Set As Active Project Set the project to be the active project.

Debugging Commands For Executable and Externally Built Executable project
types, the following debugging operations are
available on the project node: Start Debugging, Step
Into Debugging, Reset And Debug, Start Without
Debugging, Attach Debugger, and Verify.

Memory-Map Commands For Executable project types that don't have memory-
map files in the project and have the memory-map file
project option set, there are commands to view the
memory-map file and to import it into the project.

Section-Placement Commands For Executable project types that don't have section-
placement files in the project but have the section-
placement file project option set, there are commands
to view the section-placement file and to import it into
the project.

Target Processor For Executable and Externally Built Executable project
types that have a Target Processor option group, the
selected target can be changed.

Add New File Add a new file to the project.

Add Existing File Add an existing file to the project.

New Folder Create a new folder in the project.

Cut Cut the project from the solution.

Copy Copy the project from the solution.

Paste Paste a copied folder or file into the project.

Remove Remove the project from the solution.

Rename Rename the project.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

97

Source Control Operations Source-control, recursive operations on all files in the
project.

Find in Project Files Run Find in Files in the project directory.

Properties Show the Project Manager dialog and select the
project node.

For folders:

Item Description

Add New File Add a new file to the folder.

Add Existing File Add an existing file to the folder.

New Folder Create a new folder in the folder.

Cut Cut the folder from the project or folder.

Copy Copy the folder from the project or folder.

Paste Paste a copied folder or file into the folder.

Remove Remove the folder from the project or folder.

Rename Rename the folder.

Source Control Operations Source-control recursive operations on all files in the
folder.

Compile Compile each file in the folder.

Properties Show the properties dialog with the folder node
selected.

For files:

Item Description

Open Edit the file with the default editor for the file's type.

Open With Edit the file with a selected editor. You can choose
from the Binary Editor, Text Editor, and Web Browser.

Select in File Explorer Create a operating system file system window with the
file selected.

Compile Compile the file.

Export Build Create an editor window containing the commands to
compile the file in the active build configuration.

Exclude From Build Set the Exclude From Build option to Yes for this
project node in the active build configuration.

Disassemble Disassemble the output file of the compile into an
editor window.

Preprocess Run the C preprocessor on the file and show the
output in an editor window.

Cut Cut the file from the project or folder.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

98

Copy Copy the file from the project or folder.

Remove Remove the file from the project or folder.

Import Import the file into the project.

Source Control Operations Source-control operations on the file.

Properties Show the properties dialog with the file node selected.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

99

Source navigator window
One of the best ways to find your way around your source code is using the Source Navigator. It parses the

active project's source code and organizes classes, functions, and variables in various ways.

To activate the Source Navigator:

Choose View > Source Navigator or press Ctrl+Alt+N.

The main part of the Source Navigator window provides an overview of your application's functions, classes,

and variables.

SEGGER Embedded Studio displays these icons to the left of each object:

Icon Description

A C or C++ structure or a C++ namespace.

A C++ class.

A C++ member function declared private or a
function declared with static linkage.

A C++ member function declared protected.

A C++ member function declared public or a
function declared with extern linkage.

A C++ member variable declared private or a
variable declared with static linkage.

A C++ member variable declared protected.

A C++ member variable declared public or a variable
declared with extern linkage.

Re-parsing after editing

The Source Navigator does not update automatically, only when you ask it to. To parse source files manually,

click the Refresh button on the Source Navigator toolbar.

SEGGER Embedded Studio re-parses all files in the active project, and any dependent project, and updates the

Source Navigator with the changes. Parsing progress is shown as a progress bar in the in the Source Navigator

window. Errors and warnings detected during parsing are sent to the Source Navigator Log in the Output

windowyou can show the log quickly by clicking the Show Source Navigator Log tool button on the Source

Navigator toolbar.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

100

Setting indexing threads

You can configure how many threads SEGGER Embedded Studio launches to index your project.

To set the number of threads launched when indexing a project:

Choose View > Source Navigator or press Ctrl+Alt+N.

Click the Options dropdown button at the right of the toolbar.

Move the slider to select the number of threads to launch.

Increasing the number of threads will complete indexing faster, but may reduce the responsiveness of SEGGER

Embedded Studio when editing, for example. You should choose a setting that you are comfortable with

for your PC. By default, SEGGER Embedded Studio launches 16 threads to index the project and is a good

compromise for a desktop quad-core PC.

Sorting and grouping

You can group objects by their type; that is, whether they are classes, functions, namespaces, structures, or

variables. Each object is placed into a folder according to its type.

To group objects by type:

1. On the Source Navigator toolbar, click the arrow to the right of the Cycle Grouping button.

2. Choose Group By Type

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

101

References window
The References window shows the results of the last Find References operation. The Find References facility

is closely related to the Source Navigator in that it indexes your project and searches for references within the

active source code regions.

To activate the References window:

If you have hidden the References window and want to see it again:

Choose View > References or press Ctrl+Alt+R.

To find all references in a project:

1. Open a source file that is part of the active project, or one of its dependent projects.

2. In the editor, move the insertion point within the name of the function, variable, method, or macro to

find.

3. Choose Navigate > Find References or press Alt+R.

4. SEGGER Embedded Studio shows the References window, without moving focus, and searches your

project in the background.

You can also find references directly from the text editor's context menu: right-click the item to find and choose

Find References. As a convenience, SEGGER Embedded Studio is configured to also run Find References when

you Alt+Right-click in the text editorsee Mouse-click accelerators.

To search within the results:

Type the text to search for in the Reference window's search box. As you type, the search results are

narrowed.

Click the close button to clear the search text and show all references.

To set the number of threads launched when finding references:

Choose View > References or press Ctrl+Alt+R.

Click the Options dropdown button at the right of the toolbar.

Move the slider to select the number of threads to launch.

Increasing the number of threads will complete searches faster, but may reduce the responsiveness of SEGGER

Embedded Studio when editing, for example. You should choose a setting that you are comfortable with

for your PC. By default, SEGGER Embedded Studio launches 16 threads to search the project and is a good

compromise for a desktop quad-core PC.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

102

Symbol browser window
The Symbol Browser shows useful information about your linked application and complements the information

displayed in the Project Explorer window. You can select different ways to filter and group the information in

the Symbol Browser to provide an at-a-glance overview of your application. You can use the Symbol Browser to

drill down to see the size and location of each part of your program. The way symbols are sorted and grouped is

saved between runs; so, when you rebuild an application, SEGGER Embedded Studio automatically updates the

Symbol Browser so you can see the effect of your changes on the memory layout of your program.

User interface

Button Description

Group symbols by source filename.

Group symbols by symbol type (equates, functions,
labels, sections, and variables).

Group symbols by the section where they are defined.

Move the insertion point to the statement that defined
the symbol.

Select columns to display.

The main part of the Symbol Browser displays each symbol (both external and static) that is linked into an

application. SEGGER Embedded Studio displays the following icons to the left of each symbol:

Icon Description

Private Equate A private symbol not defined relative to
a section.

Public Equate A public symbol that is not defined
relative to a section.

Private Function A private function symbol.

Public Function A public function symbol.

Private Label A private data symbol, defined relative to
a section.

Public Label A public data symbol, defined relative to a
section.

Section A program section.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

103

Choosing what to show

To activate the Symbol Browser window:

Choose View > Symbol Browser or press Ctrl+Alt+Y.

You can choose to display the following fields for each symbol:

Value:The value of the symbol. For labels, code, and data symbols, this will be the address of the symbol.

For absolute or symbolic equates, this will be the value of the symbol.

Range:The range of addresses the code or data item covers. For code symbols that correspond to high-

level functions, the range is the range of addresses used for that function's code. For data addresses that

correspond to high-level static or extern variables, the range is the range of addresses used to store that

data item. These ranges are only available if the corresponding source file was compiled with debugging

information turned on: if no debugging information is available, the range will simply be the first address

of the function or data item.

Size:The size, in bytes, of the code or data item. The Size column is derived from the Range of the symbol:

if the symbol corresponds to a high-level code or data item and has a range, Size is calculated as the

difference between the start and end addresses of the range. If a symbol has no range, the size column is

blank.

Section:The section in which the symbol is defined. If the symbol is not defined within a section, the

Section column is blank.

Type:The high-level type for the data or code item. If the source file that defines the symbol is compiled

with debugging information turned off, type information is not available and the Type column is blank.

Initially the Range and Size columns are shown in the Symbol Browser. To select which columns to display, use

the Field Chooser button on the Symbol Browser toolbar.

To select the fields to display:

1. Click the Field Chooser button on the Symbol Browser toolbar.

2. Select the fields you wish to display and deselect the fields you wish to hide.

Organizing and sorting symbols

When you group symbols by section, each symbol is grouped underneath the section in which it is defined.

Symbols that are absolute or are not defined within a section are grouped beneath (No Section).

To group symbols by section:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. From the pop-up menu, choose Group By Section.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

104

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by section.

When you group symbols by type, each symbol is classified as one of the following:

An Equate has an absolute value and is not defined as relative to, or inside, a section.

A Function is defined by a high-level code sequence.

A Variable is defined by a high-level data declaration.

A Label is defined by an assembly language module. Label is also used when high-level modules are

compiled with debugging information turned off.

When you group symbols by source file, each symbol is grouped underneath the source file in which it is

defined. Symbols that are absolute, are not defined within a source file, or are compiled without debugging

information, are grouped beneath (Unknown).

To group symbols by type:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Group By Type from the pop-up menu.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by type.

To group symbols by source file:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Group By Source File.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by source file.

When you sort symbols alphabetically, all symbols are displayed in a single list in alphabetical order.

To list symbols alphabetically:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Sort Alphabetically.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols alphabetically.

Filtering and finding symbols

When you're dealing with big projects with hundreds, or even thousands, of symbols, a way to filter those

symbols in order to isolate just the ones you need is very useful. The Symbol Browser's toolbar provides an

editable combobox} you can use to specify the symbols you'd like displayed. You can type * to match a sequence

of zero or more characters and ? to match exactly one character.

The symbols are filtered and redisplayed as you type into the combo box. Typing the first few characters of a

symbol name is usually enough to narrow the display to the symbol you need. Note: the C compiler prefixes all

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

105

high-level language symbols with an underscore character, so the variable extern int u or the function

void fn(void) have low-level symbol names _u and _fn. The Symbol Browser uses the low-level symbol

name when displaying and filtering, so you must type the leading underscore to match high-level symbols.

To display symbols that start with a common prefix:

Type the desired prefix text into the combo box, optionally followed by a "*".

For instance, to display all symbols that start with "i2c_", type "i2c_" and all matching symbols are displayedyou

don't need to add a trailing "*" in this case, because it is implied.

To display symbols that end with a common suffix:

Type * into the combo box, followed by the required suffix.

For instance, to display all symbols that end in _data, type *_data and all matching symbols are displayedin this

case, the leading * is required.

When you have found the symbol you're interested in and your source files have been compiled with debugging

information turned on, you can jump to a symbol's definition using the Go To Definition button.

To jump to the definition of a symbol:

1. Select the symbol from the list of symbols.

2. On the Symbol Browser toolbar, click Go To Definition.

or

1. Right-click the symbol in the list of symbols.

2. Choose Go To Definition from the shortcut menu.

Watching symbols

If a symbol's range and type is known, you can add it to the most recently opened Watch window or Memory

window.

To add a symbol to the Watch window:

1. In the Symbol Browser, right-click the symbol you wish to add to the Watch window.

2. On the shortcut menu, choose Add To Watch.

To add a symbol to the Memory window:

1. In the Symbol Browser, right-click the symbol you wish to add to the Memory window.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

106

2. Choose Locate Memory from the shortcut menu.

Using size information

Here are a few common ways to use the Symbol Browser:

What function uses the most code space? What requires the most data space?

1. Choose View > Symbol Browser or press Ctrl+Alt+Y.

2. In the Grouping button menu on the Symbol Browser toolbar, select Group By Type.

3. Ensure the Size field is checked in the Field Chooser button's menu.

4. Ensure that the filter on the Symbol Browser toolbar is empty.

5. Click on the Size field in the header to sort by data size.

6. The sizes of variables and of functions are shown in separate lists.

What's the overall size of my application?

1. Choose View > Symbol Browser or press Ctrl+Alt+Y.

2. In the Grouping button menu on the Symbol Browser toolbar, select Group By Section.

3. Ensure the Range and Size fields are checked in the Field Chooser button's menu.

4. Read the section sizes and ranges of each section in the application.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

107

Memory usage window
The Memory Usage window displays a graphical summary of how memory has been used in each memory

segment of a linked application.

Each bar represents an entire memory segment. Green represents the area of the segment that contains code or

data.

To activate the Memory Usage window:

Choose View > Memory Usage or press Ctrl+Alt+Z.

The memory-usage graph will only be visible if your active project's target is an executable file and the file exists.

If the executable file has not been linked by SEGGER Embedded Studio, memory-usage information may not be

available.

Displaying section information

The Memory Usage window can also be used to visualize how program sections have been placed in memory.

To display the program sections, simply click the memory segment to expand it; or, alternatively, right-click and

choose Show Memory Sections from the shortcut menu.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

108

Each bar represents an entire memory segment. Green represents the area of the segment that contains the

program section.

Displaying segment overflow

The Memory Usage window also displays segment overflows when the total size of the program sections placed

in a segment is larger than the segment size. When this happens, the segment and section bars represents the

total memory used, green areas represent the code or data within the segment, and red areas represent code or

data placed outside the segment.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

109

Getting more-detailed information

If you require more-detailed information than that provided by the Memory Usage window, such as the location

of specific objects within memory, use the Symbol browser window.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

110

Bookmarks window
The Bookmarks window contains a list of bookmarks that are set in the project. The bookmarks are stored in the

session file associated with the project and persist across runs of SEGGER Embedded Studioif you remove the

session file, the bookmarks associated with the project are lost.

User interface

Button Description

Toggle a bookmark at the insertion point in the active
editor. Equivalent to choosing Edit > Bookmarks >
Toggle Bookmark or pressing Ctrl+F2.

Go to the previous bookmark in the bookmark list.
Equivalent to choosing Edit > Bookmarks > Previous
Bookmark or pressing Alt+Shift+F2.

Go to the next next bookmark in the bookmark list.
Equivalent to choosing Edit > Bookmarks > Next
Bookmark or pressing Alt+F2.

Clear all bookmarksyou confirm the action using a
dialog. Equivalent to choosing Edit > Bookmarks >
Clear All Bookmarks or pressing Ctrl+K, Alt+F2.

Selects the fill color for newly created bookmarks.

Double-clicking a bookmark in the bookmark list moves focus to the the bookmark.

You can set bookmarks with the mouse or using keystrokessee Using bookmarks.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

111

Editing your code
SEGGER Embedded Studio has a built-in editor that allows you to edit text, but some features make it particularly

well suited to editing code.

You can open multiple code editors to browse or edit project source code, and you can copy and paste among

them. The Windows menu contains a list of all open code editors.

The code editor supports the language of the source file it is editing, showing code with syntax highlighting and

offering smart indenting.

You can open a code editor in several ways, some of which are:

By double-clicking a file in the Project Explorer or by right-clicking a file and selecting Open from the

shortcut menu.

Using the File > New File or File > Open commands.

Elements of the code editor

The code editor is composed of several elements, which are described here.

Code pane:The area where you edit code. You can set options that affect the code pane's text indents,

tabs, drag-and-drop behavior, and so forth.

Margin gutter:A gray area on the left side of the code editor where margin indicators such as breakpoints,

bookmarks, and shortcuts are displayed. Clicking this area sets a breakpoint on the corresponding line of

code.

Horizontal and vertical scroll bars:You can scroll the code pane horizontally and vertically to view code that

extends beyond the edges of the pane.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

112

Basic editing
This section is a whirlwind tour of the basic editing features SEGGER Embedded Studio's code editor provides.

Whether you are editing code, HTML, or plain text, the code editor is just like many other text editors or word

processors. For code that is part of a project, the project's programming language support provides syntax

highlighting (colorization), indentation, and so on.

This section is not a reference for everything the code editor provides; for that, look in the following sections.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

113

Moving the insertion point
The most common way to navigate through text is to use use the mouse or the keyboard's cursor keys.

Using the mouse

You can move the insertion point within a document by clicking the mouse inside the editor window.

Using the keyboard

The keystrokes most commonly used to navigate through a document are:

Keystroke Description

Up Move the insertion point up one line

Down Move the insertion point down one line

Left Move the insertion point left one character

Right Move the insertion point right one character

Home Move the insertion point to the first non-whitespace
character on the line pressing Home a second time
moves the insertion point to the leftmost column

End Move the insertion point to the end of the line

PageUp Move the insertion point up one page

PageDown Move the insertion point down one page

Ctrl+Home Move the insertion point to the start of the document

Ctrl+End Move the insertion point to the end of the document

Ctrl+Left Move the insertion point left one word

Ctrl+Right Move the insertion point right one word

SEGGER Embedded Studio offers additional movement keystrokes, though most users are more comfortable

using repeated simple keystrokes to accomplish the same thing:

Keystroke Description

Alt+Up Move the insertion point up five lines

Alt+Down Move the insertion point down five lines

Alt+Home Move the insertion point to the top of the window

Alt+End Move the insertion point to the bottom of the window

Ctrl+Up Scroll the document up one line in the window
without moving the insertion point

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

114

Ctrl+Down Scroll the document down one line in the window
without moving the insertion point

If you are editing source code, the are source-related keystrokes too:

Keystroke Description

Ctrl+PgUp
Move the insertion point backwards to the previous
function or method.

Ctrl+PgDn Move the insertion point forwards to the next function
or method.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

115

Adding text
The editor has two text-input modes:

Insertion mode:As you type on the keyboard, text is entered at the insertion point and any text to the right

of the insertion point is shifted along. A visual indication of insertion mode is that the cursor is a flashing

line.

Overstrike mode:As you type on the keyboard, text at the insertion point is replaced with your typing. A

visual indication of insertion mode is that the cursor is a flashing block.

Insert and overstrike modes are common to all editors: if one editor is in insert mode, all editors are in insert

mode. To configure the cursor appearance, choose Tools > Options.

To toggle between insertion and overstrike mode:

Click Insert.

When overstrike mode is enabled, the mode indicator changes from INS to OVR and the cursor will change to

the overstrike cursor.

To add or insert text:

1. Move the insertion point to the place text is to be inserted.

2. Enter the text using the keyboard.

To overwrite characters in an existing line, press the Insert key to place the editor into overstrike mode.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

116

Deleting text
The text editor supports the following common editing keystrokes:

Keystroke Description

Backspace Delete the character before the insertion point

Delete Delete the character after the insertion point

Ctrl+Backspace Delete one word before the insertion point

Ctrl+Delete Delete one word after the insertion point

To delete characters or words:

1. Place the insertion point before the word or letter you want to delete.

2. Press Delete as many times as needed.

or

1. Place the insertion point after the letter or word you want to delete.

2. Press Backspace as many times as needed.

To delete text that spans more than a few characters:

1. Select the text you want to delete.

2. Press Delete or Backspace to delete it.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

117

Using the clipboard
You can select text by using the keyboard or the mouse.

To select text with the keyboard:

Hold down the Shift key while using the cursor keys.

To select text with the mouse:

1. Click the start of the selection.

2. Drag the mouse to mark the selection.

3. Release the mouse to end selecting.

To copy selected text to the clipboard:

Choose Edit > Copy or press Ctrl+C.

The standard Windows key sequence Ctrl+Ins also copies text to the clipboard.

To cut selected text to the clipboard:

Choose Edit > Cut or press Ctrl+X.

The standard Windows key sequence Shift+Del also cuts text to the clipboard.

To insert the clipboard content at the insertion point:

Choose Edit > Paste or press Ctrl+V.

The standard Windows key sequence Shift+Ins also inserts the clipboard content at the insertion point.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

118

Undo and redo
The editor has an undo facility to undo previous editing actions. The redo feature can be used to re-apply

previously undone actions.

To undo one editing action:

Choose Edit > Undo or press Ctrl+Z.

The standard Windows key sequence Alt+Backspace also undoes an edit.

To undo multiple editing actions:

1. On the Standard toolbar, click the arrow next to the Undo button.

2. Select the editing operations to undo.

To undo all edits:

Choose Edit > Others > Undo All or press Ctrl+K, Ctrl+Z.

To redo one editing action:

Choose Edit > Redo or press Ctrl+Y.

The standard Windows key sequence Alt+Shift+Backspace also redoes an edit.

To redo multiple editing actions:

1. On the Standard toolbar, click the arrow next to the Redo tool button.

2. From the pop-up menu, select the editing operations to redo.

To redo all edits:

Choose Edit > Others > Redo All or press Ctrl+K, Ctrl+Y.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

119

Drag and drop
You can select text, then drag it to another location. You can drop the text at a different location in the same

window or in another one.

To drag and drop text:

1. Select the text you want to move.

2. Press and hold the mouse button to drag the selected text to where you want to place it.

3. Release the mouse button to drop the text.

Dragging text moves it to the new location. To copy it to a new location, hold down the Ctrl key while dragging

the text: the mouse pointer changes to indicate a copy operation. Press the Esc key while dragging text to cancel

the drag-and-drop edit.

By default, drag-and drop-editing is disabled and you must enable it if you want to use it.

To enable or disable drag-and-drop editing:

1. Choose Tools > Options or press Alt+,.

2. Click Text Editor.

3. Set Allow Drag and Drop Editing to Yes to enable or to No to disable drag-and-drop editing.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

120

Searching

To find text in the current file:

1. Press Ctrl+F.

2. Enter the string to search for.

As you type, the editor searches the file for a match. The pop-up shows how many matches are in the current file.

To move through the matches while the Find box is still active, press Tab or F3 to move to the next match and

Shift+Tab or Shift+F3 to move to the previous match.

If you press Ctrl+F a second time, SEGGER Embedded Studio pops up the standard Find dialog to search the file.

If you wish to bring up the Find dialog without pressing Ctrl+F twice, choose Search > Find.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

121

Advanced editing
You can do anything using its basic code-editing features, but the SEGGER Embedded Studio text editor has a

host of labor-saving features that make editing programs a snap.

This section describes the code-editor features intended to make editing source code easier.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

122

Indenting source code
The editor uses the Tab key to increase or decrease the indentation level of the selected text.

To increase indentation:

Select the text to indent.

Choose Selection > Increase Line Indent or press Tab.

To decrease indentation:

Select the text to indent.

Choose Selection > Decrease Line Indent or press Shift+Tab.

The indentation size can be changed in the Language Properties pane of the editor's Properties window, as can

all the indent-related features listed below.

To change indentation size:

Choose Tools > Options or press Alt+,.

Select the Languages page.

Set the Indent Size environment option for the required language.

You can choose to use spaces or tab tab characters to fill whitespace when indenting.

To set tab or space fill when indenting:

Choose Tools > Options or press Alt+,.

Select the Languages page.

Set the Use Tabs environment option for the required language. Note: changing this setting does not add

or remove existing tabs from files, the change will only affect new indents.

The editor can assist with source code indentation while inserting text. There are three levels of indentation

assistance:

None:The indentation of the source code is left to the user.

Indent:This is the default. The editor maintains the current indentation level. When you press Return or

Enter, the editor moves the insertion point down one line and indented to the same level as the now-

previous line.

Smart:The editor analyzes the source code to compute the appropriate indentation level for each line.

You can change how many lines before the insertion point will be analyzed for context. The smart-indent

mode can be configured to indent either open and closing braces or the lines following the braces.

Changing indentation options:

To change the indentation mode:

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

123

Set the Indent Mode environment option for the required language.

To change whether opening braces are indented in smart-indent mode:

Set the Indent Opening Brace environment option for the required language.

To change whether closing braces are indented in smart-indent mode:

Set the Indent Closing Brace environment option for the required language.

To change the number of previous lines used for context in smart-indent mode:

Set the Indent Context Lines environment option for the required language.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

124

Commenting out sections of code

To comment selected text:

Choose Selection > Comment or press Ctrl+/.

To uncomment selected text:

Choose Selection > Uncomment or press Ctrl+Shift+/.

You can also toggle the commenting of a selection by typing /. This has no menu equivalent.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

125

Adjusting letter case
The editor can change the case of the current word or the selection. The editor will change the case of the

selection, if there is a selection, otherwise it will change the case of word at the insertion point.

To change text to uppercase:

Choose Selection > Make Uppercase or press Ctrl+Shift+U.

This changes, for instance, Hello to HELLO.

To change text to lowercase:

Choose Selection > Make Lowercase or press Ctrl+U.

This changes, for instance, Hello to hello.

To switch between uppercase and lowercase:

Choose Selection > Switch Case.

This changes, for instance, Hello to hELLO.

With large software teams or imported source code, sometimes identifiers don't conform to your local coding

style. To assist in conversion between two common coding styles for identifiers, SEGGER Embedded Studio's

editor offers the following two shortcuts:

To change from split case to camel case:

Choose Selection > Camel Case or press Ctrl+K, Ctrl+Shift+U.

This changes, for instance, this_is_wrong to thisIsWrong.

To change from camel case to split case:

Choose Selection > Split Case or press Ctrl+K, Ctrl+U.

This changes, for instance, thisIsWrong to this_is_wrong.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

126

Using bookmarks
To edit a document elsewhere and then return to your current location, add a bookmark. The Bookmarks

window maintains a list of the bookmarks set in source files see Bookmarks window.

To place a bookmark:

1. Move the insertion point to the line you wish to bookmark.

2. Choose Edit > Bookmarks > Toggle Bookmark or press Ctrl+F2.

A bookmark symbol appears next to the line in the indicator margin to show the bookmark is set.

To place a bookmark using the mouse:

1. Right-click the margin gutter where the bookmark should be set.

2. Choose Toggle Bookmark.

The default color to use for new bookmarks is configured in the Bookmarks window. You can choose a specific

color for the bookmark as follows:

1. Press and hold the Alt key.

2. Click the margin gutter where the bookmark should be set.

3. From the palette, click the bookmark color to use for the bookmark.

To navigate forward through bookmarks:

1. Choose Edit > Bookmarks > Next Bookmark In Document or press F2.

2. The editor moves the insertion point to the next bookmark in the document.

If there is no following bookmark, the insertion point moves to the first bookmark in the document.

To navigate backward through bookmarks:

1. Choose Edit > Bookmarks > Previous Bookmark In Document or press Shift+F2.

2. The editor moves the insertion point to the previous bookmark in the document.

If there is no previous bookmark, the insertion point moves to the last bookmark in the document.

To remove a bookmark:

1. Move the insertion point to the line containing the bookmark.

2. Choose Edit > Bookmarks > Toggle Bookmark or press Ctrl+F2.

The bookmark symbol disappears, indicating the bookmark is no longer set.

To remove all bookmarks in a document:

Choose Edit > Bookmarks > Clear Bookmarks In Document or press Ctrl+K, F2.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

127

Quick reference for bookmark operations

Keystroke Menu Description

Ctrl+F2
Edit > Bookmarks > Toggle
Bookmark

Toggle a bookmark at the insertion
point.

Ctrl+K, 0 Clear the bookmark at the insertion
point.

F2 Edit > Bookmarks > Next
Bookmark In Document

Move the insertion point to next
bookmark in the document.

Shift+F2 Edit > Bookmarks > Previous
Bookmark In Document

Move the insertion point to
previous bookmark in the
document.

Ctrl+Q, F2 Edit > Bookmarks > First
Bookmark In Document

Move the insertion point to the first
bookmark in the document.

Ctrl+Q, Shift+F2 Edit > Bookmarks > Last Bookmark
In Document

Move the insertion point to the last
bookmark in the document.

Ctrl+K, F2 Edit > Bookmarks > Clear
Bookmarks In Document

Clear all bookmarks in the
document.

Alt+F2 Edit > Bookmarks > Next
Bookmark

Move the insertion point to the next
bookmark in the Bookmarks list.

Alt+Shift+F2 Edit > Bookmarks > Previous
Bookmark

Move the insertion point to
the previous bookmark in the
Bookmarks list.

Ctrl+Q, Alt+F2 Edit > Bookmarks > First
Bookmark

Move the insertion point to the first
bookmark in the Bookmarks list.

Ctrl+Q, Alt+Shift+F2 Edit > Bookmarks > Last Bookmark Move the insertion point to the last
bookmark in the Bookmarks list.

Ctrl+K, Alt+F2 Edit > Bookmarks > Clear All
Bookmarks

Clear all bookmarks in all
documents.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

128

Find and Replace window
The Find and Replace window allows you to search for and replace text in the current document or in a range of

specified files.

To activate the Find and Replace window:

Choose Search > Replace in Files or press Ctrl+Alt+F.

To find text in a single file:

Select Current Document in the context combo box.

Enter the string to be found in the text edit input.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end

of the line, on both sides of the string being searched forset the Whole word option.

If the search string is a regular expression, set the Use regexp option.

Click the Find button to find all occurrences of the string in the current document.

To find and replace text in a single file:

Click the Replace button on the toolbar.

Enter the string to search for into the Find what input.

Enter the replacement string into the Replace with input. If the search string is a regular expression, the n

back-reference can be used in the replacement string to reference captured text.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end

of the line, on both sides of the string being searched forset the Match whole word option.

If the search string is a regular expression, set the Use regular expression option.

Click the Find Next button to find next occurrence of the string, then click the Replace button to replace

the found string with the replacement string; or click Replace All to replace all occurrences of the search

string without prompting.

To find text in multiple files:

Click the Find In Files button on the toolbar.

Enter the string to search for into the Find what input.

Select the appropriate option in the Look in input to select whether to carry out the search in all open

documents, all documents in the current project, all documents in the current solution, or all files in a

specified folder.

If you have specified that you want to search in a folder, select the folder you want to search by entering

its path in the Folder input and use the Look in files matching input to specify the type of files you want

to search.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

129

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end

of the line, on both sides of the string being searched forset the Match whole word option.

If the search string is a regular expression, set the Use regular expression option.

Click the Find All button to find all occurrences of the string in the specified files, or click the Bookmark

All button to bookmark all the occurrences of the string in the specified files.

To replace text in multiple files:

Click the Replace In Files button on the toolbar.

Enter the string to search for into the Find what input.

Enter the replacement string into the Replace with input. If the search string is a regular expression, the n

back-reference can be used in the replacement string to reference captured text.

Select the appropriate option in the Look in input to select whether you want to carry out the search

and replace in all open documents, all documents contained in the current project, all documents in the

current solution, or all files in a specified folder.

If you have specified that you want to search in a folder, select the folder you want to search by entering

its path in the Folder input and use the Look in files matching input to specify the type of files you want

to search.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end

of the line, on both sides of the string being searched forset the Match whole word option.

If the search string is a regular expression, set the Use regular expression option.

Click the Replace All button to replace all occurrences of the string in the specified files.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

130

Clipboard Ring window
The code editor captures all cut and copy operations, and stores the cut or copied item on the clipboard ring. The

clipboard ring stores the last 20 cut or copied text items, but you can configure the maximum number by using

the environment options dialog. The clipboard ring is an excellent place to store scraps of text when you're

working with many documents and need to cut and paste between them.

To activate the clipboard ring:

Choose Edit > Clipboard Ring > Clipboard Ring or press Ctrl+Alt+C.

To paste from the clipboard ring:

1. Cut or copy some text from your code. The last item you cut or copy into the clipboard ring is the current

item for pasting.

2. Press Ctrl+Shift+V to paste the clipboard ring's current item into the current document.

3. Repeatedly press Ctrl+Shift+V to cycle through the entries in the clipboard ring until you get to the one

you want to permanently paste into the document. Each time you press Ctrl+Shift+V, the editor replaces

the last entry you pasted from the clipboard ring, so you end up with just the last one you selected. The

item you stop on then becomes the current item.

4. Move to another location or cancel the selection. You can use Ctrl+Shift+V to paste the current item

again or to cycle the clipboard ring to a new item.

Clicking an item in the clipboard ring makes it the current item.

To paste a specific item from the clipboard ring:

1. Move the insertion point to the position to paste the item in the document.

2. Click the arrow at the right of the item to paste.

3. Choose Paste from the pop-up menu.

or

1. Click the item to paste to make it the current item.

2. Move the insertion point to the position to paste the item in the document.

3. Press Ctrl+Shift+V.

To paste all items into a document:

To paste all items on the clipboard ring into the current document, move the insertion point to where you want

to paste the items and do one of the following:

Choose Edit > Clipboard Ring > Paste All.

or

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

131

On the Clipboard Ring toolbar, click the Paste All button.

To remove an item from the clipboard ring:

1. Click the arrow at the right of the item to remove.

2. Choose Delete from the pop-up menu.

To remove all items from the clipboard ring:

Choose Edit > Clipboard Ring > Clear Clipboard Ring.

or

On the Clipboard Ring toolbar, click the Clear Clipboard Ring button.

To configure the clipboard ring:

1. Choose Tools > Options or press Alt+,.

2. Click the Windows category to show the Clipboard Ring Options group.

3. Select Preserve Contents Between Runs to save the content of the clipboard ring between runs, or

deselect it to start with an empty clipboard ring.

4. Change Maximum Items Held In Ring to configure the maximum number of items stored on the

clipboard ring.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

132

Mouse-click accelerators
SEGGER Embedded Studio provides a number of mouse-click accelerators in the editor that speed access to

commonly used functions. The mouse-click accelerators are user configurable using Tools > Options.

Default mouse-click assignments

Click Default

Left Not configurable start selection.

Shift+Left Not configurable extend selection.

Ctrl+Left Select word.

Alt+Left Execute Go To Definition.

Middle No action.

Shift+Middle Display Go To Include menu.

Ctrl+Middle No action.

Alt+Middle Display Go To Method menu.

Right Not configurable show context menu.

Shift+Right No action.

Ctrl+Right No action.

Alt+Right Execute Find References.

Each accelerator can be assigned one of the following actions:

Default:The system default for that click.

Go To Definition:Go to the definition of the item clicked, equivalent to choosing Navigate > Go To

Definition or pressing Alt+G.

Find References:Find references to the item clicked, equivalent to choosing Navigate > Find References or

pressing Alt+R.

Find in Solution:Textually find the item clicked in all the files in the solution, equivalent to choosing Search

> Find Extras > Find in Solution or pressing Alt+U.

Find Help:Use F1-help on the item clicked, equivalent to choosing Help > Help or pressing F1.

Go To Method:Display the Go To Method menu, equivalent to choosing Navigate > Find Method or

pressing Ctrl+M.

Go To Include:Display the Go To Include menu, equivalent to choosing Navigate > Find Include or

pressing Ctrl+Shift+M.

Paste:Paste the clipboard at the position clicked, equivalent to choosing Edit > Paste or pressing Ctrl+V.

Configuring Mac OS X

On Mac OS X you must configure the mouse to pass middle clicks and right clicks to the application if you wish

to use mouse-click accelerators in SEGGER Embedded Studio. Configure the mouse preferences in the Mouse

control panel in Mac OS X System Preferences to the following:

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

133

Right mouse button set to Secondary Button.

Middle mouse button set to Button 3.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

134

Regular expressions
The editor can search and replace text using regular expressions. A regular expression is a string that uses

special characters to describe and reference patterns of text. The regular expression system used by the editor

is modeled on Perl's regexp language. For more information on regular expressions, see Mastering Regular

Expressions, Jeffrey E F Freidl, ISBN 0596002890.

Summary of special characters

The following table summarizes the special characters the SEGGER Embedded Studio editor supports

Pattern Description

\d Match a numeric character.

\D Match a non-numeric character.

\s Match a whitespace character.

\S Match a non-whitespace character.

\w Match a word character.

\W Match a non-word character.

[c] Match set of characters; e.g., [ch] matches characters
c or h. A range can be specified using the - character;
e.g., [0-27-9] matches if the character is 0, 1, 2, 7 8, or
9. A range can be negated using the ^ character; e.g.,
[^a-z] matches if the character is anything other than a
lowercase alphabetic character.

\c Match the literal character c. For example, you would
use * to match the character *.

\a Match ASCII bell character (ASCII code 7).

\f Match ASCII form feed character (ASCII code 12).

\n Match ASCII line feed character (ASCII code 10).

\r Match ASCII carriage return character (ASCII code 13).

\t Match ASCII horizontal tab character (ASCII code 9).

\v Match ASCII vertical tab character.

\xhhhh Match Unicode character specified by hexadecimal
number hhhh.

. Match any character.

* Match zero or more occurrences of the preceding
expression.

+ Match one or more occurrences of the preceding
expression.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

135

? Match zero or one occurrences of the preceding
expression.

{n} Match n occurrences of the preceding expression.

{n,} Match at least n occurrences of the preceding
expression.

{,m} Match at most m occurrences of the preceding
expression.

{n,m} Match at least n and at most m occurrences of the
preceding expression.

^ Beginning of line.

$ End of line.

\b Word boundary.

\B Non-word boundary.

(e) Capture expression e.

\n Back-reference to nth captured text.

Examples

The following regular expressions can be used with the editor's search-and-replace operations. To use the

regular expression mode, the Use regular expression checkbox must be set in the search-and-replace dialog.

Once enabled, regular expressions can be used in the Find what search string. The Replace With strings can use

the "n" back-reference string to reference any captured strings.

"Find what" "Replace With" Description

u\w.d

Search for any-length string
containing one or more word
characters beginning with the
character u and ending in the
character d.

^.*;$ Search for any lines ending in a
semicolon.

(typedef.+\s+)(\S+); \1TEST_\2; Find C type definition and insert the
string TEST onto the beginning of
the type name.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

136

Locals window
The Locals window displays a list of all variables that are in scope of the selected stack frame in the Call Stack.

The Locals window has a toolbar and a main data display.

Button Description

Display the selected item in binary.

Display the selected item in octal.

Display the selected item in decimal.

Display the selected item in hexadecimal.

Display the selected item as a signed decimal.

Display the selected item as a character or Unicode
character.

Set the range displayed in the active Memory window
to span the memory allocated to the selected item.

Sort variables alphabetically by name.

Sort variables numerically by address or register
number (default).

Using the Locals window

The Locals window shows the local variables of the active function when the debugger is stopped. The contents

of the Locals window changes when you use the Debug Location toolbar items or select a new frame in the Call

Stack window. When the program stops at a breakpoint, or is stepped, the Locals window updates to show the

active stack frame. Items that have changed since they were previously displayed are highlighted in red.

To activate the Locals window:

Choose View > Locals or press Ctrl+Alt+L.

When you select a variable in the main part of the display, the display-format button highlighted on the Locals

window toolbar changes to show the selected item's display format.

To change the display format of a local variable:

Right-click the item to change.

From the shortcut menu, choose the desired display format.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

137

or

Click the item to change.

On the Locals window toolbar, select the desired display format.

To modify the value of a local variable:

Click the value of the local variable to modify.

Enter the new value for the local variable. Prefix hexadecimal numbers with 0x, binary numbers with 0b,

and octal numbers with 0.

or

Right-click the value of the local variable to modify.

From the shortcut menu, select one of the commands to modify the local variable's value.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

138

Globals window
The Globals window displays a list of all variables that are global to the program. The operations available on the

entries in this window are the same as the Watch window, except you cannot add or delete variables from the

Globals window.

Globals window user interface

The Globals window consists of a toolbar and main data display.

Globals toolbar

Button Description

Display the selected item in binary.

Display the selected item in octal.

Display the selected item in decimal.

Display the selected item in hexadecimal.

Display the selected item as a signed decimal.

Display the selected item as a character or Unicode
character.

Set the range displayed in the active Memory window
to span the memory allocated to the selected item.

Sort variables alphabetically by name.

Sort variables numerically by address or register
number (default).

Using the Globals window

The Globals window shows the global variables of the application when the debugger is stopped. When the

program stops at a breakpoint, or is stepped, the Globals window updates to show the active stack frame and

new variable values. Items that have changed since they were previously displayed are highlighted in red.

To activate the Globals window:

Choose View > Globals or press Ctrl+Alt+G.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

139

Changing the display format

When you select a variable in the main part of the display, the display-format button highlighted on the Globals

window toolbar changes to show the item's display format.

To change the display format of a global variable:

Right-click the item to change.

From the shortcut menu, choose the desired display format.

or

Click the item to change.

On the Globals window toolbar, select the desired display format.

To modify the value of a global variable:

Click the value of the global variable to modify.

Enter the new value for the global variable. Prefix hexadecimal numbers with 0x, binary numbers with 0b,

and octal numbers with 0.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

140

Watch window
The Watch window provides a means to evaluate expressions and to display the results of those expressions.

Typically, expressions are just the name of a variable to be displayed, but they can be considerably more

complex; see Debug expressions. Note: expressions are always evaluated when your program stops, so the

expression you are watching is the one that is in scope of the stopped program position.

The Watch window is divided into a toolbar and the main data display.

Button Description

Display the selected item in binary.

Display the selected item in octal.

Display the selected item in decimal.

Display the selected item in hexadecimal.

Display the selected item as a signed decimal.

Display the selected item as a character or Unicode
character.

Set the range displayed in the active Memory window
to span the memory allocated to the selected item.

Remove the selected watch item.

Remove all the watches.

Right-clicking a watch item shows a shortcut menu with commands that are not available from the toolbar.

Button Description

View pointer or array as a null-terminated string.

View pointer or array as an array.

View pointer value.

Set watch value to zero.

Set watch value to one.

Increment watched variable by one.

Decrement watched variable by one.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

141

Negated watched variable.

Invert watched variable.

View the properties of the watch value.

You can view details of the watched item using the Properties dialog.

Filename
The filename context of the watch item.

Line number
The line number context of the watch item.

(Name)
The name of the watch item.

Address
The address or register of the watch item.

Expression
The debug expression of the watch item.

Previous Value
The previous watch value.

Size In Bytes
The size of the watch item in bytes.

Type
The type of the watch item.

Value
The value of the watch item.

Using the Watch window

Each expression appears as a row in the display. Each row contains the expression and its value. If the value of an

expression is structured (for example, an array), you can open the structure to see its contents.

The display updates each time the debugger locates to source code. So it will update each time your program

stops on a breakpoint, or single steps, and whenever you traverse the call stack. Items that have changed since

they were previously displayed are highlighted in red.

To activate the Watch window:

Choose View > Watch > Watch 1 or press Ctrl+T, W, 1.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

142

You can show other Watch windows similarly.

You can add a new expression to be watched by clicking and typing into the last entry in the Watch window.

You can change an expression by clicking its entry and editing its contents.

When you select a variable in the main part of the display, the display format button highlighted on the Watch

window toolbar changes to show the item's display format.

To change the display format of an expression:

Right-click the item to change.

From the shortcut menu, choose the desired display format.

or

Click the item to change.

On the Watch window toolbar, select the desired display format.

The selected display format will then be used for all subsequent displays and will be preserved after the debug

session stops.

For C programs, the interpretation of pointer types can be changed by right-clicking and selecting from the

shortcut menu. A pointer can be interpreted as:

a null-terminated ASCII string

an array

an integer

dereferenced

To modify the value of an expression:

Click the value of the local variable to modify.

Enter the new value of the local variable. Prefix hexadecimal numbers with 0x, binary numbers with 0b,

and octal numbers with 0.

or

Right-click the value of the local variable to modify.

From the shortcut menu, choose one of the commands to modify the variable's value.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

143

Register window
The Register windows show the values of both CPU registers and the processor's special function or peripheral

registers. Because microcontrollers are becoming very highly integrated, it's not unusual for them to have

hundreds of special function registers or peripheral registers, so SEGGER Embedded Studio provides four

register windows. You can configure each register window to display one or more register groups for the

processor being debugged.

A Register window has a toolbar and a main data display.

Button Description

Display the CPU, special function register, and
peripheral register groups.

Display the CPU registers.

Hide the CPU registers.

Force-read a register, ignoring the access attribute of
the register.

Update the selected register group.

Set the active memory window to the address and size
of the selected register group.

Using the registers window

Both CPU registers and special function registers are shown in the main part of the Registers window. When the

program stops at a breakpoint, or is stepped, the Registers windows update to show the current values of the

registers. Items that have changed since they were previously displayed are highlighted in red.

To activate the first register window:

Choose View > Registers > Registers 1 or press Ctrl+T, R, 1.

Other register windows can be similarly activated.

Displaying CPU registers

The values of the CPU registers displayed in the Registers window depend up upon the selected context. The

selected context can be:

The register state the CPU stopped in.

The register state when a function call occurred using the Call Stack window.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

144

The register state of the currently selected thread using the the Threads window.

The register state you supplied with the Debug > Locate operation.

To display a group of CPU registers:

On the Registers window toolbar, click the Groups button.

From the pop-up menu, select the register groups to display and deselect the ones to hide.

You can deselect all CPU register groups to allow more space in the display for special function registers or

peripheral registers. So, for instance, you can have one register window showing the CPU registers and other

register windows showing different peripheral registers.

Displaying special function or peripheral registers

The Registers window shows the set of register groups defined in the memory-map file the application was built

with. If there is no memory-map file associated with a project, the Registers window will show only the CPU

registers.

To display a special function or peripheral register:

On the Registers toolbar, click the Groups button.

From the pop-up menu, select the register groups to display and deselect the ones to hide.

Changing display format

When you select a register in the main part of the display, the display-format button highlighted on the

Registers window toolbar changes to show the item's display format.

To change the display format of a register:

Right-click the item to change.

From the shortcut menu, choose the desired display format.

or

Click the item to change.

On the Registers window toolbar, select the desired display format.

Modifying register values

To modify the value of a register:

Click the value of the register to modify.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

145

Enter the new value for the register. Prefix hexadecimal numbers with 0x, binary numbers with 0b, and

octal numbers with 0.

or

Right-click the value of the register to modify.

From the shortcut menu, choose one of the commands to modify the register value.

Modifying the saved register value of a function or thread may not be supported.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

146

Memory window
The Memory window shows the contents of the connected target's memory areas and allows the memory to be

edited. SEGGER Embedded Studio provides four memory windows, you can configure each memory window to

display different memory ranges.

The Memory window has a toolbar and a data display/edit area

Field/Button Description

Address
Address to display. This can be a numeric value or a
debug expression.

Size Number of bytes to display. This can be a number or
a debug expression. If unspecified, the number of
bytes required to fill the window will be automatically
calculated.

Columns Number of columns to display. If unspecified, the
number of columns required to fill the window will be
automatically calculated.

Select binary display.

Select octal display.

Select unsigned decimal display.

Select signed decimal display.

Select hexadecimal display (default).

Select byte display (default).

Select 2-byte display.

Select 4-byte display.

Display both data and text (default).

Display data only.

Display text only.

Display an incrementing address range that starts from
the selected address (default).

Display a decrementing address range that starts from
the selected address.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

147

Display an incrementing address range that ends at
the selected address.

Display a decrementing address range that ends at the
selected address.

Evaluate the address and size expressions, and update
the Memory window.

Using the memory window

The memory window does not show the complete address space of the target, instead you must enter both the

address and the number of bytes to display. You can specify the address and size using numeric values or debug

expressions which enable you to position the memory display at the address of a variable or at the value of a

register. You can also specify whether you want the expressions to be evaluated each time the memory window

is updated, or you can re-evaluate them yourself with the press of a button. Memory windows update each time

your program stops on a breakpoint, after a single step and whenever you traverse the call stack. If any values

that were previously displayed have changed, they are highlighted in red.

To activate the first Memory window:

Choose View > Memory > Memory 1 or press Ctrl+T, M, 1.

Other register windows can be similarly activated.

Using the mouse

You can move the memory window's edit cursor by clicking on a data or text entry.

The vertical scroll bar can be used to modify the address being viewed by clicking the up and down buttons, the

page up and down areas or using the vertical scroll wheel when the scroll bar is at it's furthest extent.

Using the keyboard

Keystroke Description

Up
Move the cursor up one line, or if the cursor is on the
first line, move the address up one line.

Down Move the cursor down one line, or if the cursor is on
the last line, move the address down line line.

Left Move the cursor left one character.

Right Move the cursor right one character.

Home Move the cursor to the first entry.

End Move the cursor to the last entry.

PageUp Move the cursor up one page, or if the cursor is on first
page, move the address up one page.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

148

PageDown Move the cursor down one page, or if the cursor is on
the last page, move the address down one page.

Ctrl+E Toggle the cursor between data and text editing.

Editing memory

To edit memory, simply move the cursor to the data or text entry you want to modify and start typing. The

memory entry will be written and read back as you type.

Shortcut menu commands

The shortcut menu contains the following commands:

Action Description

Access Memory By Display Width Access memory in terms of the display width.

Address Order Specify whether the address range shown uses
Address as the start or end address and whether
addresses should increment or decrement.

Auto Evaluate Re-evaluate Address and Size each time the Memory
window is updated.

Auto Refresh Specify how frequently the memory window should
automatically refresh.

Export To Binary Editor Create a binary editor with the current Memory
window contents.

Save As Save the current Memory window contents to a file.
Supported file formats are Binary File, Motorola S-
Record File, Intel Hex File, TI Hex File, and Hex File.

Load From Load the current Memory window from a file.
Supported file formats are Binary File, Motorola S-
Record File, Intel Hex File, TI Hex File, and Hex File.

Display formats

You can set the Memory window to display 8-bit, 16-bit, and 32-bit values that are formatted as hexadecimal,

decimal, unsigned decimal, octal, or binary. You can also specify how many columns to display.

Saving memory contents

You can save the displayed contents of the memory window to a file in various formats. Alternatively, you can

export the contents to a binary editor to work on them.

You can save the displayed memory values as a binary file, Motorola S-record file, Intel hex file, or a Texas

Instruments TXT file.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

149

To save the current state of memory to a file:

Select the start address and number of bytes to save by editing the Start Address and Size fields in the

Memory window toolbar.

Right-click the main memory display.

From the shortcut menu, select Save As, then choose the format from the submenu.

To export the current state of memory to a binary editor:

Select the start address and number of bytes to save by editing the Start Address and Size fields in the

Memory window toolbar.

Right-click the main memory display.

Choose Export to Binary Editor from the shortcut menu.

Note that subsequent modifications in the binary editor will not modify memory in the target.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

150

Breakpoints window
The Breakpoints window manages the list of currently set breakpoints on the solution. Using the Breakpoints

window, you can:

Enable, disable, and delete existing breakpoints.

Add new breakpoints.

Show the status of existing breakpoints.

Breakpoints are stored in the session file, so they will be remembered each time you work on a particular

project. When running in the debugger, you can set breakpoints on assembly code addresses. These low-level

breakpoints appear in the Breakpoints window for the duration of the debug run but are not saved when you

stop debugging.

When a breakpoint is reached, the matching breakpoint is highlighted in the Breakpoints window.

Breakpoints window layout

The Breakpoints window has a toolbar and a main breakpoint display.

Button Description

Create a new breakpoint using the New Breakpoint
dialog.

Toggle the selected breakpoint between enabled and
disabled states.

Remove the selected breakpoint.

Move the insertion point to the statement where the
selected breakpoint is set.

Delete all breakpoints.

Disable all breakpoints.

Enable all breakpoints.

Create a new breakpoint group and makes it active.

The main part of the Breakpoints window shows what breakpoints are set and the state they are in. You can

organize breakpoints into folders, called breakpoint groups.

SEGGER Embedded Studio displays these icons to the left of each breakpoint:

Icon Description

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

151

Enabled breakpoint An enabled breakpoint will stop
your program running when the breakpoint condition
is met.

Disabled breakpoint A disabled breakpoint will not
stop the program when execution passes through it.

Invalid breakpoint An invalid breakpoint is one
where the breakpoint cannot be set; for example, no
executable code is associated with the source code
line where the breakpoint is set or the processor does
not have enough hardware breakpoints.

Showing the Breakpoints window

To activate the Breakpoints window:

Choose Breakpoints > Breakpoints or press Ctrl+Alt+B.

Managing single breakpoints

You can manage breakpoints in the Breakpoint window.

To delete a breakpoint:

In the Breakpoints window, click the breakpoint to delete.

From the Breakpoints window toolbar, click the Delete Breakpoint} button.

To edit a breakpoint:

In the Breakpoints window, right-click the breakpoint to edit.

Choose Edit Breakpoint from the shortcut menu.

Edit the breakpoint in the New Breakpoint dialog.

To toggle the enabled state of a breakpoint:

In the Breakpoints window, right-click the breakpoint to enable or disable.

Choose Enable/Disable Breakpoint from the shortcut menu.

or

In the Breakpoints window, click the breakpoint to enable or disable.

Press Ctrl+F9.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

152

Breakpoint groups

Breakpoints are divided into breakpoint groups. You can use breakpoint groups to specify sets of breakpoints

that are applicable to a particular project in the solution or for a particular debug scenario. Initially, there is a

single breakpoint group, named Default, to which all new breakpoints are added.

To create a new breakpoint group:

From the Breakpoints window toolbar, click the New Breakpoint Group button.

or

From the Debug menu, choose Breakpoints then New Breakpoint Group.

or

Right-click anywhere in the Breakpoints window.

Choose New Breakpoint Group from the shortcut menu.

In the New Breakpoint Group dialog, enter the name of the breakpoint group.

When you create a breakpoint, it is added to the active breakpoint group.

To make a group the active group:

In the Breakpoints window, right-click the breakpoint group to make active.

Choose Set as Active Group from the shortcut menu.

To delete a breakpoint group:

In the Breakpoints window, right-click the breakpoint group to delete.

Choose Delete Breakpoint Group from the shortcut menu.

You can enable all breakpoints within a group at once.

To enable all breakpoints in a group:

In the Breakpoints window, right-click the breakpoint group to enable.

Choose Enable Breakpoint Group from the shortcut menu.

You can disable all breakpoints within a group at once.

To disable all breakpoints in a group:

In the Breakpoints window, right-click the breakpoint group to disable.

Choose Disable Breakpoint Group from the shortcut menu.

Managing all breakpoints

You can delete, enable, or disable all breakpoints at once.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

153

To delete all breakpoints:

Choose Breakpoints > Clear All Breakpoints or press Ctrl+Shift+F9.

or

On the Breakpoints window toolbar, click the Delete All Breakpoints button.

To enable all breakpoints:

Choose Breakpoints > Enable All Breakpoints or press Ctrl+B, N.

or

On the Breakpoints window toolbar, click the Enable All Breakpoints button.

To disable all breakpoints:

Choose Breakpoints > Disable All Breakpoints or press Ctrl+B, X.

or

On the Breakpoints window toolbar, click the Disable All Breakpoints button.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

154

Call Stack window
The Call Stack window displays the list of function calls (stack frames) that were active when program execution

halted. When execution halts, SEGGER Embedded Studio populates the call-stack window from the active

(currently executing) task. For simple, single-threaded applications not using the SEGGER Embedded Studio

tasking library, there is only a single task; but for multi-tasking programs that use the SEGGER Embedded Studio

Tasking Library, there may be any number of tasks. SEGGER Embedded Studio updates the Call Stack window

when you change the active task in the Threads window.

The Call Stack window has a toolbar and a main call-stack display.

Button Description

Move the insertion point to where the call was made
to the selected frame.

Set the debugger context to the selected stack frame.

Move the debugger context down one stack to the
called function.

Move the debugger context up one stack to the calling
function.

Select the fields to display for each entry in the call
stack.

Set the debugger context to the most recent stack
frame and move the insertion point to the currently
executing statement.

The main part of the Call Stack window displays each unfinished function call (active stack frame) at the point

when program execution halted. The most recent stack frame is displayed at the bottom of the list and the

oldest is displayed at the top of the list.

SEGGER Embedded Studio displays these icons to the left of each function name:

Icon Description

Indicates the stack frame of the current task.

Indicates the stack frame selected for the debugger
context.

Indicates that a breakpoint is active and when the
function returns to its caller.

These icons can be overlaid to show, for instance, the debugger context and a breakpoint on the same stack

frame.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

155

Showing the call-stack window

To activate the Call Stack window:

Choose View > Call Stack or press Ctrl+Alt+S.

Configuring the call-stack window

Each entry in the Call Stack window displays the function name and, additionally, parameter names, types, and

values. You can configure the Call Stack window to show varying amounts of information for each stack frame.

By default, SEGGER Embedded Studio displays all information.

To show or hide a field:

1. On the Call Stack toolbar, click the Options button on the far right.

2. Select the fields to show, and deselect the ones that should be hidden.

Changing the debugger context

You can select the stack frame for the debugger context from the Call Stack window.

To move the debugger context to a specific stack frame:

In the Call Stack window, double-click the stack frame to move to.

or

In the Call Stack window, select the stack frame to move to.

On the Call Stack window's toolbar, click the Switch To Frame button.

or

In the Call Stack window, right-click the stack frame to move to.

Choose Switch To Frame from the shortcut menu.

The debugger moves the insertion point to the statement where the call was made. If there is no debug

information for the statement at the call location, SEGGER Embedded Studio opens a disassembly window at the

instruction.

To move the debugger context up one stack frame:

On the Call Stack window's toolbar, click the Up One Stack Frame button.

or

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

156

On the Debug Location toolbar, click the Up One Stack Frame button.

or

Press Alt+-.

The debugger moves the insertion point to the statement where the call was made. If there is no debug

information for the statement at the call location, SEGGER Embedded Studio opens a disassembly window at the

instruction.

To move the debugger context down one stack frame:

On the Call Stack window's toolbar, click the Down One Stack Frame button.

or

On the Debug Location toolbar, click the Down One Stack Frame button.

or

Press Alt++.

The debugger moves the insertion point to the statement where the call was made. If there is no debug

information for the statement at the call location, SEGGER Embedded Studio opens a disassembly window at the

instruction.

Setting a breakpoint on a return to a function

To set a breakpoint on return to a function:

In the Call Stack window, click the stack frame on the function to stop at on return.

On the Build toolbar, click the Toggle Breakpoint button.

or

In the Call Stack window, click the stack frame on the function to stop at on return.

Press F9.

or

In the Call Stack window, right-click the function to stop at on return.

Choose Toggle Breakpoint from the shortcut menu.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

157

Threads window
The Threads window displays the set of executing contexts on the target processor structured as a set of

queues.

To activate the Threads window:

Choose View > More Debug Windows > Threads or press Ctrl+Alt+H.

The window is populated using the threads script, which is a JavaScript program store in a file whose file-type

project option is "Threads Script" (or is called threads.js) and is in the project that is being debugged.

When debugging starts, the threads script is loaded and the function init() is called to determine which columns

are displayed in the Threads window.

When the application stops on a breakpoint, the function update() is called to create entries in the Threads

window corresponding to the columns that have been created together with the saved execution context

(register state) of the thread. By double-clicking one of the entries, the debugger displays its saved execution

contextto put the debugger back into the default execution context, use Show Next Statement.

Writing the threads script

The threads script controls the Threads window with the Threads object.

The methods Threads.setColumns and Threads.setSortByNumber can be called from the function init().

function init()
{
 Threads.setColumns("Name", "Priority", "State", "Time");
 Threads.setSortByNumber("Time");
}

The above example creates the named columns Name, Priority, State, and Time in the Threads window, with

the Time column sorted numerically rather than alphabetically.

If you don't supply the function init() in the threads script, the Threads window will create the default columns

Name, Priority, and State.

The methods Threads.clear(), Threads.newqueue(), and Threads.add() can be called from the function

update().

The Threads.clear() method clears the Threads window.

The Threads.newqueue() function takes a string argument and creates a new, top-level entry in the Threads

window. Subsequent entries added to this window will go under this entry. If you don't call this, new entries will

all be at the top level of the Threads window.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

158

The Threads.add() function takes a variable number of string arguments, which should correspond to the

number of columns displayed by the Threads window. The last argument to the Threads.add() function

should be an array (possibly empty) containing the registers of the thread or, alternatively, a handle that can

be supplied a call to the threads script function getregs(handle), which will return an array when the thread is

selected in the Threads window. The array containing the registers should have elements in the same order in

which they are displayed in the CPU Registers displaytypically this will be in register-number order, e.g., r0, r1,

and so on.

function update()
{
 Threads.clear();
 Threads.newqueue("My Tasks");
 Threads.add("Task1", "0", "Executing", "1000", [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]);
 Threads.add("Task2", "1", "Waiting", "2000", [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]);
}

The above example will create a fixed output on the Threads window and is here to demonstrate how to call the

methods.

To get real thread state, you need to access the debugger from the threads script. To do this, you can use

the JavaScript method Debug.evaluate("expression"), which will evaluate the string argument as a debug

expression and return the result. The returned result will be an object if you evaluate an expression that denotes

a structure or an array. If the expression denotes a structure, each field can be accessed by using its field name.

So, if you have structs in the application as follows

struct task {
 char *name;
 unsigned char priority;
 char *state;
 unsigned time;
 struct task *next;
 unsigned registers[17];
 unsigned thread_local_storage[4];
};

struct task task2 =
{
 "Task2",
 1,
 "Waiting",
 2000,
 0,
 { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 },
 { 0,1,2,3 }
};

struct task task1 =
{
 "Task1",
 0,
 "Executing",
 1000,
 &task2,
 { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 },

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

159

 { 0,1,2,3 }
};

you can update() the Threads window using the following:

task1 = Debug.evaluate("task1");
Threads.add(task1.name, task1.priority, task1.state, task1.time, task1.registers);

You can use pointers and C-style cast to enable linked-list traversal.

var next = Debug.evaluate("&task1");
while (next)
 {
 var xt = Debug.evaluate("*(struct task*)"+next);
 Threads.add(xt.name, xt.priority, xt.state, xt.time, xt.registers);
 next = xt.next;
 }

Note that, if the threads script goes into an endless loop, the debuggerand consequently SEGGER Embedded

Studiowill become unresponsive and you will need to kill SEGGER Embedded Studio using a task manager.

Therefore, the above loop is better coded as follows:

var next = Debug.evaluate("&task1");
var count = 0;
while (next && count < 10)
 {
 var xt = Debug.evaluate("*(struct task*)"+next);
 Threads.add(xt.name, xt.priority, xt.state, xt.time, xt.registers);
 next = xt.next;
 count++;
 }

You can speed up the Threads window update by not supplying the registers of the thread to the Threads.add()

function. To do this, you should supply a handle/pointer to the thread as the last argument to the Threads.add()

function. For example:

var next = Debug.evaluate("&task1");
var count = 0;
while (next && count < 10)
 {
 var xt = Debug.evaluate("*(struct task*)"+next);
 Threads.add(xt.name, xt.priority, xt.state, xt.time, next);
 next=xt.next;
 count++;
 }

When the thread is selected, the Threads window will call getregs(x) in the threads script. That function should

return the array of registers, for example:

function getregs(x)
{
 return Debug.evaluate("((struct task*)"+x+")->registers");
}

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

160

If you use thread local storage, implementing the gettls(x) function enables you to return an expression for the

debugger to evaluate when the base address of the thread local storage is accessed, for example:

function gettls(x)
{
 return "((struct task*)"+x+")->thread_local_storage";
}

The debugger may require the name of a thread which you can provide by implementing the getname(x)

function, for example:

function getname(x)
{
 return Debug.evaluate("((struct task*)"+x+")->name");
}

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

161

Execution Profile window
The Execution Profile window shows a list of source locations and the number of times those source locations

have been executed. This window is only available for targets that support the collection of jump trace

information.

To activate the Execution Profile window:

Choose View > More Debug Windows > Execution Profile or press Ctrl+T, P.

The count value displayed is the number of times the first instruction of the source code location has been

executed. The source locations displayed are target dependent: they could represent each statement of the

program or each jump target of the program. If however the debugger is in intermixed or disassembly mode

then the count values will be displayed on a per instruction basis.

The execution counts window is updated each time your program stops and the window is visible so if you have

this window displayed then single stepping may be slower than usual.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

162

Execution Trace window
The trace window displays historical information on the instructions executed by the target.

To activate the Trace window:

Choose View > More Debug Windows > Execution Trace or press Ctrl+T, T.

The type and number of the trace entries depends upon the target that is connected when gathering trace

information. Some targets may trace all instructions, others may trace jump instructions, and some may trace

modifications to variables. You'll find the trace capabilities of your target on the shortcut menu.

Each entry in the trace window has a unique number, and the lower the number the earlier the trace. You can

click on the header to show earliest to latest or the latest to earliest trace entries. If a trace entry can have source

code located to it then double-clicking the trace entry will show the appropriate source display.

Some targets may provide timing information which will be displayed in the ticks column.

The trace window is updated each time the debugger stops when it is visible so single stepping is likely to be

slower if you have this window displayed.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

163

Debug file search editor
When a program is built with debugging enabled, the debugging information contains the paths and filenames

of all the source files for the program in order to allow the debugger to find them. If a program or library linked

into the program is on a different machine than the one on which it was compiled, or if the source files were

moved after the program was compiled, the debugger will not be able to find the source files.

In this situation, the simplest way to help SEGGER Embedded Studio find the source files is to add the directory

containing the source files to one of its source-file search paths. Alternatively, if SEGGER Embedded Studio

cannot find a source file, it will prompt you for its location and will record its new location in the source-file map.

Debug source-file search paths

Debug's source-file search paths can be used to help the debugger locate source files that are no longer located

where they were at compile time. When a source file cannot be found, the search-path directories will be

checked, in turn, to see if they contain the source file. SEGGER Embedded Studio maintains two debug source-

file search paths:

Project-session search path:This path is for the current project session and does not apply to all projects.

The global search path:This system-wide path applies to all projects.

The project-session search path is checked before the global search path.

To edit the debug search paths:

Choose Debug > Options > Search Paths.

Debug source file map

If a source file cannot be found while debugging and the debugger has to prompt the user for its location,

the results are stored in the debug source file map. The debug source file map simply correlates, or maps, the

original pathnames to the new locations. When a file cannot be found at its original location or in the debug

search paths, the debug source file map is checked to see if a new location has been recorded for the file or if the

user has specified that the file does not exist. Each project session maintains its own source file map, the map is

not shared by all projects.

To view the debug source file map:

Choose Debug > Options > Search Paths.

To remove individual entries from the debug source file map:

Choose Debug > Options > Search Paths.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

164

Right-click the mapping to delete.

Choose Delete Mapping from the shortcut menu.

To remove all entries from the debug source file map:

Choose Debug > Options > Search Paths.

Right-click any mapping.

Choose Delete All Mappings from the shortcut menu.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

165

Breakpoint expressions
The debugger can set breakpoints by evaluating simple C-like expressions. Note that the exact capabilities

offered by the hardware to assist in data breakpointing will vary from target to target; please refer to the

particular target interface you are using and the capabilities of your target silicon for exact details. The simplest

expression supported is a symbol name. If the symbol name is a function, a breakpoint occurs when the first

instruction of the symbol is about to be executed. If the symbol name is a variable, a breakpoint occurs when the

symbol has been accessed; this is termed a data breakpoint. For example, the expression x will breakpoint when

x is accessed. You can use a debug expression (see Debug expressions) as a breakpoint expression. For example,

x[4] will breakpoint when element 4 of array x is accessed, and @sp will breakpoint when the sp register is

accessed.

Data breakpoints can be specified, using the == operator, to occur when a symbol is accessed with a specific

value. The expression x == 4 will breakpoint when x is accessed and its value is 4. The operators <, >=, >;, >=,

==, and != can be used similarly. For example, @sp <= 0x1000 will breakpoint when register sp is accessed

and its value is less than or equal to 0x1000.

You can use the operator & to mask the value you wish to break on. For example, (x & 1) == 1 will

breakpoint when x is accessed and has an odd value.

You can use the operator && to combine comparisons. For example

(x >= 2) && (x <= 14)

will breakpoint when x is accessed and its value is between 2 and 14.

You can specify an arbitrary memory range using an array cast expression. For example, (char[256])

(0x1000) will breakpoint when the memory region 0x10000x10FF is accessed.

You can specify an inverse memory range using the ! operator. For example !(char[256])(0x1000) will

breakpoint when memory outside the range 0x10000x10FF is accessed.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

166

Debug expressions
The debugger can evaluate simple expressions that can be displayed in the Watch window or as a tool-tip in the

code editor.

The simplest expression is an identifier the debugger tries to interpret in the following order:

an identifier that exists in the scope of the current context.

the name of a global identifier in the program of the current context.

Numbers can be used in expressions. Hexadecimal numbers must be prefixed with 0x.

Registers can be referenced by prefixing the register name with @.

The standard C and C++ operators !, ~, *, /, %, +, -, >>, <<, <, <=, >, >=, ==, |, &, ^, &&, and || are supported

on numeric types.

The standard assignment operators =, +=, -=, *=, /=, %=, >>, >>=, <<=, &=, |=, ^= are supported on numeric

types.

The array subscript operator [] is supported on array and pointer types.

The structure access operator . is supported on structured types (this also works on pointers to structures), and -

> works similarly.

The dereference operator (prefix *) is supported on pointers, the address-of (prefix &) and sizeof operators are

supported.

The addressof(filename, linenumber) operator will return the address of the specified source code line

number.

Function calling with parameters and return results.

Casting to basic pointer types is supported. For example, (unsigned char *)0x300 can be used to display the

memory at a given location.

Casting to basic array types is supported. For example, (unsigned char[256])0x100 can be used to reference a

memory region.

Operators have the precedence and associativity one expects of a C-like programming language.

Embedded Studio Reference Manual Command-line options

167

Command-line options
This section describes the command-line options accepted by SEGGER Embedded Studio.

Usage

emStudio [options] [files]

Embedded Studio Reference Manual Command-line options

168

-D (Define macro)

Syntax

-D macro=value

Description

Define a SEGGER Embedded Studio macro value.

Embedded Studio Reference Manual Command-line options

169

-noclang (Disable Clang support)

Syntax

-noclang

Description

Disable Clang support.

Embedded Studio Reference Manual Command-line options

170

-packagesdir (Specify packages directory)

Syntax

-packagesdir dir

Description

Override the default value of the $(PackagesDir) macro.

Embedded Studio Reference Manual Command-line options

171

-permit-multiple-studio-instances (Permit multiple
studio instances)

Syntax

-permit-multiple-studio-instances

Description

Allow multiple instances of SEGGER Embedded Studio to run at the same time. This behaviour can also be

enabled using the Environment > Startup Options > Allow Multiple SEGGER Embedded Studios environment

option.

Embedded Studio Reference Manual Command-line options

172

-rootuserdir (Set the root user data directory)

Syntax

-rootuserdir dir

Description

Set the SEGGER Embedded Studio root user data directory.

Embedded Studio Reference Manual Command-line options

173

-save-settings-off (Disable saving of environment
settings)

Syntax

-save-settings-off

Description

Disable the saving of modified environment settings.

Embedded Studio Reference Manual Command-line options

174

-set-setting (Set environment setting)

Syntax

-set-setting environment_setting=value

Description

Sets an environment setting to a specified value. For example:

 -set-setting "Environment/Build/Show Command Lines=Yes"

Embedded Studio Reference Manual Command-line options

175

-templatesfile (Set project templates path)

Syntax

-templatesfile path

Description

Sets the search path for finding project template files.

Embedded Studio Reference Manual Command-line options

176

Embedded Studio Reference Manual Uninstalling SEGGER Embedded Studio

177

Uninstalling SEGGER Embedded Studio
This section describes how to completely uninstall SEGGER Embedded Studio for each supported operating

system:

Uninstalling SEGGER Embedded Studio from Windows

Uninstalling SEGGER Embedded Studio from Mac OS X

Uninstalling SEGGER Embedded Studio from Linux

Uninstalling SEGGER Embedded Studio from Windows

Removing user data and settings

The uninstaller does not remove any user data such as settings or installed packages. To completely remove the

user data you will need to carry out the following operations for each user that has used SEGGER Embedded

Studio on your system.

To remove user data using SEGGER Embedded Studio:

1. Start SEGGER Embedded Studio.

2. Click Tools > Admin > Remove All User Data...

Alternatively, if SEGGER Embedded Studio has already been uninstalled you can manually remove the user data

as follows:

1. Click the Windows Start button.

Embedded Studio Reference Manual Uninstalling SEGGER Embedded Studio

178

2. Type %LOCALAPPDATA% in the search field and press enter to open the local application data folder.

3. Open the SEGGER folder.

4. Open the SEGGER Embedded Studio folder.

5. Delete the v3 folder.

6. If you want to delete user data for all versions of the software, delete the SEGGER Embedded Studio folder

as well.

Uninstalling SEGGER Embedded Studio

To uninstall SEGGER Embedded Studio:

1. If SEGGER Embedded Studio is running, click File > Exit to shut it down.

2. Click the Start Menu and select Control Panel. The Control Panel window will open.

3. In the Control Panel window, click the Uninstall a program link under the Programs section.

4. From the list of currently installed programs, select SEGGER Embedded Studio 3.10i.

5. To begin the uninstall, click the Uninstall button at the top of the list.

Uninstalling SEGGER Embedded Studio from Mac OS X

Removing user data and settings

Uninstalling does not remove any user data such as settings or installed packages. To completely remove the

user data you will need to carry out the following operations for each user that has used SEGGER Embedded

Studio on your system.

To remove user data using SEGGER Embedded Studio:

1. Start SEGGER Embedded Studio.

2. Click Tools > Admin > Remove All User Data...

Alternatively, if SEGGER Embedded Studio has already been uninstalled you can manually remove the user data

as follows:

1. Open Finder.

2. Go to the $HOME/Library/SEGGER/SEGGER Embedded Studio directory.

3. Drag the v3 folder to the Trash.

4. If you want to delete user data for all versions of the software, drag the SEGGER Embedded Studio folder to

the Trash as well.

Uninstalling SEGGER Embedded Studio

To uninstall SEGGER Embedded Studio:

Embedded Studio Reference Manual Uninstalling SEGGER Embedded Studio

179

1. If SEGGER Embedded Studio is running, shut it down.

2. Open the Applications folder in Finder.

3. Drag the SEGGER Embedded Studio 3.10i folder to the Trash.

Uninstalling SEGGER Embedded Studio from Linux

Removing user data and settings

The uninstaller does not remove any user data such as settings or installed packages. To completely remove the

user data you will need to carry out the following operations for each user that has used SEGGER Embedded

Studio on your system.

To remove user data using SEGGER Embedded Studio:

1. Start SEGGER Embedded Studio.

2. Click Tools > Admin > Remove All User Data...

Alternatively, if SEGGER Embedded Studio has already been uninstalled you can manually remove the user data

as follows:

1. Open a terminal window or file browser.

2. Go to the $HOME/.segger/SEGGER Embedded Studio directory.

3. Delete the v3 directory.

4. If you want to delete user data for all versions of the software, delete the SEGGER Embedded Studio

directory as well.

Uninstalling SEGGER Embedded Studio

To uninstall SEGGER Embedded Studio:

1. If SEGGER Embedded Studio is running, click File > Exit to shut it down.

2. Open a terminal window.

3. Go to the SEGGER Embedded Studio bin directory (this is /usr/share/segger_embedded_studio_3.10i/bin by

default).

4. Run sudo ./uninstall to start the uninstaller.

Embedded Studio Reference Manual Uninstalling SEGGER Embedded Studio

180

Embedded Studio Reference Manual ARM target support

181

ARM target support
When a target-specific executable project is created using the New Project Wizard, the following default files are

added to the project:

Target_Startup.s The target-specific startup code. See Target startup code.

crt0.s The SEGGER Embedded Studio standard C runtime. See Startup code.

Target_MemoryMap.xml The target-specific memory map file for the board. See Section Placement. Note

that, for some targets, a general linker placement file may not be suitable. In these cases, there will be two

memory-map files: one for a flash build and one for a RAM build.

flash_placement.xml The linker placement file for a flash build.

sram_placement.xml The linker placement file for a RAM build.

Initially, shared versions of these files are added to the project. If you want to modify any these shared files,

select the file in the Project Explorer and then click the Import option from the shortcut menu. This will copy a

writable version of the file into your project directory and change the path in the Project Explorer to that of the

local version. You can then make changes to the local file without affecting the shared copy of it.

The following list describes the typical flow of a C program created with SEGGER Embedded Studio's project

templates:

The processor starts executing at address 0x0000000, which is the reset exception vector. The exception-

vector table can be found in the target-specific startup code (see Target startup code), and is put into the

program section .vectors, which is positioned at address 0x00000000 by the target-specific memory-map

file.

The processor jumps to the reset_handler label in the target-specific startup code, which configures the

target (see Target startup code).

Embedded Studio Reference Manual ARM target support

182

When the target is configured, the target-specific startup code jumps to the _start entry point in the C

runtime code, which sets up the C runtime environment (see Startup code).

When the C runtime environment has been set up, the C runtime code jumps to the C entry-point

function, main.

When the program returns from main, it re-enters the C runtime code, executes the destructors and

enters an endless loop.

Embedded Studio Reference Manual ARM target support

183

Target startup code
The following section describes the role of the target-specific startup code.

When you create a new project to produce an executable file using a target-specific project template, a file

containing the default startup code for the target will be added to the project. Initially, a shared version of this

file will be added to the project; if you want to modify this file, select the file in the Project Explorer and select

Import to copy the file to your project directory.

ARM Target startup code

The target startup file typically consists of the exception vector table and the default set of exception handlers.

_vectors This is the exception vector table. It is put into its own .vectors section in order to ensure that

it is always placed at address 0x00000000. The vector table contains jump instructions to the particular

exception handlers. It is recommended that absolute jump instructions are used ldr pc, [pc,

#handler_address - . - 8] rather than relative branch instructions b handler_address

since many devices shadow the memory at address zero to start execution but the program will be linked

to run at a different address.

reset_handler This is the main reset handler function and typically is the main entry point of an

executable. The reset handler will usually carry out any target-specific initialization and then will jump to

the _start entry point. In a C system, the _start entry point is in the crt0.s file. During development it is

usual to replace this jump with an endless loop which will stop the device running potentially dangerous

in-development code directly out of reset.

undef_handler This is the default, undefined-instruction exception handler.*

swi_handler This is the default, software-interrupt exception handler.*

pabort_handler This is the default, prefetch-abort exception handler.*

dabort_handler This is the default, data-abort exception handler.*

irq_handler This is the default, IRQ-exception handler.*

fiq_handler This is the default, FIQ-exception handler.*

* Declared as a weak symbol to allow the user to override the implementation.

Note that ARM exception handlers must be written in ARM assembly code. The CPU or board support package of

the project you have created will typically supply an ARM assembly-coded irq_handler implementation that will

enable you to write interrupt service routines as C functions.

Cortex-M Target startup code

The target startup file typically consists of the exception vector table and the default set of exception handlers.

Embedded Studio Reference Manual ARM target support

184

_vectors This is the exception vector table. It is put into its own .vectors section in order to ensure that it

is always placed at address 0x00000000.

The vector table is structured as follows:

The first entry is the initial value of the stack pointer.

The second entry is the address of the reset handler function. The reset handler will usually carry out any

target-specific initialization and then jump to the _start entry point. In a C system, the _start entry point

is in the crt0.s file. During development it is usual to replace this jump with an endless loop which will

stop the device running potentially dangerous in-development code directly out of reset.

The following 15 entries are the addresses of the standard Cortex-M exception handlers ending with the

SysTick_ISR entry.

Subsequent entries are addresses of device-specific interrupt sources and their associated handlers.

For each exception handler, a weak symbol is declared that will implement an endless loop. You can

implement your own exception handler as a regular C function. Note that the name of the C function

must match the name in the startup code e.g. void SysTick_ISR(void). You can use the C preprocessor to

rename the symbol in the startup code if you have existing code with different exception handler names e.g.

SysTick_ISR=SysTick_Handler.

Embedded Studio Reference Manual ARM target support

185

Startup code
The following section describes the role of the C runtime-startup code, crt0.s (and the Cortex-M3/Thumb-2

equivalent thumb_crt0.s).

When you create a new project to produce an executable file using a target-specific project template, the crt0.s

file is added to the project. Initially, a shared version of this file is added to the project. If you want to modify this

file, right-click it in the Project Explorer and then select Import from the shortcut menu to copy the file to your

project directory.

The entry point of the C runtime-startup code is _start. In a typical system, this will be called by the target-

specific startup code after it has initialized the target.

The C runtime carries out the following actions:

Initialize the stacks.

If required, copy the contents of the .data (initialized data) section from non-volatile memory.

If required, copy the contents of the .fast section from non-volatile memory to SRAM.

Initialize the .bss section to zero.

Initialize the heap.

Call constructors.

If compiled with FULL_LIBRARY, get the command line from the host using debug_getargs and set

registers to supply argc and argv to main.

Call the main entry point.

On return from main or when exit is called

If compiled with FULL_LIBRARY, call destructors.

If compiled with FULL_LIBRARY, call atexit functions.

If compiled with FULL_LIBRARY, call debug_exit while supplying the return result from main.

Wait in exit loop.

Program sections

The following program sections are used for the C runtime in section-placement files:

Section name Description

.vectors The exception vector table.

.init Startup code that runs before the call to the
application's main function.

.ctors Static constructor function table.

.dtors Static destructor function table.

.text The program code.

.fast Code to copy from flash to RAM for fast execution.

Embedded Studio Reference Manual ARM target support

186

.data The initialized static data.

.bss The zeroed static data.

.rodata The read-only constants and literals of the program.

.ARM.exidx The C++ exception table.

Stacks

The ARM maintains six separate stacks. The position and size of these stacks are specified in the project's section-

placement or memory-map file by the following program sections:

Section name Linker size symbol Description

.stack __STACKSIZE__ System and User mode stack.

.stack_svc __STACKSIZE_SVC__ Supervisor mode stack

.stack_irq __STACKSIZE_IRQ__ IRQ mode stack

.stack_fiq __STACKSIZE_FIQ__ FIQ mode stack

.stack_abt __STACKSIZE_ABT__ Abort mode stack

.stack_und __STACKSIZE_UND__ Undefined mode stack

For Cortex-M devices the following stacks and linker symbol stack sizes are defined:

Section name Linker size symbol Description

.stack __STACKSIZE__ Main stack.

.stack_process __STACKSIZE_PROCESS__ Process stack.

The crt0.s startup code references these sections and initializes each of the stack-pointer registers to point to the

appropriate location. To change the location in memory of a particular stack, the section should be moved to the

required position in the section-placement or memory-map file.

Should your application not require one or more of these stacks, you can remove those sections from the

memory-map file or set the size to 0 and remove the initialization code from the crt0.s file.

The .data section

The .data section contains the initialized data. If the run address is different from the load address, as it would be

in a flash-based application in order to allow the program to run from reset, the crt0.s startup code will copy

the .data section from the load address to the run address before calling the main entry point.

The .fast section

For performance reasons, it is a common requirement for embedded systems to run critical code from fast

memory; the .fast section can be used to simplify this. If the .fast section's run address is different from the load

Embedded Studio Reference Manual ARM target support

187

address, the crt0.s startup code will copy the .fast section from the load address to the run address before

calling the main entry point.

The .bss Section

The .bss section contains the zero-initialized data. The startup code in crt0.s references the .bss section and

sets its contents to zero.

The heap

The position and size of the heap is specified in the project's section-placement or memory-map file by the

.heap program section.

The startup code in crt0.s references this section and initializes the heap. To change the position of the heap,

the section should be moved to the required position in the section-placement or memory-map file.

There is a Heap Size linker project option you can modify in order to alter the heap size. For compatibility with

earlier versions of SEGGER Embedded Studio, you can also specify the heap size using the heap section's Size

attribute in the section-placement or memory-map file.

Should your application not require the heap functions, you can remove the heap section from the memory-

map file or set the size to zero and remove the heap-initialization code from the crt0.s file.

Embedded Studio Reference Manual ARM target support

188

Section Placement
SEGGER Embedded Studio's memory-map files are XML files and are used

Linking:by the linker, to describe how to lay out a program in memory.

Loading:by the loader, to check whether a program being downloaded will actually fit into the target's

memory.

Debugging:by the debugger, to describe the location and types of memory a target has. This information

is used to decide how to debug the programfor example, whether to set hardware or software

breakpoints on particular memory location.

Section placement files map program sections used in your program into the memory spaces defined in the

memory map. For instance, it's common for code and read-only data to be programmed into non-volatile flash

memory, whereas read-write data needs to be mapped onto either internal or external RAM.

Memory map files are provided in the CPU support package you are using and are referenced in executable

projects by the Memory Map File project option. Section-placement files are provided in the base SEGGER

Embedded Studio distribution.

ARM section placement

The following placement files are supplied for ARM targets:

File Description

flash_placement.xml
Single FLASH segment with internal RAM segment and
optional external RAM segment.

flash_run_text_from_ram_placement.xml Single FLASH segment with internal RAM segment
and optional external RAM segments. Text section is
copied from FLASH to RAM.

internal_sram_placement.xml Single internal RAM segment.

flash_placement.xml Two FLASH segments with internal RAM segment and
optional external RAM segment.

internal_sram_placement.xml Internal RAM segment and optional external RAM
segment.

Cortex-M section placement

The following placement files are supplied for Cortex-M targets:

File Description

flash_placement.xml Two FLASH segments and two RAM segments.

flash_placement2.xml One FLASH segment and two RAM segments.

Embedded Studio Reference Manual ARM target support

189

flash_to_ram_placement.xml One FLASH segment and one RAM segment. Text
section is copied from FLASH to RAM.

ram_placement.xml Two RAM segments.

The memory segments defined in the section placement files have macro-expandable names which can be

defined using the Section Placement Macros project option.

Some of the section placement files have a macro-expandable start attribute in the first program section. You

can use this to reserve space at the beginning of the memory segment.

Embedded Studio Reference Manual ARM target support

190

Embedded Studio Reference Manual C Library User Guide

191

C Library User Guide
This section describes the library and how to use and customize it.

The libraries supplied with SEGGER Embedded Studio have all the support necessary for input and output using

the standard C functions printf and scanf, support for the assert function, both 32-bit and 64-bit floating point,

and are capable of being used in a multi-threaded environment. However, to use these facilities effectively you

will need to customize the low-level details of how to input and output characters, what to do when an assertion

fails, how to provide protection in a multithreaded environment, and how to use the available hardware to the

best of its ability.

Embedded Studio Reference Manual C Library User Guide

192

Floating point
The SEGGER Embedded Studio C library uses IEEE floating point format as specified by the ISO 60559 standard

with restrictions.

This library favors code size and execution speed above absolute precision. It is suitable for applications

that need to run quickly and not consume precious resources in limited environments. The library does not

implement features rarely used by simple applications: floating point exceptions, rounding modes, and

subnormals.

NaNs and infinities are supported and correctly generated. The only rounding mode supported is round-to-

nearest. Subnormals are always flushed to a correctly-signed zero. The mathematical functions use stable

approximations and do their best to cater ill-conditioned inputs.

Embedded Studio Reference Manual C Library User Guide

193

Single and double precision
SEGGER Embedded Studio C allows you to choose whether the double data type uses the IEC 60559 32-bit or 64-

bit format. The following sections describe the details of why you would want to choose a 32-bit double rather

than a 64-bit double in many circumstances.

Why choose 32-bit doubles?

Many users are surprised when using float variables exclusively that sometimes their calculations are compiled

into code that calls for double arithmetic. They point out that the C standard allows float arithmetic to be carried

out only using float operations and not to automatically promote to the double data type of classic K&R C.

This is valid point. However, upon examination, even the simplest calculations can lead to double arithmetic.

Consider:

// Compute sin(2x)
float sin_two_x(float x)
{
 return sinf(2.0 * x);
}

This looks simple enough. We're using the sinf function which computes the sine of a float and returns a float

result. There appears to be no mention of a double anywhere, yet the compiler generates code that calls double

support routinesbut why?

The answer is that the constant 2.0 is a double constant, not a float constant. That is enough to force the

compiler to convert both operands of the multiplication to double format, perform the multiplication in double

precision, and then convert the result back to float precision. To avoid this surprise, the code should have been

written:

// Compute sin(2x)
float sin_two_x(float x)
{
 return sinf(2.0F * x);
}

This uses a single precision floating-point constant 2.0F. It's all too easy to forget to correctly type your floating-

point constants, so if you compile your program with double meaning the same as float, you can forget all

about adding the 'F' suffix to your floating point constants.

As an aside, the C99 standard is very strict about the way that floating-point is implemented and the latitude the

compiler has to rearrange and manipulate expressions that have floating-point operands. The compiler cannot

second-guess user intention and use a number of useful mathematical identities and algebraic simplifications

because in the world of IEC 60559 arithmetic many algebraic identities, such as x * 1 = x, do not hold when x

takes one of the special values NaN, infinity, or negative zero.

Embedded Studio Reference Manual C Library User Guide

194

More reasons to choose 32-bit doubles

Floating-point constants are not the only silent way that double creeps into your program. Consider this:

void write_results(float x)
{
 printf("After all that x=%f\\n", x);
}

Again, no mention of a double anywhere, but double support routines are now required. The reason is that ISO

C requires that float arguments are promoted to double when they are passed to the non-fixed part of variadic

functions such as printf. So, even though your application may never mention double, double arithmetic may

be required simply because you use printf or one of its near relatives.

If, however, you compile your code with 32-bit doubles, then there is no requirement to promote a float to a

double as they share the same internal format.

Why choose 64-bit doubles?

If your application requires very accurate floating-point, more precise than the seven decimal digits supported

by the float format, then you have little option but to use double arithmetic as there is no simple way to

increase the precision of the float format. The double format delivers approximately 15 decimal digits of

precision.

Embedded Studio Reference Manual C Library User Guide

195

Multithreading
The SEGGER Embedded Studio libraries support multithreading, for example, where you are using CTL or a third-

party real-time operating system (RTOS).

Where you have single-threaded processes, there is a single flow of control. However, in multithreaded

applications there may be several flows of control which access the same functions, or the same resources,

concurrently. To protect the integrity of resources, any code you write for multithreaded applications must be

reentrant and thread-safe.

Reentrancy and thread safety are both related to the way functions in a multithreaded application handle

resources.

Reentrant functions

A reentrant function does not hold static data over successive calls and does not return a pointer to static data.

For this type of function, the caller provides all the data that the function requires, such as pointers to any

workspace. This means that multiple concurrent calls to the function do not interfere with each other, that the

function can be called in mainline code, and that the function can be called from an interrupt service routine.

Thread-safe functions

A thread-safe function protects shared resources from concurrent access using locks. In C, local variables are

held in processor registers or are on the stack. Any function that does not use static data, or other shared

resources, is thread-safe. In general, thread-safe functions are safe to call from any thread but cannot be called

directly, or indirectly, from an interrupt service routine.

Embedded Studio Reference Manual C Library User Guide

196

Thread safety in the SEGGER Embedded Studio library
In the SEGGER Embedded Studio C library:

some functions are inherently thread-safe, for example strcmp.

some functions, such as malloc, are not thread-safe by default but can be made thread-safe by

implementing appropriate lock functions.

other functions are only thread-safe if passed appropriate arguments, for example tmpnam.

some functions are never thread-safe, for example setlocale.

We define how the functions in the C library can be made thread-safe if needed. If you use a third-party library

in a multi-threaded system and combine it with the SEGGER Embedded Studio C library, you will need to ensure

that the third-party library can be made thread-safe in just the same way that the SEGGER Embedded Studio C

library can be made thread-safe.

Embedded Studio Reference Manual C Library User Guide

197

Implementing mutual exclusion in the C library
The SEGGER Embedded Studio C library ships as standard with callouts to functions that provide thread-safety in

a multithreaded application. If your application has a single thread of execution, the default implementation of

these functions does nothing and your application will run without modification.

If your application is intended for a multithreaded environment and you wish to use the SEGGER Embedded

Studio C library, you must implement the following locking functions:

__heap_lock and __heap_unlock to provide thread-safety for all heap operations such as malloc, free,

and realloc.

__printf_lock and __printf_unlock to provide thread-safety for printf and relatives.

__scanf_lock and __scanf_unlock to provide thread-safety for scanf and relatives.

__debug_io_lock and __debug_io_unlock to provide thread-safety for semi-hosting support in the

SEGGER Embedded Studio I/O function.

If you use a third-party RTOS with the SEGGER Embedded Studio C library, you will need to use whatever your

RTOS provides for mutual exclusion, typically a semaphore, a mutex, or an event set.

Embedded Studio Reference Manual C Library User Guide

198

Input and output
The C library provides all the standard C functions for input and output except for the essential items of where to

output characters printed to stdout and where to read characters from stdin.

If you want to output to a UART, to an LCD, or input from a keyboard using the standard library print and scan

functions, you need to customize the low-level input and output functions.

Embedded Studio Reference Manual C Library User Guide

199

Customizing putchar
To use the standard output functions putchar, puts, and printf, you need to customize the way that characters

are written to the standard output device. These output functions rely on a function __putchar that outputs a

character and returns an indication of whether it was successfully written.

The prototype for __putchar is

int __putchar(int ch);

Sending all output to the SEGGER Embedded Studio virtual terminal

You can send all output to the SEGGER Embedded Studio virtual terminal by supplying the following

implementation of the__putchar function in your code:

#include <debugio.h>

int __putchar(int ch)
{
 return debug_putchar(ch);
}

This hands off output of the character ch to the low-level debug output routine, debug_putchar.

Whilst this is an adequate implementation of __putchar, it does consume stack space for an unnecessary nested

call and associated register saving. A better way of achieving the same result is to define the low-level symbol for

__putchar to be equivalent to the low-level symbol for debug_putchar. To do this, we need to instruct the linker

to make the symbols equivalent.

Select the project node in the Project Explorer.

Display the Properties Window.

Enter the text __putchar=debug_putchar into the Linker > Linker Symbol Definitions property of

the Linker Options group.

Sending all output to another device

If you need to output to a physical device, such as a UART, the following notes will help you:

If the character cannot be written for any reason, putchar must return EOF. Just because a character can't

be written immediately is not a reason to return EOF: you can busy-wait or tasking (if applicable) to wait

until the character is ready to be written.

The higher layers of the library do not translate C's end of line character '\\n' before passing it to putchar.

If you are directing output to a serial line connected to a terminal, for instance, you will most likely need

to output a carriage return and line feed when given the character '\\n' (ASCII code 10).

Embedded Studio Reference Manual C Library User Guide

200

The standard functions that perform input and output are the printf and scanf functions.These functions

convert between internal binary and external printable data. In some cases, though, you need to read and write

formatted data on other channels, such as other RS232 ports. This section shows how you can extend the I/O

library to best implement these function.

Classic custom printf-style output

Assume that we need to output formatted data to two UARTs, numbered 0 and 1, and we have a functions

uart0_putc and uart1_putc that do just that and whose prototypes are:

int uart0_putc(int ch, __printf_t *ctx);
int uart1_putc(int ch, __printf_t *ctx);

These functions return a positive value if there is no error outputting the character and EOF if there was an

error. The second parameter, ctx, is the context that the high-level formatting routines use to implement the C

standard library functions.

Using a classic implementation, you would use sprintf to format the string for output and then output it:

void uart0_printf(const char *fmt, ...)
{
 char buf[80], *p;
 va_list ap;
 va_start(ap, fmt);
 vsnprintf(buf, sizeof(buf), fmt, ap);
 for (p = buf; *p; ++p)
 uart0_putc(*p, 0); // null context
 va_end(ap);
}

We would, of course, need an identical routine for outputting to the other UART. This code is portable, but it

requires an intermediate buffer of 80 characters. On small systems, this is quite an overhead, so we could reduce

the buffer size to compensate. Of course, the trouble with that means that the maximum number of characters

that can be output by a single call to uart0_printf is also reduced. What would be good is a way to output

characters to one of the UARTs without requiring an intermediate buffer.

SEGGER Embedded Studio printf-style output

SEGGER Embedded Studio provides a solution for just this case by using some internal functions and data types

in the SEGGER Embedded Studio library. These functions and types are define in the header file <__vfprintf.h>.

The first thing to introduce is the __printf_t type which captures the current state and parameters of the format

conversion:

typedef struct __printf_tag
{
 size_t charcount;
 size_t maxchars;
 char *string;
 int (*output_fn)(int, struct __printf_tag *ctx);

Embedded Studio Reference Manual C Library User Guide

201

} __printf_t;

This type is used by the library functions to direct what the formatting routines do with each character they need

to output. If string is non-zero, the character is appended is appended to the string pointed to by string; if

output_fn is non-zero, the character is output through the function output_fn with the context passed as the

second parameter.

The member charcount counts the number of characters currently output, and maxchars defines the maximum

number of characters output by the formatting routine __vfprintf.

We can use this type and function to rewrite uart0_printf:

int uart0_printf(const char *fmt, ...)
{
 int n;
 va_list ap;
 __printf_t iod;
 va_start(ap, fmt);
 iod.string = 0;
 iod.maxchars = INT_MAX;
 iod.output_fn = uart0_putc;
 n = __vfprintf(\&iod, fmt, ap);
 va_end(ap);
 return n;
}

This function has no intermediate buffer: when a character is ready to be output by the formatting routine, it

calls the output_fn function in the descriptor iod to output it immediately. The maximum number of characters

isn't limited as the maxchars member is set to INT_MAX. if you wanted to limit the number of characters output

you can simply set the maxchars member to the appropriate value before calling __vfprintf.

We can adapt this function to take a UART number as a parameter:

int uart_printf(int uart, const char *fmt, ...)
{
 int n;
 va_list ap;
 __printf_t iod;
 va_start(ap, fmt);
 iod.is_string = 0;
 iod.maxchars = INT_MAX;
 iod.output_fn = uart ? uart1_putc : uart0_putc;
 n = __vfprintf(\&iod, fmt, ap);
 va_end(ap);
 return n;
}

Now we can use:

uart_printf(0, "This is uart %d\n...", 0);
uart_printf(1, "..and this is uart %d\n", 1);

__vfprintf returns the actual number of characters printed, which you may wish to dispense with and make the

uart_printf routine return void.

Embedded Studio Reference Manual C Library User Guide

202

Extending input functions

The formatted input functions would be implemented in the same manner as the output functions: read a string

into an intermediate buffer and parse using sscanf. However, we can use the low-level routines in the SEGGER

Embedded Studio library for formatted input without requiring the intermediate buffer.

The type __stream_scanf_t is:

typedef struct
{
 char is_string;
 int (*getc_fn)(void);
 int (*ungetc_fn)(int);
} __stream_scanf_t;

The function getc_fn reads a single character from the UART, and ungetc_fn pushes back a character to the

UART. You can push at most one character back onto the stream.

Here's an implementation of functions to read and write from a single UART:

static int uart0_ungot = EOF;

int uart0_getc(void)
{
 if (uart0_ungot)
 {
 int c = uart0_ungot;
 uart0_ungot = EOF;
 return c;
 }
 else
 return read_char_from_uart(0);
}

int uart0_ungetc{int c)
{
 uart0_ungot = c;
}

You can use these two functions to perform formatted input using the UART:

int uart0_scanf(const char *fmt, ...)
{
 __stream_scanf_t iod;
 va_list a;
 int n;
 va_start(a, fmt);
 iod.is_string = 0;
 iod.getc_fn = uart0_getc;
 iod.ungetc_fn = uart0_ungetc;
 n = __vfscanf((__scanf_t *)\&iod, (const unsigned char *)fmt, a);
 va_end(a);
 return n;
}

Using this template, we can add functions to do additional formatted input from other UARTs or devices, just as

we did for formatted output.

Embedded Studio Reference Manual C Library User Guide

203

Locales
The SEGGER Embedded Studio C library supports wide characters, multi-byte characters and locales. However,

as not all programs require full localization, you can tailor the exact support provided by the SEGGER Embedded

Studio C library to suit your application. These sections describe how to add new locales to your application and

customize the runtime footprint of the C library.

Embedded Studio Reference Manual C Library User Guide

204

Unicode, ISO 10646, and wide characters
The ISO standard 10646 is identical to the published Unicode standard and the SEGGER Embedded Studio C

library uses the Unicode 6.2 definition as a base. Hence, whenever you see the term Unicode in this document, it

is equivalent to Unicode 6.2 and ISO/IEC 10646:2011.

The SEGGER Embedded Studio C library supports both 16-bit and 32-bit wide characters, depending upon the

setting of wide character width in the project.

When compiling with 16-bit wide characters, all characters in the Basic Multilingual Plane are representable

in a single wchar_t (values 0 through 0xFFFF). When compiling with 32-bit wide characters, all characters in

the Basic Multilingual Plane and planes 1 through 16 are representable in a single wchar_t (values 0 through

0x10FFFF).

The wide character type will hold Unicode code points in a locale that is defined to use Unicode and character

type functions such as iswalpha will work correctly on all Unicode code points.

Embedded Studio Reference Manual C Library User Guide

205

Multi-byte characters
SEGGER Embedded Studio supports multi-byte encoding and decoding of characters. Most new software on the

desktop uses Unicode internally and UTF-8 as the external, on-disk encoding for files and for transport over 8-bit

mediums such as network connections.

However, in embedded software there is still a case to use code pages, such as ISO-Latin1, to reduce the

footprint of an application whilst also providing extra characters that do not form part of the ASCII character set.

The SEGGER Embedded Studio C library can support both models and you can choose a combination of models,

dependent upon locale, or construct a custom locale.

Embedded Studio Reference Manual C Library User Guide

206

The standard C and POSIX locales
The standard C locale is called simply C. In order to provide POSIX compatibility, the name POSIX is a synonym

for C.

The C locale is fixed and supports only the ASCII character set with character codes 0 through 127. There is no

multi-byte character support, so the character encoding between wide and narrow characters is simply one-

to-one: a narrow character is converted to a wide character by zero extension. Thus, ASCII encoding of narrow

characters is compatible with the ISO 10646 (Unicode) encoding of wide characters in this locale.

Embedded Studio Reference Manual C Library User Guide

207

Additional locales in source form
The SEGGER Embedded Studio C library provides only the C locale; if you need other locales, you must provide

those by linking them into your application. We have constructed a number of locales from the Unicode

Common Locale Data Repository (CLDR) and provided them in source form in the $(StudioDir)/source

folder for you to include in your application.

A C library locale is divided into two parts:

the locale's date, time, numeric, and monetary formatting information

how to convert between multi-byte characters and wide characters by the functions in the C library.

The first, the locale data, is independent of how characters are represented. The second, the code set in use,

defines how to map between narrow, multi-byte, and wide characters.

Embedded Studio Reference Manual C Library User Guide

208

Installing a locale
If the locale you request using setlocale is neither C nor POSIX, the C library calls the function

__user_find_locale to find a user-supplied locale. The standard implementation of this function is to return a

null pointer which indicates that no additional locales are installed and, hence, no locale matches the request.

The prototype for __user_find_locale is:

const __RAL_locale_t *__user_find_locale(const char *locale);

The parameter locale is the locale to find; the locale name is terminated either by a zero character or by a

semicolon. The locale name, up to the semicolon or zero, is identical to the name passed to setlocale when you

select a locale.

Now let's install the Hungarian locale using both UTF-8 and ISO 8859-2 encodings. The UTF-8 codecs are

included in the SEGGER Embedded Studio C library, but the Hungarian locale and the ISO 8859-2 codec are not.

You will find the file locale_hu_HU.c in the source directory as described in the previous section. Add this file to

your project.

Although this adds the data needed for the locale, it does not make the locale available for the C library: we need

to write some code for __user_find_locale to return the appropriate locales.

To create the locales, we need to add the following code and data to tie everything together:

#include <__crossworks.h>

static const __RAL_locale_t hu_HU_utf8 = {
 "hu_HU.utf8",
 &locale_hu_HU,
 &codeset_utf8
};

static const __RAL_locale_t hu_HU_iso_8859_2 = {
 "hu_HU.iso_8859_2",
 &locale_hu_HU,
 &codeset_iso_8859_2
};

const __RAL_locale_t *
__user_find_locale(const char *locale)
{
 if (__RAL_compare_locale_name(locale, hu_HU_utf8.name) == 0)
 return &hu_HU_utf8;
 else if (__RAL_compare_locale_name(locale, hu_HU_iso_8859_2.name) == 0)
 return &hu_HU_iso_8859_2;
 else
 return 0;
}

The function __RAL_compare_locale_name matches locale names up to a terminating null character, or

a semicolon (which is required by the implementation of setlocale in the C library when setting multiple

locales using LC_ALL).

Embedded Studio Reference Manual C Library User Guide

209

In addition to this, you must provide a buffer, __user_locale_name_buffer, for locale names encoded

by setlocale. The buffer must be large enough to contain five locale names, one for each category. In the

above example, the longest locale name is hu_HU.iso_8859_2 which is 16 characters in length. Using this

information, buffer must be at least (16+1)5 = 85 characters in size:

const char __user_locale_name_buffer[85];

Embedded Studio Reference Manual C Library User Guide

210

Setting a locale directly
Although we support setlocale in its full generality, most likely you'll want to set a locale once and forget about

it. You can do that by including the locale in your application and writing to the instance variables that hold the

underlying locale data for the SEGGER Embedded Studio C library.

For instance, you might wish to use Czech locale with a UTF codeset:

static __RAL_locale_t cz_locale =
{
 "cz_CZ.utf8",
 &__RAL_cs_CZ_locale,
 &__RAL_codeset_utf8
};

You can install this directly into the locale without using setlocale:

__RAL_global_locale.__category[LC_COLLATE] = &cz_locale;
__RAL_global_locale.__category[LC_CTYPE] = &cz_locale;
__RAL_global_locale.__category[LC_MONETARY] = &cz_locale;
__RAL_global_locale.__category[LC_NUMERIC] = &cz_locale;
__RAL_global_locale.__category[LC_TIME] = &cz_locale;

Embedded Studio Reference Manual C Library User Guide

211

Complete API reference
This section contains a complete reference to the SEGGER Embedded Studio C library API.

File Description

<assert.h>
Describes the diagnostic facilities which you can build
into your application.

<debugio.h> Describes the virtual console services and semi-
hosting support that SEGGER Embedded Studio
provides to help you when developing your
applications.

<ctype.h> Describes the character classification and
manipulation functions.

<errno.h> Describes the macros and error values returned by the
C library.

<float.h> Defines macros that expand to various limits and
parameters of the standard floating point types.

<limits.h> Describes the macros that define the extreme values of
underlying C types.

<locale.h> Describes support for localization specific settings.

<math.h> Describes the mathematical functions provided by the
C library.

<setjmp.h> Describes the non-local goto capabilities of the C
library.

<stdarg.h> Describes the way in which variable parameter lists are
accessed.

<stddef.h> Describes standard type definitions.

<stdio.h> Describes the formatted input and output functions.

<stdlib.h> Describes the general utility functions provided by the
C library.

<string.h> Describes the string handling functions provided by
the C library.

<time.h> Describes the functions to get and manipulate date
and time information provided by the C library.

<wchar.h> Describes the facilities you can use to manipulate wide
characters.

Embedded Studio Reference Manual C Library User Guide

212

<assert.h>

API Summary

Macros

assert Allows you to place assertions and diagnostic tests into
programs

Functions

__assert User defined behaviour for the assert macro

Embedded Studio Reference Manual C Library User Guide

213

__assert

Synopsis

void __assert(const char *expression,
 const char *filename,
 int line);

Description

There is no default implementation of __assert. Keeping __assert out of the library means that you can can

customize its behaviour without rebuilding the library. You must implement this function where expression

is the stringized expression, filename is the filename of the source file and line is the linenumber of the failed

assertion.

Embedded Studio Reference Manual C Library User Guide

214

assert

Synopsis

#define assert(e) ...

Description

If NDEBUG is defined as a macro name at the point in the source file where <assert.h> is included, the assert

macro is defined as:

#define assert(ignore) ((void)0)

If NDEBUG is not defined as a macro name at the point in the source file where <assert.h> is included, the assert

macro expands to a void expression that calls __assert.

#define assert(e) ((e) ? (void)0 : __assert(#e, __FILE__, __LINE__))

When such an assert is executed and e is false, assert calls the __assert function with information about the

particular call that failed: the text of the argument, the name of the source file, and the source line number.

These are the stringized expression and the values of the preprocessing macros __FILE__ and __LINE__.

Note

The assert macro is redefined according to the current state of NDEBUG each time that <assert.h> is included.

Embedded Studio Reference Manual C Library User Guide

215

<complex.h>

API Summary

Trigonometric functions

cacos Compute inverse cosine of a complex float

cacosf Compute inverse cosine of a complex float

casin Compute inverse sine of a complex float

casinf Compute inverse sine of a complex float

catan Compute inverse tangent of a complex float

catanf Compute inverse tangent of a complex float

ccos Compute cosine of a complex float

ccosf Compute cosine of a complex float

csin Compute sine of a complex float

csinf Compute sine of a complex float

ctan Compute tangent of a complex float

ctanf Compute tangent of a complex float

Hyperbolic trigonometric functions

cacosh Compute inverse hyperbolic cosine of a complex float

cacoshf Compute inverse hyperbolic cosine of a complex float

casinh Compute inverse hyperbolic sine of a complex float

casinhf Compute inverse hyperbolic sine of a complex float

catanh Compute inverse hyperbolic tangent of a complex
float

catanhf Compute inverse hyperbolic tangent of a complex
float

ccosh Compute hyperbolic cosine of a complex float

ccoshf Compute hyperbolic cosine of a complex float

csinh Compute hyperbolic sine of a complex float

csinhf Compute hyperbolic sine of a complex float

ctanh Compute hyperbolic tangent of a complex float

ctanhf Compute hyperbolic tangent of a complex float

Exponential and logarithmic functions

cexp Computes the base-e exponential of a complex float

cexpf Computes the base-e exponential of a complex float

clog Computes the base-e logarithm of a complex float

Embedded Studio Reference Manual C Library User Guide

216

clogf Computes the base-e logarithm of a complex float

Power and absolute value functions

cabs Computes the absolute value of a complex float

cabsf Computes the absolute value of a complex float

cpow Compute a complex float raised to a power

cpowf Compute a complex float raised to a power

csqrt Compute square root of a complex float

csqrtf Compute square root of a complex float

Manipulation functions

carg Compute argument of a complex float

cargf Compute argument of a complex float

cimag Compute imaginary part of a complex float

cimagf Compute imaginary part of a complex float

conj Compute conjugate of a complex float

conjf Compute conjugate of a complex float

cproj Compute projection on the Riemann sphere

cprojf Compute projection on the Riemann sphere

creal Compute real part of a complex float

crealf Compute real part of a complex float

Embedded Studio Reference Manual C Library User Guide

217

cabs

Synopsis

double cabs(double complex z);

Description

cabs returns the absolute value of z.

Embedded Studio Reference Manual C Library User Guide

218

cabsf

Synopsis

float cabsf(float complex z);

Description

cabsf returns the absolute value of z.

Embedded Studio Reference Manual C Library User Guide

219

cacos

Synopsis

double complex cacos(double complex z);

Description

cacos returns the principal value the inverse cosine of z with branch cuts outside the interval [-1,+1] on the

real axis. The principal value lies in the interval [0,] on the real axis and in the range of a strip mathematically

unbounded on the imaginary axis.

Embedded Studio Reference Manual C Library User Guide

220

cacosf

Synopsis

float complex cacosf(float complex z);

Description

cacosf returns the principal value the inverse cosine of z with branch cuts outside the interval [-1,+1] on the

real axis. The principal value lies in the interval [0,] on the real axis and in the range of a strip mathematically

unbounded on the imaginary axis.

Embedded Studio Reference Manual C Library User Guide

221

cacosh

Synopsis

double complex cacosh(double complex z);

Description

cacosh returns the principal value the inverse hyperbolic cosine of z with branch cuts of values less than 1 on

the real axis. The principal value lies in the range of a half-strip of non-negative values on the real axis and in the

interval [-i,+i] on the imaginary axis.

Embedded Studio Reference Manual C Library User Guide

222

cacoshf

Synopsis

float complex cacoshf(float complex _z);

Description

cacoshf returns the principal value the inverse hyperbolic cosine of z with branch cuts of values less than 1 on

the real axis. The principal value lies in the range of a half-strip of non-negative values on the real axis and in the

interval [-i,+i] on the imaginary axis.

Embedded Studio Reference Manual C Library User Guide

223

carg

Synopsis

double carg(double complex z);

Description

carg computes the argument of z with a branch cut along the negative real axis.

Embedded Studio Reference Manual C Library User Guide

224

cargf

Synopsis

float cargf(float complex z);

Description

cargf computes the argument of z with a branch cut along the negative real axis.

Embedded Studio Reference Manual C Library User Guide

225

casin

Synopsis

double complex casin(double complex z);

Description

casin returns the principal value the inverse sine of z with branch cuts outside the interval [-1,+1] on the real axis.

The principal value lies in the interval [,] on the real axis and in the range of a strip mathematically unbounded

on the imaginary axis.

Embedded Studio Reference Manual C Library User Guide

226

casinf

Synopsis

float complex casinf(float complex z);

Description

casinf returns the principal value the inverse sine of z with branch cuts outside the interval [-1,+1] on the

real axis. The principal value lies in the interval [,] on the real axis and in the range of a strip mathematically

unbounded on the imaginary axis.

Embedded Studio Reference Manual C Library User Guide

227

casinh

Synopsis

double complex casinh(double complex z);

Description

casinh returns the principal value the inverse hyperbolic sine of z with branch cuts outside the inteval [-i,+i] on

the imaginary axis. The principal value lies in the range of a strip mathematically unbounded on the real axis and

in the interval [-i,+i] on the imaginary axis.

Embedded Studio Reference Manual C Library User Guide

228

casinhf

Synopsis

float complex casinhf(float complex z);

Description

casinhf returns the principal value the inverse hyperbolic sine of z with branch cuts outside the inteval [-i,+i] on

the imaginary axis. The principal value lies in the range of a strip mathematically unbounded on the real axis and

in the interval [-i,+i] on the imaginary axis.

Embedded Studio Reference Manual C Library User Guide

229

catan

Synopsis

double complex catan(double complex z);

Description

catan returns the principal value the inverse sine of z with branch cuts outside the interval [-1,+1] on the

real axis. The principal value lies in the interval [,] on the real axis and in the range of a strip mathematically

unbounded on the imaginary axis.

Embedded Studio Reference Manual C Library User Guide

230

catanf

Synopsis

float complex catanf(float complex z);

Description

catanf returns the principal value the inverse sine of z with branch cuts outside the interval [-1,+1] on the

real axis. The principal value lies in the interval [,] on the real axis and in the range of a strip mathematically

unbounded on the imaginary axis.

Embedded Studio Reference Manual C Library User Guide

231

catanh

Synopsis

double complex catanh(double complex z);

Description

catanh returns the principal value the inverse hyperbolic sine of z with branch cuts outside the inteval [-1,+1] on

the real axis. The principal value lies in the range of a strip mathematically unbounded on the real axis and in the

interval [-i,+i] on the imaginary axis.

Embedded Studio Reference Manual C Library User Guide

232

catanhf

Synopsis

float complex catanhf(float complex z);

Description

catanhf returns the principal value the inverse hyperbolic sine of z with branch cuts outside the inteval [-1,+1]

on the real axis. The principal value lies in the range of a strip mathematically unbounded on the real axis and in

the interval [-i,+i] on the imaginary axis.

Embedded Studio Reference Manual C Library User Guide

233

ccos

Synopsis

double complex ccos(double complex z);

Description

ccos returns the complex cosine of z.

Embedded Studio Reference Manual C Library User Guide

234

ccosf

Synopsis

float complex ccosf(float complex z);

Description

ccosf returns the complex cosine of z.

Embedded Studio Reference Manual C Library User Guide

235

ccosh

Synopsis

double complex ccosh(double complex z);

Description

ccosh returns the complex hyperbolic cosine of z.

Embedded Studio Reference Manual C Library User Guide

236

ccoshf

Synopsis

float complex ccoshf(float complex z);

Description

ccoshf returns the complex hyperbolic cosine of z.

Embedded Studio Reference Manual C Library User Guide

237

cexp

Synopsis

double complex cexp(double complex z);

Description

cexp returns the complex base-e exponential value of z.

Embedded Studio Reference Manual C Library User Guide

238

cexpf

Synopsis

float complex cexpf(float complex z);

Description

cexpf returns the complex base-e exponential value of z.

Embedded Studio Reference Manual C Library User Guide

239

cimag

Synopsis

double cimag(double complex);

Description

cimag computes the imaginary part of z.

Embedded Studio Reference Manual C Library User Guide

240

cimagf

Synopsis

float cimagf(float complex);

Description

cimagf computes the imaginary part of z.

Embedded Studio Reference Manual C Library User Guide

241

clog

Synopsis

double complex clog(double complex z);

Description

clog returns the complex base-e logarithm value of z.

Embedded Studio Reference Manual C Library User Guide

242

clogf

Synopsis

float complex clogf(float complex z);

Description

clogf returns the complex base-e logarithm value of z.

Embedded Studio Reference Manual C Library User Guide

243

conj

Synopsis

double complex conj(double complex);

Description

conj computes the conjugate of z by reversing the sign of the imaginary part.

Embedded Studio Reference Manual C Library User Guide

244

conjf

Synopsis

float complex conjf(float complex);

Description

conjf computes the conjugate of z by reversing the sign of the imaginary part.

Embedded Studio Reference Manual C Library User Guide

245

cpow

Synopsis

double complex cpow(double complex x,
 double complex y);

Description

cpow computes x raised to the power y with a branch cut for the x along the negative real axis.

Embedded Studio Reference Manual C Library User Guide

246

cpowf

Synopsis

float complex cpowf(float complex x,
 float complex y);

Description

cpowf computes x raised to the power y with a branch cut for the x along the negative real axis.

Embedded Studio Reference Manual C Library User Guide

247

cproj

Synopsis

double complex cproj(double complex);

Description

cproj computes the projection of z on the Riemann sphere.

Embedded Studio Reference Manual C Library User Guide

248

cprojf

Synopsis

float complex cprojf(float complex);

Description

cprojf computes the projection of z on the Riemann sphere.

Embedded Studio Reference Manual C Library User Guide

249

creal

Synopsis

double creal(double complex);

Description

creal computes the real part of z.

Embedded Studio Reference Manual C Library User Guide

250

crealf

Synopsis

float crealf(float complex);

Description

crealf computes the real part of z.

Embedded Studio Reference Manual C Library User Guide

251

csin

Synopsis

double complex csin(double complex z);

Description

csin returns the complex sine of z.

Embedded Studio Reference Manual C Library User Guide

252

csinf

Synopsis

float complex csinf(float complex z);

Description

csinf returns the complex sine of z.

Embedded Studio Reference Manual C Library User Guide

253

csinh

Synopsis

double complex csinh(double complex z);

Description

csinh returns the complex hyperbolic sine of z.

Embedded Studio Reference Manual C Library User Guide

254

csinhf

Synopsis

float complex csinhf(float complex z);

Description

csinhf returns the complex hyperbolic sine of z.

Embedded Studio Reference Manual C Library User Guide

255

csqrt

Synopsis

double complex csqrt(double complex z);

Description

csqrt computes the complex square root of z with a branch cut along the negative real axis.

Embedded Studio Reference Manual C Library User Guide

256

csqrtf

Synopsis

float complex csqrtf(float complex z);

Description

csqrtf computes the complex square root of z with a branch cut along the negative real axis.

Embedded Studio Reference Manual C Library User Guide

257

ctan

Synopsis

double complex ctan(double complex z);

Description

ctan returns the complex tangent of z.

Embedded Studio Reference Manual C Library User Guide

258

ctanf

Synopsis

float complex ctanf(float complex z);

Description

ctanf returns the complex tangent of z.

Embedded Studio Reference Manual C Library User Guide

259

ctanh

Synopsis

double complex ctanh(double complex z);

Description

ctanh returns the complex hyperbolic tangent of z.

Embedded Studio Reference Manual C Library User Guide

260

ctanhf

Synopsis

float complex ctanhf(float complex z);

Description

ctanhf returns the complex hyperbolic tangent of z.

Embedded Studio Reference Manual C Library User Guide

261

<ctype.h>

API Summary

Classification functions

isalnum Is character alphanumeric?

isalpha Is character alphabetic?

isblank Is character a space or horizontal tab?

iscntrl Is character a control?

isdigit Is character a decimal digit?

isgraph Is character any printing character except space?

islower Is character a lowercase letter?

isprint Is character printable?

ispunct Is character a punctuation mark?

isspace Is character a whitespace character?

isupper Is character an uppercase letter?

isxdigit Is character a hexadecimal digit?

Conversion functions

tolower Convert uppercase character to lowercase

toupper Convert lowercase character to uppercase

Classification functions (extended)

isalnum_l Is character alphanumeric?

isalpha_l Is character alphabetic?

isblank_l Is character a space or horizontal tab?

iscntrl_l Is character a control character?

isdigit_l Is character a decimal digit?

isgraph_l Is character any printing character except space?

islower_l Is character a lowercase letter?

isprint_l Is character printable?

ispunct_l Is character a punctuation mark?

isspace_l Is character a whitespace character?

isupper_l Is character an uppercase letter?

isxdigit_l Is character a hexadecimal digit?

Conversion functions (extended)

tolower_l Convert uppercase character to lowercase

Embedded Studio Reference Manual C Library User Guide

262

toupper_l Convert lowercase character to uppercase

Embedded Studio Reference Manual C Library User Guide

263

isalnum

Synopsis

int isalnum(int c);

Description

isalnum returns nonzero (true) if and only if the value of the argument c is an alphabetic or numeric character.

Embedded Studio Reference Manual C Library User Guide

264

isalnum_l

Synopsis

int isalnum_l(int c,
 locale_t loc);

Description

isalnum_l returns nonzero (true) if and only if the value of the argument c is a alphabetic or numeric character in

locale loc.

Embedded Studio Reference Manual C Library User Guide

265

isalpha

Synopsis

int isalpha(int c);

Description

isalpha returns true if the character c is alphabetic. That is, any character for which isupper or islower returns

true is considered alphabetic in addition to any of the locale-specific set of alphabetic characters for which none

of iscntrl, isdigit, ispunct, or isspace is true.

In the C locale, isalpha returns nonzero (true) if and only if isupper or islower return true for value of the

argument c.

Embedded Studio Reference Manual C Library User Guide

266

isalpha_l

Synopsis

int isalpha_l(int c,
 locale_t loc);

Description

isalpha_l returns nonzero (true) if and only if isupper or islower return true for value of the argument c in locale

loc.

Embedded Studio Reference Manual C Library User Guide

267

isblank

Synopsis

int isblank(int c);

Description

isblank returns nonzero (true) if and only if the value of the argument c is either a space character (' ') or the

horizontal tab character ('\\t').

Embedded Studio Reference Manual C Library User Guide

268

isblank_l

Synopsis

int isblank_l(int c,
 locale_t loc);

Description

isblank_l returns nonzero (true) if and only if the value of the argument c is either a space character (' ') or the

horizontal tab character ('\\t') in locale loc.

Embedded Studio Reference Manual C Library User Guide

269

iscntrl

Synopsis

int iscntrl(int c);

Description

iscntrl returns nonzero (true) if and only if the value of the argument c is a control character. Control characters

have values 0 through 31 and the single value 127.

Embedded Studio Reference Manual C Library User Guide

270

iscntrl_l

Synopsis

int iscntrl_l(int c,
 locale_t loc);

Description

iscntrl_l returns nonzero (true) if and only if the value of the argument c is a control character in locale loc.

Embedded Studio Reference Manual C Library User Guide

271

isdigit

Synopsis

int isdigit(int c);

Description

isdigit returns nonzero (true) if and only if the value of the argument c is a digit.

Embedded Studio Reference Manual C Library User Guide

272

isdigit_l

Synopsis

int isdigit_l(int c,
 locale_t loc);

Description

isdigit_l returns nonzero (true) if and only if the value of the argument c is a decimal digit in locale loc.

Embedded Studio Reference Manual C Library User Guide

273

isgraph

Synopsis

int isgraph(int c);

Description

isgraph returns nonzero (true) if and only if the value of the argument c is any printing character except space ('

').

Embedded Studio Reference Manual C Library User Guide

274

isgraph_l

Synopsis

int isgraph_l(int c,
 locale_t loc);

Description

isgraph_l returns nonzero (true) if and only if the value of the argument c is any printing character except space

(' ') in locale loc.

Embedded Studio Reference Manual C Library User Guide

275

islower

Synopsis

int islower(int c);

Description

islower returns nonzero (true) if and only if the value of the argument c is an lowercase letter.

Embedded Studio Reference Manual C Library User Guide

276

islower_l

Synopsis

int islower_l(int c,
 locale_t loc);

Description

islower_l returns nonzero (true) if and only if the value of the argument c is an lowercase letter in locale loc.

Embedded Studio Reference Manual C Library User Guide

277

isprint

Synopsis

int isprint(int c);

Description

isprint returns nonzero (true) if and only if the value of the argument c is any printing character including space

(' ').

Embedded Studio Reference Manual C Library User Guide

278

isprint_l

Synopsis

int isprint_l(int c,
 locale_t loc);

Description

isprint_l returns nonzero (true) if and only if the value of the argument c is any printing character including

space (' ') in locale loc.

Embedded Studio Reference Manual C Library User Guide

279

ispunct

Synopsis

int ispunct(int c);

Description

ispunct returns nonzero (true) for every printing character for which neither isspace nor isalnum is true.

Embedded Studio Reference Manual C Library User Guide

280

ispunct_l

Synopsis

int ispunct_l(int c,
 locale_t loc);

Description

ispunct_l returns nonzero (true) for every printing character for which neither isspace nor isalnum is true in in

locale loc.

Embedded Studio Reference Manual C Library User Guide

281

isspace

Synopsis

int isspace(int c);

Description

isspace returns nonzero (true) if and only if the value of the argument c is a standard white-space character.

The standard white-space characters are space (' '), form feed ('\\f'), new-line ('\\n'), carriage return ('\

\r'), horizontal tab ('\\t'), and vertical tab ('\v').

Embedded Studio Reference Manual C Library User Guide

282

isspace_l

Synopsis

int isspace_l(int c,
 locale_t loc);

Description

isspace_l returns nonzero (true) if and only if the value of the argument c is a standard white-space character in

in locale loc..

Embedded Studio Reference Manual C Library User Guide

283

isupper

Synopsis

int isupper(int c);

Description

isupper returns nonzero (true) if and only if the value of the argument c is an uppercase letter.

Embedded Studio Reference Manual C Library User Guide

284

isupper_l

Synopsis

int isupper_l(int c,
 locale_t loc);

Description

isupper_l returns nonzero (true) if and only if the value of the argument c is an uppercase letter in locale loc.

Embedded Studio Reference Manual C Library User Guide

285

isxdigit

Synopsis

int isxdigit(int c);

Description

isxdigit returns nonzero (true) if and only if the value of the argument c is a hexadecimal digit.

Embedded Studio Reference Manual C Library User Guide

286

isxdigit_l

Synopsis

int isxdigit_l(int c,
 locale_t loc);

Description

isxdigit_l returns nonzero (true) if and only if the value of the argument c is a hexadecimal digit in locale loc.

Embedded Studio Reference Manual C Library User Guide

287

tolower

Synopsis

int tolower(int c);

Description

tolower converts an uppercase letter to a corresponding lowercase letter. If the argument c is a character for

which isupper is true and there are one or more corresponding characters, as specified by the current locale, for

which islower is true, the tolower function returns one of the corresponding characters (always the same one for

any given locale); otherwise, the argument is returned unchanged.

Note that even though isupper can return true for some characters, tolower may return that uppercase

character unchanged as there are no corresponding lowercase characters in the locale.

Embedded Studio Reference Manual C Library User Guide

288

tolower_l

Synopsis

int tolower_l(int c,
 locale_t loc);

Description

tolower_l converts an uppercase letter to a corresponding lowercase letter in locale loc. If the argument c is a

character for which isupper is true in locale loc, tolower_l returns the corresponding lowercase letter; otherwise,

the argument is returned unchanged.

Embedded Studio Reference Manual C Library User Guide

289

toupper

Synopsis

int toupper(int c);

Description

toupper converts a lowercase letter to a corresponding uppercase letter. If the argument is a character for

which islower is true and there are one or more corresponding characters, as specified by the current locale, for

which isupper is true, toupper returns one of the corresponding characters (always the same one for any given

locale); otherwise, the argument is returned unchanged. Note that even though islower can return true for some

characters, toupper may return that lowercase character unchanged as there are no corresponding uppercase

characters in the locale.

Embedded Studio Reference Manual C Library User Guide

290

toupper_l

Synopsis

int toupper_l(int c,
 locale_t loc);

Description

toupper_l converts a lowercase letter to a corresponding uppercase letter in locale loc. If the argument c

is a character for which islower is true in locale loc, toupper_l returns the corresponding uppercase letter;

otherwise, the argument is returned unchanged.

Embedded Studio Reference Manual C Library User Guide

291

<debugio.h>

API Summary

File Functions

debug_clearerr Clear error indicator

debug_fclose Closes an open stream

debug_feof Check end of file condition

debug_ferror Check error indicator

debug_fflush Flushes buffered output

debug_fgetc Read a character from a stream

debug_fgetpos Return file position

debug_fgets Read a string

debug_filesize Return the size of a file

debug_fopen Opens a file on the host PC

debug_fprintf Formatted write

debug_fprintf_c Formatted write

debug_fputc Write a character

debug_fputs Write a string

debug_fread Read data

debug_freopen Reopens a file on the host PC

debug_fscanf Formatted read

debug_fscanf_c Formatted read

debug_fseek Set file position

debug_fsetpos Teturn file position

debug_ftell Return file position

debug_fwrite Write data

debug_remove Deletes a file on the host PC

debug_rename Renames a file on the host PC

debug_rewind Set file position to the beginning

debug_tmpfile Open a temporary file

debug_tmpnam Generate temporary filename

debug_ungetc Push a character

debug_vfprintf Formatted write

debug_vfscanf Formatted read

Embedded Studio Reference Manual C Library User Guide

292

Debug Terminal Output Functions

debug_printf Formatted write

debug_printf_c Formatted write

debug_putchar Write a character

debug_puts Write a string

debug_vprintf Formatted write

Debug Terminal Input Functions

debug_getch Blocking character read

debug_getchar Line-buffered character read

debug_getd Line-buffered double read

debug_getf Line-buffered float read

debug_geti Line-buffered integer read

debug_getl Line-buffered long read

debug_getll Line-buffered long long read

debug_gets String read

debug_getu Line-buffered unsigned integer

debug_getul Line-buffered unsigned long read

debug_getull Line-buffered unsigned long long read

debug_kbhit Polled character read

debug_scanf Formatted read

debug_scanf_c Formatted read

debug_vscanf Formatted read

Debugger Functions

debug_abort Stop debugging

debug_break Stop target

debug_enabled Test if debug input/output is enabled

debug_exit Stop debugging

debug_getargs Get arguments

debug_loadsymbols Load debugging symbols

debug_runtime_error Stop and report error

debug_unloadsymbols Unload debugging symbols

Misc Functions

debug_getenv Get environment variable value

debug_perror Display error

debug_system Execute command

Embedded Studio Reference Manual C Library User Guide

293

debug_time get time

Embedded Studio Reference Manual C Library User Guide

294

debug_abort

Synopsis

void debug_abort(void);

Description

debug_abort causes the debugger to exit and a failure result is returned to the user.

Embedded Studio Reference Manual C Library User Guide

295

debug_break

Synopsis

void debug_break(void);

Description

debug_break causes the debugger to stop the target and position the cursor at the line that called

debug_break.

Embedded Studio Reference Manual C Library User Guide

296

debug_clearerr

Synopsis

void debug_clearerr(DEBUG_FILE *stream);

Description

debug_clearerr clears any error indicator or end of file condition for the stream.

Embedded Studio Reference Manual C Library User Guide

297

debug_enabled

Synopsis

int debug_enabled(void);

Description

debug_enabled returns non-zero if the debugger is connected - you can use this to test if a debug input/output

functions will work.

Embedded Studio Reference Manual C Library User Guide

298

debug_exit

Synopsis

void debug_exit(int result);

Description

debug_exit causes the debugger to exit and result is returned to the user.

Embedded Studio Reference Manual C Library User Guide

299

debug_fclose

Synopsis

int debug_fclose(DEBUG_FILE *stream);

Description

debug_fclose flushes any buffered output of the stream and then closes the stream.

debug_fclose returns 0 on success or -1 if there was an error.

Embedded Studio Reference Manual C Library User Guide

300

debug_feof

Synopsis

int debug_feof(DEBUG_FILE *stream);

Description

debug_feof returns non-zero if the end of file condition is set for the stream.

Embedded Studio Reference Manual C Library User Guide

301

debug_ferror

Synopsis

int debug_ferror(DEBUG_FILE *stream);

Description

debug_ferror returns non-zero if the error indicator is set for the stream.

Embedded Studio Reference Manual C Library User Guide

302

debug_fflush

Synopsis

int debug_fflush(DEBUG_FILE *stream);

Description

debug_fflush flushes any buffered output of the stream.

debug_fflush returns 0 on success or -1 if there was an error.

Embedded Studio Reference Manual C Library User Guide

303

debug_fgetc

Synopsis

int debug_fgetc(DEBUG_FILE *stream);

Description

debug_fgetc reads and returns the next character on stream or -1 if no character is available.

Embedded Studio Reference Manual C Library User Guide

304

debug_fgetpos

Synopsis

int debug_fgetpos(DEBUG_FILE *stream,
 long *pos);

Description

debug_fgetpos is equivalent to debug_fseek .

Embedded Studio Reference Manual C Library User Guide

305

debug_fgets

Synopsis

char *debug_fgets(char *s,
 int n,
 DEBUG_FILE *stream);

Description

debug_fgets reads at most n-1 characters or the characters up to (and including) a newline from the input

stream into the array pointed to by s. A null character is written to the array after the input characters.

debug_fgets returns s on success, or 0 on error or end of file.

Embedded Studio Reference Manual C Library User Guide

306

debug_filesize

Synopsis

int debug_filesize(DEBUG_FILE *stream);

Description

debug_filesize returns the size of the file associated with the stream in bytes.

debug_filesize returns -1 on error.

Embedded Studio Reference Manual C Library User Guide

307

debug_fopen

Synopsis

DEBUG_FILE *debug_fopen(const char *filename,
 const char *mode);

Description

debug_fopen opens the filename on the host PC and returns a stream or 0 if the open fails. The filename is a

host PC filename which is opened relative to the debugger working directory. The mode is a string containing

one of:

r open file for reading.

w create file for writing.

a open or create file for writing and position at the end of the file.

r+ open file for reading and writing.

w+ create file for reading and writing.

a+ open or create text file for reading and writing and position at the end of the file.

followed by one of:

t for a text file.

b for a binary file.

debug_fopen returns a stream that can be used to access the file or 0 if the open fails.

Embedded Studio Reference Manual C Library User Guide

308

debug_fprintf

Synopsis

int debug_fprintf(DEBUG_FILE *stream,
 const char *format,
 ...);

Description

debug_fprintf writes to stream, under control of the string pointed to by format that specifies how subsequent

arguments are converted for output. The format string is a standard C printf format string. The actual formatting

is performed on the host by the debugger and therefore debug_fprintf consumes only a very small amount of

code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_fprintf returns the number of characters transmitted, or a negative value if an output or encoding error

occurred.

Embedded Studio Reference Manual C Library User Guide

309

debug_fprintf_c

Synopsis

int debug_fprintf_c(DEBUG_FILE *stream,
 __code const char *format,
 ...);

Description

debug_fprintf_c is equivalent to debug_fprintf with the format string in code memory.

Embedded Studio Reference Manual C Library User Guide

310

debug_fputc

Synopsis

int debug_fputc(int c,
 DEBUG_FILE *stream);

Description

debug_fputc writes the character c to the output stream.

debug_fputc returns the character written or -1 if an error occurred.

Embedded Studio Reference Manual C Library User Guide

311

debug_fputs

Synopsis

int debug_fputs(const char *s,
 DEBUG_FILE *stream);

Description

debug_fputs writes the string pointed to by s to the output stream and appends a new-line character. The

terminating null character is not written.

debug_fputs returns -1 if a write error occurs; otherwise it returns a nonnegative value.

Embedded Studio Reference Manual C Library User Guide

312

debug_fread

Synopsis

int debug_fread(void *ptr,
 int size,
 int nobj,
 DEBUG_FILE *stream);

Description

debug_fread reads from the input stream into the array ptr at most nobj objects of size size.

debug_fread returns the number of objects read. If this number is different from nobj then debug_feof and

debug_ferror can be used to determine status.

Embedded Studio Reference Manual C Library User Guide

313

debug_freopen

Synopsis

DEBUG_FILE *debug_freopen(const char *filename,
 const char *mode,
 DEBUG_FILE *stream);

Description

debug_freopen is the same as debug_open except the file associated with the stream is closed and the opened

file is then associated with the stream.

Embedded Studio Reference Manual C Library User Guide

314

debug_fscanf

Synopsis

int debug_fscanf(DEBUG_FILE *stream,
 const char *format,
 ...);

Description

debug_fscanf reads from the input stream, under control of the string pointed to by format, that specifies how

subsequent arguments are converted for input. The format string is a standard C scanf format string. The actual

formatting is performed on the host by the debugger and therefore debug_fscanf consumes only a very small

amount of code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_fscanf returns number of characters read, or a negative value if an output or encoding error occurred.

Embedded Studio Reference Manual C Library User Guide

315

debug_fscanf_c

Synopsis

int debug_fscanf_c(DEBUG_FILE *stream,
 __code const char *format,
 ...);

Description

debug_fscanf_c is equivalent to debug_fscanf with the format string in code memory.

Embedded Studio Reference Manual C Library User Guide

316

debug_fseek

Synopsis

int debug_fseek(DEBUG_FILE *stream,
 long offset,
 int origin);

Description

debug_fseek sets the file position for the stream. A subsequent read or write will access data at that position.

The origin can be one of:

0 sets the position to offset bytes from the beginning of the file.

1 sets the position to offset bytes relative to the current position.

2 sets the position to offset bytes from the end of the file.

Note that for text files offset must be zero. debug_fseek returns zero on success, non-zero on error.

Embedded Studio Reference Manual C Library User Guide

317

debug_fsetpos

Synopsis

int debug_fsetpos(DEBUG_FILE *stream,
 const long *pos);

Description

debug_fsetpos is equivalent to debug_fseek with 0 as the origin.

Embedded Studio Reference Manual C Library User Guide

318

debug_ftell

Synopsis

long debug_ftell(DEBUG_FILE *stream);

Description

debug_ftell returns the current file position of the stream.

debug_ftell returns -1 on error.

Embedded Studio Reference Manual C Library User Guide

319

debug_fwrite

Synopsis

int debug_fwrite(const void *ptr,
 int size,
 int nobj,
 DEBUG_FILE *stream);

Description

debug_fwrite write to the output stream from the array ptr at most nobj objects of size size.

debug_fwrite returns the number of objects written. If this number is different from nobj then debug_feof and

debug_ferror can be used to determine status.

Embedded Studio Reference Manual C Library User Guide

320

debug_getargs

Synopsis

int debug_getargs(unsigned bufsize,
 unsigned char *buf);

Description

debug_getargs stores the debugger command line arguments into the memory pointed at by buf up to a

maximum of bufsize bytes. The command line is stored as a C argc array of null terminated string and the

number of entries is returned as the result.

Embedded Studio Reference Manual C Library User Guide

321

debug_getch

Synopsis

int debug_getch(void);

Description

debug_getch reads one character from the Debug Terminal. This function will block until a character is

available.

Embedded Studio Reference Manual C Library User Guide

322

debug_getchar

Synopsis

int debug_getchar(void);

Description

debug_getchar reads one character from the Debug Terminal. This function uses line input and will therefore

block until characters are available and ENTER has been pressed.

debug_getchar returns the character that has been read.

Embedded Studio Reference Manual C Library User Guide

323

debug_getd

Synopsis

int debug_getd(double *);

Description

debug_getd reads a double from the Debug Terminal. The number is written to the double object pointed to

by d.

debug_getd returns zero on success or -1 on error.

Embedded Studio Reference Manual C Library User Guide

324

debug_getenv

Synopsis

char *debug_getenv(char *name);

Description

debug_getenv returns the value of the environment variable name or 0 if the environment variable cannot be

found.

Embedded Studio Reference Manual C Library User Guide

325

debug_getf

Synopsis

int debug_getf(float *f);

Description

debug_getf reads an float from the Debug Terminal. The number is written to the float object pointed to by f.

debug_getf returns zero on success or -1 on error.

Embedded Studio Reference Manual C Library User Guide

326

debug_geti

Synopsis

int debug_geti(int *i);

Description

debug_geti reads an integer from the Debug Terminal. If the number starts with 0x it is interpreted as a

hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with 0b it is interpreted as

a binary number, otherwise it is interpreted as a decimal number. The number is written to the integer object

pointed to by i.

debug_geti returns zero on success or -1 on error.

Embedded Studio Reference Manual C Library User Guide

327

debug_getl

Synopsis

int debug_getl(long *l);

Description

debug_getl reads a long from the Debug Terminal. If the number starts with 0x it is interpreted as a

hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with it is interpreted as

a binary number, otherwise it is interpreted as a decimal number. The number is written to the long object

pointed to by l.

debug_getl returns zero on success or -1 on error.

Embedded Studio Reference Manual C Library User Guide

328

debug_getll

Synopsis

int debug_getll(long long *ll);

Description

debug_getll reads a long long from the Debug Terminal. If the number starts with 0x it is interpreted as a

hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with 0b it is interpreted as

a binary number, otherwise it is interpreted as a decimal number. The number is written to the long long object

pointed to by ll.

debug_getll returns zero on success or -1 on error.

Embedded Studio Reference Manual C Library User Guide

329

debug_gets

Synopsis

char *debug_gets(char *s);

Description

debug_gets reads a string from the Debug Terminal in memory pointed at by s. This function will block until

ENTER has been pressed.

debug_gets returns the value of s.

Embedded Studio Reference Manual C Library User Guide

330

debug_getu

Synopsis

int debug_getu(unsigned *u);

Description

debug_getu reads an unsigned integer from the Debug Terminal. If the number starts with 0x it is interpreted

as a hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with 0b it is interpreted

as a binary number, otherwise it is interpreted as a decimal number. The number is written to the unsigned

integer object pointed to by u.

debug_getu returns zero on success or -1 on error.

Embedded Studio Reference Manual C Library User Guide

331

debug_getul

Synopsis

int debug_getul(unsigned long *ul);

Description

debug_getul reads an unsigned long from the Debug Terminal. If the number starts with 0x it is interpreted as

a hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with 0b it is interpreted

as a binary number, otherwise it is interpreted as a decimal number. The number is written to the long object

pointed to by ul.

debug_getul returns zero on success or -1 on error.

Embedded Studio Reference Manual C Library User Guide

332

debug_getull

Synopsis

int debug_getull(unsigned long long *ull);

Description

debug_getull reads an unsigned long long from the Debug Terminal. If the number starts with 0x it is

interpreted as a hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with 0b it

is interpreted as a binary number, otherwise it is interpreted as a decimal number. The number is written to the

long long object pointed to by ull.

debug_getull returns zero on success or -1 on error.

Embedded Studio Reference Manual C Library User Guide

333

debug_kbhit

Synopsis

int debug_kbhit(void);

Description

debug_kbhit polls the Debug Terminal for a character and returns a non-zero value if a character is available or 0

if not.

Embedded Studio Reference Manual C Library User Guide

334

debug_loadsymbols

Synopsis

void debug_loadsymbols(const char *filename,
 const void *address,
 const char *breaksymbol);

Description

debug_loadsymbols instructs the debugger to load the debugging symbols in the file denoted by filename.

The filename is a (macro expanded) host PC filename which is relative to the debugger working directory. The

address is the load address which is required for debugging position independent executables, supply NULL for

regular executables. The breaksymbol is the name of a symbol in the filename to set a temporary breakpoint on

or NULL.

Embedded Studio Reference Manual C Library User Guide

335

debug_perror

Synopsis

void debug_perror(const char *s);

Description

debug_perror displays the optional string s on the Debug Terminal together with a string corresponding to the

errno value of the last Debug IO operation.

Embedded Studio Reference Manual C Library User Guide

336

debug_printf

Synopsis

int debug_printf(const char *format,
 ...);

Description

debug_printf writes to the Debug Terminal, under control of the string pointed to by format that specifies

how subsequent arguments are converted for output. The format string is a standard C printf format string. The

actual formatting is performed on the host by the debugger and therefore debug_printf consumes only a very

small amount of code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_printf returns the number of characters transmitted, or a negative value if an output or encoding error

occurred.

Embedded Studio Reference Manual C Library User Guide

337

debug_printf_c

Synopsis

int debug_printf_c(__code const char *format,
 ...);

Description

debug_printf_c is equivalent to debug_printf with the format string in code memory.

Embedded Studio Reference Manual C Library User Guide

338

debug_putchar

Synopsis

int debug_putchar(int c);

Description

debug_putchar write the character c to the Debug Terminal.

debug_putchar returns the character written or -1 if a write error occurs.

Embedded Studio Reference Manual C Library User Guide

339

debug_puts

Synopsis

int debug_puts(const char *);

Description

debug_puts writes the string s to the Debug Terminal followed by a new-line character.

debug_puts returns -1 if a write error occurs, otherwise it returns a nonnegative value.

Embedded Studio Reference Manual C Library User Guide

340

debug_remove

Synopsis

int debug_remove(const char *filename);

Description

debug_remove removes the filename denoted by filename and returns 0 on success or -1 on error. The

filename is a host PC filename which is relative to the debugger working directory.

Embedded Studio Reference Manual C Library User Guide

341

debug_rename

Synopsis

int debug_rename(const char *oldfilename,
 const char *newfilename);

Description

debug_rename renames the file denoted by oldpath to newpath and returns zero on success or non-zero on

error. The oldpath and newpath are host PC filenames which are relative to the debugger working directory.

Embedded Studio Reference Manual C Library User Guide

342

debug_rewind

Synopsis

void debug_rewind(DEBUG_FILE *stream);

Description

debug_rewind sets the current file position of the stream to the beginning of the file and clears any error and

end of file conditions.

Embedded Studio Reference Manual C Library User Guide

343

debug_runtime_error

Synopsis

void debug_runtime_error(const char *error);

Description

debug_runtime_error causes the debugger to stop the target, position the cursor at the line that called

debug_runtime_error, and display the null-terminated string pointed to by error.

Embedded Studio Reference Manual C Library User Guide

344

debug_scanf

Synopsis

int debug_scanf(const char *format,
 ...);

Description

debug_scanf reads from the Debug Terminal, under control of the string pointed to by format that specifies

how subsequent arguments are converted for input. The format string is a standard C scanf format string. The

actual formatting is performed on the host by the debugger and therefore debug_scanf consumes only a very

small amount of code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_scanf returns number of characters read, or a negative value if an output or encoding error occurred.

Embedded Studio Reference Manual C Library User Guide

345

debug_scanf_c

Synopsis

int debug_scanf_c(__code const char *format,
 ...);

Description

debug_scanf_c is equivalent to debug_scanf with the format string in code memory.

Embedded Studio Reference Manual C Library User Guide

346

debug_system

Synopsis

int debug_system(char *command);

Description

debug_system executes the command with the host command line interpreter and returns the commands exit

status.

Embedded Studio Reference Manual C Library User Guide

347

debug_time

Synopsis

long debug_time(long *ptr);

Description

debug_time returns the number of seconds elapsed since midnight (00:00:00), January 1, 1970, coordinated

universal time (UTC), according to the system clock of the host computer. The return value is stored in *ptr if ptr

is not NULL.

Embedded Studio Reference Manual C Library User Guide

348

debug_tmpfile

Synopsis

DEBUG_FILE *debug_tmpfile(void);

Description

debug_tmpfile creates a temporary file on the host PC which is deleted when the stream is closed.

Embedded Studio Reference Manual C Library User Guide

349

debug_tmpnam

Synopsis

char *debug_tmpnam(char *str);

Description

debug_tmpnam returns a unique temporary filename. If str is NULL then a static buffer is used to store the

filename, otherwise the filename is stored in str. On success a pointer to the string is returned, on failure 0 is

returned.

Embedded Studio Reference Manual C Library User Guide

350

debug_ungetc

Synopsis

int debug_ungetc(int c,
 DEBUG_FILE *stream);

Description

debug_ungetc pushes the character c onto the input stream. If successful c is returned, otherwise -1 is returned.

Embedded Studio Reference Manual C Library User Guide

351

debug_unloadsymbols

Synopsis

void debug_unloadsymbols(const char *filename);

Description

debug_unloadsymbols instructs the debugger to unload the debugging symbols (previously loaded by a call to

debug_loadsymbols) in the file denoted by filename. The filename is a host PC filename which is relative to the

debugger working directory.

Embedded Studio Reference Manual C Library User Guide

352

debug_vfprintf

Synopsis

int debug_vfprintf(DEBUG_FILE *stream,
 const char *format,
 __va_list);

Description

debug_vfprintf is equivalent to debug_fprintf with arguments passed using stdarg.h rather than a variable

number of arguments.

Embedded Studio Reference Manual C Library User Guide

353

debug_vfscanf

Synopsis

int debug_vfscanf(DEBUG_FILE *stream,
 const char *format,
 __va_list);

Description

debug_vfscanf is equivalent to debug_fscanf with arguments passed using stdarg.h rather than a variable

number of arguments.

Embedded Studio Reference Manual C Library User Guide

354

debug_vprintf

Synopsis

int debug_vprintf(const char *format,
 __va_list);

Description

debug_vprintf is equivalent to debug_printf with arguments passed using stdarg.h rather than a variable

number of arguments.

Embedded Studio Reference Manual C Library User Guide

355

debug_vscanf

Synopsis

int debug_vscanf(const char *format,
 __va_list);

Description

debug_vscanf is equivalent to debug_scanf with arguments passed using stdarg.h rather than a variable

number of arguments.

Embedded Studio Reference Manual C Library User Guide

356

<errno.h>

API Summary

Error numbers

EDOM Domain error

EILSEQ Illegal byte sequence

EINVAL Invalid argument

ENOMEM No memory available

ERANGE Result too large or too small

Macros

errno Last-set error condition

Embedded Studio Reference Manual C Library User Guide

357

EDOM

Synopsis

#define EDOM ...

Description

EDOM - an input argument is outside the defined domain of a mathematical function.

Embedded Studio Reference Manual C Library User Guide

358

EILSEQ

Synopsis

#define EILSEQ ...

Description

EILSEQ - A wide-character code has been detected that does not correspond to a valid character, or a byte

sequence does not form a valid wide-character code.

Embedded Studio Reference Manual C Library User Guide

359

EINVAL

Synopsis

#define EINVAL 0x06

Description

EINVAL - An argument was invalid, or a combination of arguments was invalid.

Embedded Studio Reference Manual C Library User Guide

360

ENOMEM

Synopsis

#define ENOMEM 0x05

Description

ENOMEM - no memory can be allocated by a function in the library. Note that malloc, calloc, and realloc do not

set errno to ENOMEM on failure, but other library routines (such as duplocale) may set errno to ENOMEM when

memory allocation fails.

Embedded Studio Reference Manual C Library User Guide

361

ERANGE

Synopsis

#define ERANGE ...

Description

ERANGE - the result of the function is too large (overflow) or too small (underflow) to be represented in the

available space.

Embedded Studio Reference Manual C Library User Guide

362

errno

Synopsis

int errno;

Description

errno is treated as an writable l-value, but the implementation of how the l-value is read an written is hidden

from the user.

The value of errno is zero at program startup, but is never set to zero by any library function. The value of errno

may be set to a nonzero value by a library function, and this effect is documented in each function that does so.

Note

The ISO standard does not specify whether errno is a macro or an identifier declared with external linkage.

Portable programs must not make assumptions about the implementation of errno.

In this implementation, errno expands to a function call to __errno (MSP430, AVR, MAXQ) or

__aeabi_errno_addr (ARM) that returns a pointer to a volatile int. This function can be implemented by the

application to provide a thread-specific errno.

Embedded Studio Reference Manual C Library User Guide

363

<float.h>

API Summary

Double exponent minimum and maximum values

DBL_MAX_10_EXP The maximum exponent value in base 10 of a double

DBL_MAX_EXP The maximum exponent value of a double

DBL_MIN_10_EXP The minimal exponent value in base 10 of a double

DBL_MIN_EXP The minimal exponent value of a double

Implementation

DBL_DIG The number of digits of precision of a double

DBL_MANT_DIG The number of digits in a double

DECIMAL_DIG The number of decimal digits that can be rounded
without change

FLT_DIG The number of digits of precision of a float

FLT_EVAL_METHOD The evaluation format

FLT_MANT_DIG The number of digits in a float

FLT_RADIX The radix of the exponent representation

FLT_ROUNDS The rounding mode

Float exponent minimum and maximum values

FLT_MAX_10_EXP The maximum exponent value in base 10 of a float

FLT_MAX_EXP The maximum exponent value of a float

FLT_MIN_10_EXP The minimal exponent value in base 10 of a float

FLT_MIN_EXP The minimal exponent value of a float

Double minimum and maximum values

DBL_EPSILON The difference between 1 and the least value greater
than 1 of a double

DBL_MAX The maximum value of a double

DBL_MIN The minimal value of a double

Float minimum and maximum values

FLT_EPSILON The difference between 1 and the least value greater
than 1 of a float

FLT_MAX The maximum value of a float

FLT_MIN The minimal value of a float

Embedded Studio Reference Manual C Library User Guide

364

DBL_DIG

Synopsis

#define DBL_DIG 15

Description

DBL_DIG specifies The number of digits of precision of a double.

Embedded Studio Reference Manual C Library User Guide

365

DBL_EPSILON

Synopsis

#define DBL_EPSILON 2.2204460492503131E-16

Description

DBL_EPSILON the minimum positive number such that 1.0 + DBL_EPSILON != 1.0.

Embedded Studio Reference Manual C Library User Guide

366

DBL_MANT_DIG

Synopsis

#define DBL_MANT_DIG 53

Description

DBL_MANT_DIG specifies the number of base FLT_RADIX digits in the mantissa part of a double.

Embedded Studio Reference Manual C Library User Guide

367

DBL_MAX

Synopsis

#define DBL_MAX 1.7976931348623157E+308

Description

DBL_MAX is the maximum value of a double.

Embedded Studio Reference Manual C Library User Guide

368

DBL_MAX_10_EXP

Synopsis

#define DBL_MAX_10_EXP +308

Description

DBL_MAX_10_EXP is the maximum value in base 10 of the exponent part of a double.

Embedded Studio Reference Manual C Library User Guide

369

DBL_MAX_EXP

Synopsis

#define DBL_MAX_EXP +1024

Description

DBL_MAX_EXP is the maximum value of base FLT_RADIX in the exponent part of a double.

Embedded Studio Reference Manual C Library User Guide

370

DBL_MIN

Synopsis

#define DBL_MIN 2.2250738585072014E-308

Description

DBL_MIN is the minimum value of a double.

Embedded Studio Reference Manual C Library User Guide

371

DBL_MIN_10_EXP

Synopsis

#define DBL_MIN_10_EXP -307

Description

DBL_MIN_10_EXP is the minimum value in base 10 of the exponent part of a double.

Embedded Studio Reference Manual C Library User Guide

372

DBL_MIN_EXP

Synopsis

#define DBL_MIN_EXP -1021

Description

DBL_MIN_EXP is the minimum value of base FLT_RADIX in the exponent part of a double.

Embedded Studio Reference Manual C Library User Guide

373

DECIMAL_DIG

Synopsis

#define DECIMAL_DIG 17

Description

DECIMAL_DIG specifies the number of decimal digits that can be rounded to a floating-point number without

change to the value.

Embedded Studio Reference Manual C Library User Guide

374

FLT_DIG

Synopsis

#define FLT_DIG 6

Description

FLT_DIG specifies The number of digits of precision of a float.

Embedded Studio Reference Manual C Library User Guide

375

FLT_EPSILON

Synopsis

#define FLT_EPSILON 1.19209290E-07F // decimal constant

Description

FLT_EPSILON the minimum positive number such that 1.0 + FLT_EPSILON != 1.0.

Embedded Studio Reference Manual C Library User Guide

376

FLT_EVAL_METHOD

Synopsis

#define FLT_EVAL_METHOD 0

Description

FLT_EVAL_METHOD specifies that all operations and constants are evaluated to the range and precision of the

type.

Embedded Studio Reference Manual C Library User Guide

377

FLT_MANT_DIG

Synopsis

#define FLT_MANT_DIG 24

Description

FLT_MANT_DIG specifies the number of base FLT_RADIX digits in the mantissa part of a float.

Embedded Studio Reference Manual C Library User Guide

378

FLT_MAX

Synopsis

#define FLT_MAX 3.40282347E+38F

Description

FLT_MAX is the maximum value of a float.

Embedded Studio Reference Manual C Library User Guide

379

FLT_MAX_10_EXP

Synopsis

#define FLT_MAX_10_EXP +38

Description

FLT_MAX_10_EXP is the maximum value in base 10 of the exponent part of a float.

Embedded Studio Reference Manual C Library User Guide

380

FLT_MAX_EXP

Synopsis

#define FLT_MAX_EXP +128

Description

FLT_MAX_EXP is the maximum value of base FLT_RADIX in the exponent part of a float.

Embedded Studio Reference Manual C Library User Guide

381

FLT_MIN

Synopsis

#define FLT_MIN 1.17549435E-38F

Description

FLT_MIN is the minimum value of a float.

Embedded Studio Reference Manual C Library User Guide

382

FLT_MIN_10_EXP

Synopsis

#define FLT_MIN_10_EXP -37

Description

FLT_MIN_10_EXP is the minimum value in base 10 of the exponent part of a float.

Embedded Studio Reference Manual C Library User Guide

383

FLT_MIN_EXP

Synopsis

#define FLT_MIN_EXP -125

Description

FLT_MIN_EXP is the minimum value of base FLT_RADIX in the exponent part of a float.

Embedded Studio Reference Manual C Library User Guide

384

FLT_RADIX

Synopsis

#define FLT_RADIX 2

Description

FLT_RADIX specifies the radix of the exponent representation.

Embedded Studio Reference Manual C Library User Guide

385

FLT_ROUNDS

Synopsis

#define FLT_ROUNDS 1

Description

FLT_ROUNDS specifies the rounding mode of floating-point addition is round to nearest.

Embedded Studio Reference Manual C Library User Guide

386

<iso646.h>

Overview

The header <iso646.h> defines macros that expand to the corresponding tokens to ease writing C programs

with keyboards that do not have keys for frequently-used operators.

API Summary

Macros

and Alternative spelling for logical and operator

and_eq Alternative spelling for logical and-equals operator

bitand Alternative spelling for bitwise and operator

bitor Alternative spelling for bitwise or operator

compl Alternative spelling for bitwise complement operator

not Alternative spelling for logical not operator

not_eq Alternative spelling for not-equal operator

or Alternative spelling for logical or operator

or_eq Alternative spelling for bitwise or-equals operator

xor Alternative spelling for bitwise exclusive or operator

xor_eq Alternative spelling for bitwise exclusive-or-equals
operator

Embedded Studio Reference Manual C Library User Guide

387

and

Synopsis

#define and &&

Description

and defines the alternative spelling for &&.

Embedded Studio Reference Manual C Library User Guide

388

and_eq

Synopsis

#define and_eq &=

Description

and_eq defines the alternative spelling for &=.

Embedded Studio Reference Manual C Library User Guide

389

bitand

Synopsis

#define bitand &

Description

bitand defines the alternative spelling for &.

Embedded Studio Reference Manual C Library User Guide

390

bitor

Synopsis

#define bitor |

Description

bitor defines the alternative spelling for |.

Embedded Studio Reference Manual C Library User Guide

391

compl

Synopsis

#define compl ~

Description

compl defines the alternative spelling for ~.

Embedded Studio Reference Manual C Library User Guide

392

not

Synopsis

#define not !

Description

not defines the alternative spelling for !.

Embedded Studio Reference Manual C Library User Guide

393

not_eq

Synopsis

#define not_eq !=

Description

not_eq defines the alternative spelling for !=.

Embedded Studio Reference Manual C Library User Guide

394

or

Synopsis

#define or ||

Description

or defines the alternative spelling for ||.

Embedded Studio Reference Manual C Library User Guide

395

or_eq

Synopsis

#define or_eq |=

Description

or_eq defines the alternative spelling for |=.

Embedded Studio Reference Manual C Library User Guide

396

xor

Synopsis

#define xor ^

Description

xor defines the alternative spelling for ^.

Embedded Studio Reference Manual C Library User Guide

397

xor_eq

Synopsis

#define xor_eq ^=

Description

xor_eq defines the alternative spelling for ^=.

Embedded Studio Reference Manual C Library User Guide

398

<limits.h>

API Summary

Long integer minimum and maximum values

LONG_MAX Maximum value of a long integer

LONG_MIN Minimum value of a long integer

ULONG_MAX Maximum value of an unsigned long integer

Character minimum and maximum values

CHAR_MAX Maximum value of a plain character

CHAR_MIN Minimum value of a plain character

SCHAR_MAX Maximum value of a signed character

SCHAR_MIN Minimum value of a signed character

UCHAR_MAX Maximum value of an unsigned char

Long long integer minimum and maximum values

LLONG_MAX Maximum value of a long long integer

LLONG_MIN Minimum value of a long long integer

ULLONG_MAX Maximum value of an unsigned long long integer

Short integer minimum and maximum values

SHRT_MAX Maximum value of a short integer

SHRT_MIN Minimum value of a short integer

USHRT_MAX Maximum value of an unsigned short integer

Integer minimum and maximum values

INT_MAX Maximum value of an integer

INT_MIN Minimum value of an integer

UINT_MAX Maximum value of an unsigned integer

Type sizes

CHAR_BIT Number of bits in a character

Multi-byte values

MB_LEN_MAX maximum number of bytes in a multi-byte character

Embedded Studio Reference Manual C Library User Guide

399

CHAR_BIT

Synopsis

#define CHAR_BIT 8

Description

CHAR_BIT is the number of bits for smallest object that is not a bit-field (byte).

Embedded Studio Reference Manual C Library User Guide

400

CHAR_MAX

Synopsis

#define CHAR_MAX 255

Description

CHAR_MAX is the maximum value for an object of type char.

Embedded Studio Reference Manual C Library User Guide

401

CHAR_MIN

Synopsis

#define CHAR_MIN 0

Description

CHAR_MIN is the minimum value for an object of type char.

Embedded Studio Reference Manual C Library User Guide

402

INT_MAX

Synopsis

#define INT_MAX 2147483647

Description

INT_MAX is the maximum value for an object of type int.

Embedded Studio Reference Manual C Library User Guide

403

INT_MIN

Synopsis

#define INT_MIN (-2147483647 - 1)

Description

INT_MIN is the minimum value for an object of type int.

Embedded Studio Reference Manual C Library User Guide

404

LLONG_MAX

Synopsis

#define LLONG_MAX 9223372036854775807LL

Description

LLONG_MAX is the maximum value for an object of type long long int.

Embedded Studio Reference Manual C Library User Guide

405

LLONG_MIN

Synopsis

#define LLONG_MIN (-9223372036854775807LL - 1)

Description

LLONG_MIN is the minimum value for an object of type long long int.

Embedded Studio Reference Manual C Library User Guide

406

LONG_MAX

Synopsis

#define LONG_MAX 2147483647L

Description

LONG_MAX is the maximum value for an object of type long int.

Embedded Studio Reference Manual C Library User Guide

407

LONG_MIN

Synopsis

#define LONG_MIN (-2147483647L - 1)

Description

LONG_MIN is the minimum value for an object of type long int.

Embedded Studio Reference Manual C Library User Guide

408

MB_LEN_MAX

Synopsis

#define MB_LEN_MAX 4

Description

MB_LEN_MAX is the maximum number of bytes in a multi-byte character for any supported locale. Unicode (ISO

10646) characters between 0 and 10FFFF inclusive are supported which convert to a maximum of four bytes in

the UTF-8 encoding.

Embedded Studio Reference Manual C Library User Guide

409

SCHAR_MAX

Synopsis

#define SCHAR_MAX 127

Description

SCHAR_MAX is the maximum value for an object of type signed char.

Embedded Studio Reference Manual C Library User Guide

410

SCHAR_MIN

Synopsis

#define SCHAR_MIN (-128)

Description

SCHAR_MIN is the minimum value for an object of type signed char.

Embedded Studio Reference Manual C Library User Guide

411

SHRT_MAX

Synopsis

#define SHRT_MAX 32767

Description

SHRT_MAX is the minimum value for an object of type short int.

Embedded Studio Reference Manual C Library User Guide

412

SHRT_MIN

Synopsis

#define SHRT_MIN (-32767 - 1)

Description

SHRT_MIN is the minimum value for an object of type short int.

Embedded Studio Reference Manual C Library User Guide

413

UCHAR_MAX

Synopsis

#define UCHAR_MAX 255

Description

UCHAR_MAX is the maximum value for an object of type unsigned char.

Embedded Studio Reference Manual C Library User Guide

414

UINT_MAX

Synopsis

#define UINT_MAX 4294967295U

Description

UINT_MAX is the maximum value for an object of type unsigned int.

Embedded Studio Reference Manual C Library User Guide

415

ULLONG_MAX

Synopsis

#define ULLONG_MAX 18446744073709551615ULL

Description

ULLONG_MAX is the maximum value for an object of type unsigned long long int.

Embedded Studio Reference Manual C Library User Guide

416

ULONG_MAX

Synopsis

#define ULONG_MAX 4294967295UL

Description

ULONG_MAX is the maximum value for an object of type unsigned long int.

Embedded Studio Reference Manual C Library User Guide

417

USHRT_MAX

Synopsis

#define USHRT_MAX 65535

Description

USHRT_MAX is the minimum value for an object of type unsigned short int.

Embedded Studio Reference Manual C Library User Guide

418

<locale.h>

API Summary

Structures

lconv Formatting info for numeric values

Functions

localeconv Get current locale data

setlocale Set Locale

Embedded Studio Reference Manual C Library User Guide

419

lconv

Synopsis

typedef struct {
 char *decimal_point;
 char *thousands_sep;
 char *grouping;
 char *int_curr_symbol;
 char *currency_symbol;
 char *mon_decimal_point;
 char *mon_thousands_sep;
 char *mon_grouping;
 char *positive_sign;
 char *negative_sign;
 char int_frac_digits;
 char frac_digits;
 char p_cs_precedes;
 char p_sep_by_space;
 char n_cs_precedes;
 char n_sep_by_space;
 char p_sign_posn;
 char n_sign_posn;
 char int_p_cs_precedes;
 char int_n_cs_precedes;
 char int_p_sep_by_space;
 char int_n_sep_by_space;
 char int_p_sign_posn;
 char int_n_sign_posn;
} lconv;

Description

lconv structure holds formatting information on how numeric values are to be written. Note that the order of

fields in this structure is not consistent between implementations, nor is it consistent between C89 and C99

standards.

The members decimal_point, grouping, and thousands_sep are controlled by LC_NUMERIC, the remainder by

LC_MONETARY.

The members int_n_cs_precedes, int_n_sep_by_space, int_n_sign_posn, int_p_cs_precedes,

int_p_sep_by_space. and int_p_sign_posn are added by the C99 standard.

We have standardized on the ordering specified by the ARM EABI for the base of this structure. This ordering is

neither that of C89 nor C99.

Member Description

currency_symbol Local currency symbol.

decimal_point Decimal point separator.

frac_digits Amount of fractional digits to the right of the decimal
point for monetary quantities in the local format.

Embedded Studio Reference Manual C Library User Guide

420

grouping Specifies the amount of digits that form each of the
groups to be separated by thousands_sep separator
for non-monetary quantities.

int_curr_symbol International currency symbol.

int_frac_digits Amount of fractional digits to the right of the decimal
point for monetary quantities in the international
format.

mon_decimal_point Decimal-point separator used for monetary quantities.

mon_grouping Specifies the amount of digits that form each of the
groups to be separated by mon_thousands_sep
separator for monetary quantities.

mon_thousands_sep Separators used to delimit groups of digits to the left
of the decimal point for monetary quantities.

negative_sign Sign to be used for negative monetary quantities.

n_cs_precedes Whether the currency symbol should precede negative
monetary quantities.

n_sep_by_space Whether a space should appear between the currency
symbol and negative monetary quantities.

n_sign_posn Position of the sign for negative monetary quantities.

positive_sign Sign to be used for nonnegative (positive or zero)
monetary quantities.

p_cs_precedes Whether the currency symbol should precede
nonnegative (positive or zero) monetary quantities.

p_sep_by_space Whether a space should appear between the currency
symbol and nonnegative (positive or zero) monetary
quantities.

p_sign_posn Position of the sign for nonnegative (positive or zero)
monetary quantities.

thousands_sep Separators used to delimit groups of digits to the left
of the decimal point for non-monetary quantities.

Embedded Studio Reference Manual C Library User Guide

421

localeconv

Synopsis

 localeconv(void);

Description

localeconv returns a pointer to a structure of type lconv with the corresponding values for the current locale

filled in.

Embedded Studio Reference Manual C Library User Guide

422

setlocale

Synopsis

char *setlocale(int category,
 const char *locale);

Description

setlocale sets the current locale. The category parameter can have the following values:

Name Locale affected

LC_ALL Entire locale

LC_COLLATE Affects strcoll and strxfrm

LC_CTYPE Affects character handling

LC_MONETARY Affects monetary formatting information

LC_NUMERIC Affects decimal-point character in I/O and string
formatting operations

LC_TIME Affects strftime

The locale parameter contains the name of a C locale to set or if NULL is passed the current locale is not

changed.

Return Value

setlocale returns the name of the current locale.

Embedded Studio Reference Manual C Library User Guide

423

<math.h>

API Summary

Comparison Macros

isgreater Is greater

isgreaterequal Is greater or equal

isless Is less

islessequal Is less or equal

islessgreater Is less or greater

isunordered Is unordered

Classification Macros

fpclassify Classify floating type

isfinite Test for a finite value

isinf Test for infinity

isnan Test for NaN

isnormal Test for a normal value

signbit Test sign

Trigonometric functions

cos Compute cosine of a double

cosf Compute cosine of a float

sin Compute sine of a double

sinf Compute sine of a float

tan Compute tangent of a double

tanf Compute tangent of a double

Inverse trigonometric functions

acos Compute inverse cosine of a double

acosf Compute inverse cosine of a float

asin Compute inverse sine of a double

asinf Compute inverse sine of a float

atan Compute inverse tangent of a double

atan2 Compute inverse tangent of a ratio of doubles

atan2f Compute inverse tangent of a ratio of floats

atanf Compute inverse tangent of a float

Exponential and logarithmic functions

Embedded Studio Reference Manual C Library User Guide

424

exp Compute exponential of a double

exp2 Compute binary exponential of a double

exp2f Compute binary exponential of a float

expf Compute exponential of a float

expm1 Compute exponential minus one of a double

expm1f Compute exponential minus one of a float

frexp Set exponent of a double

frexpf Set exponent of a float

ilogb Compute integer binary logarithm of a double

ilogbf Compute integer binary logarithm of a float

ldexp Adjust exponent of a double

ldexpf Adjust exponent of a float

log Compute natural logarithm of a double

log10 Compute common logarithm of a double

log10f Compute common logarithm of a float

log1p Compute natural logarithm plus one of a double

log1pf Compute natural logarithm plus one of a float

log2 Compute binary logarithm of a double

log2f Compute binary logarithm of a float

logb Compute floating-point base logarithm of a double

logbf Compute floating-point base logarithm of a float

logf Compute natural logarithm of a float

scalbln Scale a double

scalblnf Scale a float

scalbn Scale a double

scalbnf Scale a float

Rounding and remainder functions

ceil Compute smallest integer not greater than a double

ceilf Compute smallest integer not greater than a float

floor Compute largest integer not greater than a double

floorf Compute largest integer not greater than a float

fmod Compute remainder after division of two doubles

fmodf Compute remainder after division of two floats

llrint Round and cast double to long long

llrintf Round and cast float to long long

Embedded Studio Reference Manual C Library User Guide

425

llround Round and cast double to long long

llroundf Round and cast float to long long

lrint Round and cast double to long

lrintf Round and cast float to long

lround Round and cast double to long

lroundf Round and cast float to long

modf Break a double into integer and fractional parts

modff Break a float into integer and fractional parts

nearbyint Round double to nearby integral value

nearbyintf Round float to nearby integral value

remainder Compute remainder of a double

remainderf Compute remainder of a float

remquo Compute remainder and quotient of a double

remquof Compute remainder and quotient of a float

rint Round a double to an integral value

rintf Round a float to an integral value

round Round a double to the nearest integral value

roundf Round a float to the nearest integral value

trunc Truncate a double value

truncf Truncate a float value

Power functions

cbrt Compute cube root of a double

cbrtf Compute cube root of a float

hypot Compute complex magnitude of two doubles

hypotf Compute complex magnitude of two floats

pow Raise a double to a power

powf Raise a float to a power

sqrt Compute square root of a double

sqrtf Compute square root of a float

Absolute value functions

fabs Compute absolute value of a double

fabsf Compute absolute value of a float

Maximum, minimum, and positive difference functions

fdim Compute positive difference of two doubles

fdimf Compute positive difference of two floats

Embedded Studio Reference Manual C Library User Guide

426

fmax Compute maximum of two doubles

fmaxf Compute maximum of two floats

fmin Compute minimum of two doubles

fminf Compute minimum of two floats

Hyperbolic functions

cosh Compute hyperbolic cosine of a double

coshf Compute hyperbolic cosine of a float

sinh Compute hyperbolic sine of a double

sinhf Compute hyperbolic sine of a float

tanh Compute hyperbolic tangent of a double

tanhf Compute hyperbolic tangent of a float

Inverse hyperbolic functions

acosh Compute inverse hyperbolic cosine of a double

acoshf Compute inverse hyperbolic cosine of a float

asinh Compute inverse hyperbolic sine of a double

asinhf Compute inverse hyperbolic sine of a float

atanh Compute inverse hyperbolic tangent of a double

atanhf Compute inverse hyperbolic tangent of a float

Fused multiply functions

fma Compute fused multiply-add of doubles

fmaf Compute fused multiply-add of floats

Floating-point manipulation functions

copysign Copy magnitude and sign of a double

copysignf Copy magnitude and sign of a float

nextafter Next representable double value

nextafterf Next representable float value

Error and Gamma functions

erf Compute error function of a double

erfc Compute complementary error function of a double

erfcf Compute complementary error function of a float

erff Compute error function of a float

lgamma Compute log-gamma function of a double

lgammaf Compute log-gamma function of a float

tgamma Compute gamma function of a double

tgammaf Compute gamma function of a float

Embedded Studio Reference Manual C Library User Guide

427

acos

Synopsis

double acos(double x);

Description

acos returns the principal value, in radians, of the inverse circular cosine of x. The principal value lies in the

interval [0, PI] radians.

If |x| > 1, errno is set to EDOM and acos returns HUGE_VAL.

If x is NaN, acos returns x. If |x| > 1, acos returns NaN.

Embedded Studio Reference Manual C Library User Guide

428

acosf

Synopsis

float acosf(float x);

Description

acosf returns the principal value, in radians, of the inverse circular cosine of x. The principal value lies in the

interval [0, PI] radians.

If |a| 1, errno is set to EDOM and acosf returns HUGE_VAL.

If x is NaN, acosf returns x. If |x| > 1, acosf returns NaN.

Embedded Studio Reference Manual C Library User Guide

429

acosh

Synopsis

double acosh(double x);

Description

acosh returns the non-negative inverse hyperbolic cosine of x.

acosh(x) is defined as log(x + sqrt(x^2 1)), assuming completely accurate computation.

If x < 1, errno is set to EDOM and acosh returns HUGE_VAL.

If x < 1, acosh returns NaN.

If x is NaN, acosh returns NaN.

Embedded Studio Reference Manual C Library User Guide

430

acoshf

Synopsis

float acoshf(float x);

Description

acoshf returns the non-negative inverse hyperbolic cosine of x.

acosh(x) is defined as log(x + sqrt(x^2 1)), assuming completely accurate computation.

If x < 1, errno is set to EDOM and acoshf returns HUGE_VALF.

If x < 1, acoshf returns NaN.

If x is NaN, acoshf returns that NaN.

Embedded Studio Reference Manual C Library User Guide

431

asin

Synopsis

double asin(double x);

Description

asin returns the principal value, in radians, of the inverse circular sine of x. The principal value lies in the interval

[, +] radians.

If |x| > 1, errno is set to EDOM and asin returns HUGE_VAL.

If x is NaN, asin returns x. If |x| > 1, asin returns NaN.

Embedded Studio Reference Manual C Library User Guide

432

asinf

Synopsis

float asinf(float x);

Description

asinf returns the principal value, in radians, of the inverse circular sine of val. The principal value lies in the

interval [, +] radians.

If |x| > 1, errno is set to EDOM and asinf returns HUGE_VALF.

If x is NaN, asinf returns x. If |x| > 1, asinf returns NaN.

Embedded Studio Reference Manual C Library User Guide

433

asinh

Synopsis

double asinh(double x);

Description

asinh calculates the hyperbolic sine of x.

If |x| > ~709.782, errno is set to EDOM and asinh returns HUGE_VAL.

If x is +, , or NaN, asinh returns |x|. If |x| > ~709.782, asinh returns + or depending upon the sign of x.

Embedded Studio Reference Manual C Library User Guide

434

asinhf

Synopsis

float asinhf(float x);

Description

asinhf calculates the hyperbolic sine of x.

If |x| > ~88.7228, errnois set to EDOM and asinhf returns HUGE_VALF.

If x is +, , or NaN, asinhf returns |x|. If |x| > ~88.7228, asinhf returns + or depending upon the sign of x.

Embedded Studio Reference Manual C Library User Guide

435

atan

Synopsis

double atan(double x);

Description

atan returns the principal value, in radians, of the inverse circular tangent of x. The principal value lies in the

interval [, +] radians.

Embedded Studio Reference Manual C Library User Guide

436

atan2

Synopsis

double atan2(double x,
 double y);

Description

atan2 returns the value, in radians, of the inverse circular tangent of y divided by x using the signs of x and y to

compute the quadrant of the return value. The principal value lies in the interval [/2, +] radians. If x = y = 0, errno

is set to EDOM and atan2 returns HUGE_VAL.

atan2(x, NaN) is NaN.

atan2(NaN, x) is NaN.

atan2(0, +(anything but NaN)) is 0.

atan2(0, (anything but NaN)) is .

atan2((anything but 0 and NaN), 0) is .

atan2((anything but and NaN), +) is 0.

atan2((anything but and NaN),) is .

atan2(, +) is .

atan2(,) is .

atan2(, (anything but 0, NaN, and)) is .

Embedded Studio Reference Manual C Library User Guide

437

atan2f

Synopsis

float atan2f(float y,
 float x);

Description

atan2f returns the value, in radians, of the inverse circular tangent of y divided by x using the signs of x and y to

compute the quadrant of the return value. The principal value lies in the interval [, +] radians.

If x = y = 0, errno is set to EDOM and atan2f returns HUGE_VALF.

atan2f(x, NaN) is NaN.

atan2f(NaN, x) is NaN.

atan2f(0, +(anything but NaN)) is 0.

atan2f(0, (anything but NaN)) is .

atan2f((anything but 0 and NaN), 0) is .

atan2f((anything but and NaN), +) is 0.

atan2f((anything but and NaN),) is .

atan2f(, +) is .

atan2f(,) is .

atan2f(, (anything but 0, NaN, and)) is .

Embedded Studio Reference Manual C Library User Guide

438

atanf

Synopsis

float atanf(float x);

Description

atanf returns the principal value, in radians, of the inverse circular tangent of x. The principal value lies in the

interval [, +] radians.

Embedded Studio Reference Manual C Library User Guide

439

atanh

Synopsis

double atanh(double x);

Description

atanh returns the inverse hyperbolic tangent of x.

If |x| 1, errno is set to EDOM and atanh returns HUGE_VAL.

If |x| > 1 atanh returns NaN.

If x is NaN, atanh returns that NaN.

If x is 1, atanh returns .

If x is 1, atanh returns .

Embedded Studio Reference Manual C Library User Guide

440

atanhf

Synopsis

float atanhf(float x);

Description

atanhf returns the inverse hyperbolic tangent of x.

If |x| > 1 atanhf returns NaN. If x is NaN, atanhf returns that NaN. If x is 1, atanhf returns . If x is 1, atanhf returns .

Embedded Studio Reference Manual C Library User Guide

441

cbrt

Synopsis

double cbrt(double x);

Description

cbrt computes the cube root of x.

Embedded Studio Reference Manual C Library User Guide

442

cbrtf

Synopsis

float cbrtf(float x);

Description

cbrtf computes the cube root of x.

Embedded Studio Reference Manual C Library User Guide

443

ceil

Synopsis

double ceil(double x);

Description

ceil computes the smallest integer value not less than x.

ceil (0) is 0. ceil () is .

Embedded Studio Reference Manual C Library User Guide

444

ceilf

Synopsis

float ceilf(float x);

Description

ceilf computes the smallest integer value not less than x.

ceilf (0) is 0. ceilf () is .

Embedded Studio Reference Manual C Library User Guide

445

copysign

Synopsis

double copysign(double x,
 double y);

Description

copysign returns a value with the magnitude of x and the sign of y.

Embedded Studio Reference Manual C Library User Guide

446

copysignf

Synopsis

float copysignf(float x,
 float y);

Description

copysignf returns a value with the magnitude of x and the sign of y.

Embedded Studio Reference Manual C Library User Guide

447

cos

Synopsis

double cos(double x);

Description

cos returns the radian circular cosine of x.

If |x| > 10^9, errno is set to EDOM and cos returns HUGE_VAL.

If x is NaN, cos returns x. If |x| is , cos returns NaN.

Embedded Studio Reference Manual C Library User Guide

448

cosf

Synopsis

float cosf(float x);

Description

cosf returns the radian circular cosine of x.

If |x| > 10^9, errno is set to EDOM and cosf returns HUGE_VALF.

If x is NaN, cosf returns x. If |x| is , cosf returns NaN.

Embedded Studio Reference Manual C Library User Guide

449

cosh

Synopsis

double cosh(double x);

Description

cosh calculates the hyperbolic cosine of x.

If |x| > ~709.782, errno is set to EDOM and cosh returns HUGE_VAL.

If x is +, , or NaN, cosh returns |x|.> If |x| > ~709.782, cosh returns + or depending upon the sign of x.

Embedded Studio Reference Manual C Library User Guide

450

coshf

Synopsis

float coshf(float x);

Description

coshf calculates the hyperbolic sine of x.

If |x| > ~88.7228, errno is set to EDOM and coshf returns HUGE_VALF.

If x is +, , or NaN, coshf returns |x|.

If |x| > ~88.7228, coshf returns + or depending upon the sign of x.

Embedded Studio Reference Manual C Library User Guide

451

erf

Synopsis

double erf(double x);

Description

erf returns the error function for x.

Embedded Studio Reference Manual C Library User Guide

452

erfc

Synopsis

double erfc(double x);

Description

erfc returns the complementary error function for x.

Embedded Studio Reference Manual C Library User Guide

453

erfcf

Synopsis

float erfcf(float x);

Description

erfcf returns the complementary error function for x.

Embedded Studio Reference Manual C Library User Guide

454

erff

Synopsis

float erff(float x);

Description

erff returns the error function for x.

Embedded Studio Reference Manual C Library User Guide

455

exp

Synopsis

double exp(double x);

Description

exp computes the base-e exponential of x.

If |x| > ~709.782, errno is set to EDOM and exp returns HUGE_VAL.

If x is NaN, exp returns NaN.

If x is , exp returns .

If x is , exp returns 0.

Embedded Studio Reference Manual C Library User Guide

456

exp2

Synopsis

double exp2(double x);

Description

exp2 returns 2 raised to the power of x.

Embedded Studio Reference Manual C Library User Guide

457

exp2f

Synopsis

float exp2f(float x);

Description

exp2f returns 2 raised to the power of x.

Embedded Studio Reference Manual C Library User Guide

458

expf

Synopsis

float expf(float x);

Description

expf computes the base-e exponential of x.

If |x| > ~88.722, errno is set to EDOM and expf returns HUGE_VALF. If x is NaN, expf returns NaN.

If x is , expf returns .

If x is , expf returns 0.

Embedded Studio Reference Manual C Library User Guide

459

expm1

Synopsis

double expm1(double x);

Description

expm1 returns e raised to the power of x minus one.

Embedded Studio Reference Manual C Library User Guide

460

expm1f

Synopsis

float expm1f(float x);

Description

expm1f returns e raised to the power of x minus one.

Embedded Studio Reference Manual C Library User Guide

461

fabs

Synopsis

double fabs(double x);

Embedded Studio Reference Manual C Library User Guide

462

fabsf

Synopsis

float fabsf(float x);

Description

fabsf computes the absolute value of the floating-point number x.

Embedded Studio Reference Manual C Library User Guide

463

fdim

Synopsis

double fdim(double x,
 double y);

Description

fdim returns the positive difference between x and y.

Embedded Studio Reference Manual C Library User Guide

464

fdimf

Synopsis

float fdimf(float x,
 float y);

Description

fdimf returns the positive difference between x and y.

Embedded Studio Reference Manual C Library User Guide

465

floor

Synopsis

double floor(double);

floor computes the largest integer value not greater than x.

floor (0) is 0. floor () is .

Embedded Studio Reference Manual C Library User Guide

466

floorf

Synopsis

float floorf(float);

floorf computes the largest integer value not greater than x.

floorf(0) is 0. floorf() is .

Embedded Studio Reference Manual C Library User Guide

467

fma

Synopsis

double fma(double x,
 double y,
 double z);

Description

fma computes x y + z with a single rounding.

Embedded Studio Reference Manual C Library User Guide

468

fmaf

Synopsis

float fmaf(float x,
 float y,
 float z);

Description

fmaf computes x y + z with a single rounding.

Embedded Studio Reference Manual C Library User Guide

469

fmax

Synopsis

double fmax(double x,
 double y);

Description

fmax determines the maximum of x and y.

fmax (NaN, y) is y. fmax (x, NaN) is x.

Embedded Studio Reference Manual C Library User Guide

470

fmaxf

Synopsis

float fmaxf(float x,
 float y);

Description

fmaxf determines the maximum of x and y.

fmaxf (NaN, y) is y. fmaxf(x, NaN) is x.

Embedded Studio Reference Manual C Library User Guide

471

fmin

Synopsis

double fmin(double x,
 double y);

Description

fmin determines the minimum of x and y.

fmin (NaN, y) is y. fmin (x, NaN) is x.

Embedded Studio Reference Manual C Library User Guide

472

fminf

Synopsis

float fminf(float x,
 float y);

Description

fminf determines the minimum of x and y.

fminf (NaN, y) is y. fminf (x, NaN) is x.

Embedded Studio Reference Manual C Library User Guide

473

fmod

Synopsis

double fmod(double x,
 double y);

Description

fmod computes the floating-point remainder of x divided by y. #b #this returns the value x n y, for some integer

n such that, if y is nonzero, the result has the same sign as x and magnitude less than the magnitude of y.

fmod (NaN, y) is NaN. fmod (x, NaN) is NaN. fmod (0, y) is 0 for y not zero.

fmod (, y) is NaN.

fmod (x, 0) is NaN.

fmod (x,) is x for x not infinite.

Embedded Studio Reference Manual C Library User Guide

474

fmodf

Synopsis

float fmodf(float x,
 float y);

Description

fmodf computes the floating-point remainder of x divided by y. fmodf returns the value x n y, for some integer n

such that, if y is nonzero, the result has the same sign as x and magnitude less than the magnitude of y.

fmodf (NaN, y) is NaN. fmodf (x, NaN) is NaN. fmodf (0, y) is 0 for y not zero.

fmodf (, y) is NaN.

fmodf (x, 0) is NaN.

fmodf (x,) is x for x not infinite.

Embedded Studio Reference Manual C Library User Guide

475

fpclassify

Synopsis

#define fpclassify(x) (__is_float32(x) ? __float32_classify(x) : __float64_classify(x))

Description

fpclassify classifies x as NaN, infinite, normal, subnormal, zero, or into another implementation-defined

category. fpclassify returns one of:

FP_ZERO

FP_SUBNORMAL

FP_NORMAL

FP_INFINITE

FP_NAN

Embedded Studio Reference Manual C Library User Guide

476

frexp

Synopsis

double frexp(double x,
 int *exp);

Description

frexp breaks a floating-point number into a normalized fraction and an integral power of 2.

frexp stores power of two in the int object pointed to by exp and returns the value x, such that x has a

magnitude in the interval [1/2, 1) or zero, and value equals x * 2^exp.

If x is zero, both parts of the result are zero.

If x is or NaN, frexp returns x and stores zero into the int object pointed to by exp.

Embedded Studio Reference Manual C Library User Guide

477

frexpf

Synopsis

float frexpf(float x,
 int *exp);

Description

frexpf breaks a floating-point number into a normalized fraction and an integral power of 2.

frexpf stores power of two in the int object pointed to by frexpf and returns the value x, such that x has a

magnitude in the interval [, 1) or zero, and value equals x * 2^exp.

If x is zero, both parts of the result are zero.

If x is or NaN, frexpf returns x and stores zero into the int object pointed to by exp.

Embedded Studio Reference Manual C Library User Guide

478

hypot

Synopsis

double hypot(double x,
 double y);

Description

hypot computes the square root of the sum of the squares of x and y, sqrt(x*x + y*y), without undue overflow or

underflow. If x and y are the lengths of the sides of a right-angled triangle, then hypot computes the length of

the hypotenuse.

If x or y is + or , hypot returns .

If x or y is NaN, hypot returns NaN.

Embedded Studio Reference Manual C Library User Guide

479

hypotf

Synopsis

float hypotf(float x,
 float y);

Description

hypotf computes the square root of the sum of the squares of x and y, sqrtf(x*x + y*y), without undue overflow

or underflow. If x and y are the lengths of the sides of a right-angled triangle, then hypotf computes the length

of the hypotenuse.

If x or y is + or , hypotf returns . If x or y is NaN, hypotf returns NaN.

Embedded Studio Reference Manual C Library User Guide

480

ilogb

Synopsis

int ilogb(double x);

Description

ilogb returns the integral part of the logarithm of x, using FLT_RADIX as the base for the logarithm.

Embedded Studio Reference Manual C Library User Guide

481

ilogbf

Synopsis

int ilogbf(float x);

Description

ilogbf returns the integral part of the logarithm of x, using FLT_RADIX as the base for the logarithm.

Embedded Studio Reference Manual C Library User Guide

482

isfinite

Synopsis

#define isfinite(x) (sizeof(x) == sizeof(float) ? __float32_isfinite(x) : __float64_isfinite(x))

Description

isfinite determines whether x is a finite value (zero, subnormal, or normal, and not infinite or NaN). isfinite

returns a non-zero value if and only if x has a finite value.

Embedded Studio Reference Manual C Library User Guide

483

isgreater

Synopsis

#define isgreater(x,y) (!isunordered(x, y) && (x > y))

Description

isgreater returns whether x is greater than y.

Embedded Studio Reference Manual C Library User Guide

484

isgreaterequal

Synopsis

#define isgreaterequal(x,y) (!isunordered(x, y) && (x >= y))

Description

isgreaterequal returns whether x is greater than or equal to y.

Embedded Studio Reference Manual C Library User Guide

485

isinf

Synopsis

#define isinf(x) (sizeof(x) == sizeof(float) ? __float32_isinf(x) : __float64_isinf(x))

Description

isinf determines whether x is an infinity (positive or negative). The determination is based on the type of the

argument.

Embedded Studio Reference Manual C Library User Guide

486

isless

Synopsis

#define isless(x,y) (!isunordered(x, y) && (x < y))

Description

isless returns whether x is less than y.

Embedded Studio Reference Manual C Library User Guide

487

islessequal

Synopsis

#define islessequal(x,y) (!isunordered(x, y) && (x <= y))

Description

islessequal returns whether x is less than or equal to y.

Embedded Studio Reference Manual C Library User Guide

488

islessgreater

Synopsis

#define islessgreater(x,y) (!isunordered(x, y) && (x < y || x > y))

Description

islessgreater returns whether x is less than or greater than y.

Embedded Studio Reference Manual C Library User Guide

489

isnan

Synopsis

#define isnan(x) (sizeof(x) == sizeof(float) ? __float32_isnan(x) : __float64_isnan(x))

Description

isnan determines whether x is a NaN. The determination is based on the type of the argument.

Embedded Studio Reference Manual C Library User Guide

490

isnormal

Synopsis

#define isnormal(x) (sizeof(x) == sizeof(float) ? __float32_isnormal(x) : __float64_isnormal(x))

Description

isnormal determines whether x is a normal value (zero, subnormal, or normal, and not infinite or NaN).. isnormal

returns a non-zero value if and only if x has a normal value.

Embedded Studio Reference Manual C Library User Guide

491

isunordered

Synopsis

#define isunordered(a,b) (fpclassify(a) == FP_NAN || fpclassify(b) == FP_NAN)

Description

isunordered returns whether x or y are unordered values.

Embedded Studio Reference Manual C Library User Guide

492

ldexp

Synopsis

double ldexp(double x,
 int exp);

Description

ldexp multiplies a floating-point number by an integral power of 2.

ldexp returns x * 2^exp.

If the result overflows, errno is set to ERANGE and ldexp returns HUGE_VALF.

If x is or NaN, ldexp returns x. If the result overflows, ldexp returns .

Embedded Studio Reference Manual C Library User Guide

493

ldexpf

Synopsis

float ldexpf(float x,
 int exp);

Description

ldexpf multiplies a floating-point number by an integral power of 2.

ldexpf returns x * 2^exp. If the result overflows, errno is set to ERANGE and ldexpf returns HUGE_VALF.

If x is or NaN, ldexpf returns x. If the result overflows, ldexpf returns .

Embedded Studio Reference Manual C Library User Guide

494

lgamma

Synopsis

double lgamma(double x);

Description

lgamma returns the natural logarithm of the gamma function for x.

Embedded Studio Reference Manual C Library User Guide

495

lgammaf

Synopsis

float lgammaf(float x);

Description

lgammaf returns the natural logarithm of the gamma function for x.

Embedded Studio Reference Manual C Library User Guide

496

llrint

Synopsis

long long int llrint(double x);

Description

llrint rounds x to an integral value and returns it as a long long int.

Embedded Studio Reference Manual C Library User Guide

497

llrintf

Synopsis

long long int llrintf(float x);

Description

llrintf rounds x to an integral value and returns it as a long long int.

Embedded Studio Reference Manual C Library User Guide

498

llround

Synopsis

long long int llround(double x);

Description

llround rounds x to an integral value, with halfway cases rounded away from zero, and returns it as a long long

int.

Embedded Studio Reference Manual C Library User Guide

499

llroundf

Synopsis

long long int llroundf(float x);

Description

llroundf rounds x to an integral value, with halfway cases rounded away from zero, and returns it as a long long

int.

Embedded Studio Reference Manual C Library User Guide

500

log

Synopsis

double log(double x);

Description

log computes the base-e logarithm of x.

If x = 0, errno is set to ERANGE and log returns HUGE_VAL. If x < 0, errno is set to EDOM and log returns

HUGE_VAL.

If x < 0 or x = , log returns NaN.

If x = 0, log returns .

If x = , log returns .

If x = NaN, log returns x.

Embedded Studio Reference Manual C Library User Guide

501

log10

Synopsis

double log10(double x);

Description

log10 computes the base-10 logarithm of x.

If x = 0, errno is set to ERANGE and log10 returns HUGE_VAL. If x < 0, errno is set to EDOM and log10 returns

HUGE_VAL.

If x < 0 or x = , log10 returns NaN.

If x = 0, log10 returns .

If x = , log10 returns .

If x = NaN, log10 returns x.

Embedded Studio Reference Manual C Library User Guide

502

log10f

Synopsis

float log10f(float x);

Description

log10f computes the base-10 logarithm of x.

If x = 0, errno is set to ERANGE and log10f returns HUGE_VALF. If x < 0, errno is set to EDOM and log10f returns

HUGE_VALF.

If x < 0 or x = , log10f returns NaN.

If x = 0, log10f returns .

If x = , log10f returns .

If x = NaN, log10f returns x.

Embedded Studio Reference Manual C Library User Guide

503

log1p

Synopsis

double log1p(double x);

Description

log1p computes the base-e logarithm of x plus one.

Embedded Studio Reference Manual C Library User Guide

504

log1pf

Synopsis

float log1pf(float x);

Description

log1pf computes the base-e logarithm of x plus one.

Embedded Studio Reference Manual C Library User Guide

505

log2

Synopsis

double log2(double x);

Description

log2 computes the base-2 logarithm of x.

Embedded Studio Reference Manual C Library User Guide

506

log2f

Synopsis

float log2f(float x);

Description

log2f computes the base-2 logarithm of x.

Embedded Studio Reference Manual C Library User Guide

507

logb

Synopsis

double logb(double x);

Description

logb computes the base-FLT_RADIX logarithm of x.

Embedded Studio Reference Manual C Library User Guide

508

logbf

Synopsis

float logbf(float x);

Description

logbf computes the base-FLT_RADIX logarithm of x.

Embedded Studio Reference Manual C Library User Guide

509

logf

Synopsis

float logf(float x);

Description

logf computes the base-e logarithm of x.

If x = 0, errno is set to ERANGE and logf returns HUGE_VALF. If x < 0, errno is set to EDOM and logf returns

HUGE_VALF.

If x < 0 or x = , logf returns NaN.

If x = 0, logf returns .

If x = , logf returns .

If x = NaN, logf returns x.

Embedded Studio Reference Manual C Library User Guide

510

lrint

Synopsis

long int lrint(double x);

Description

lrint rounds x to an integral value and returns it as a long int.

Embedded Studio Reference Manual C Library User Guide

511

lrintf

Synopsis

long int lrintf(float x);

Description

lrintf rounds x to an integral value and returns it as a long int.

Embedded Studio Reference Manual C Library User Guide

512

lround

Synopsis

long int lround(double x);

Description

lround rounds x to an integral value, with halfway cases rounded away from zero, and returns it as a long int.

Embedded Studio Reference Manual C Library User Guide

513

lroundf

Synopsis

long int lroundf(float x);

Description

lroundf rounds x to an integral value, with halfway cases rounded away from zero, and returns it as a long int.

Embedded Studio Reference Manual C Library User Guide

514

modf

Synopsis

double modf(double x,
 double *iptr);

Description

modf breaks x into integral and fractional parts, each of which has the same type and sign as x.

The integral part (in floating-point format) is stored in the object pointed to by iptr and modf returns the signed

fractional part of x.

Embedded Studio Reference Manual C Library User Guide

515

modff

Synopsis

float modff(float x,
 float *iptr);

Description

modff breaks x into integral and fractional parts, each of which has the same type and sign as x.

The integral part (in floating-point format) is stored in the object pointed to by iptr and modff returns the signed

fractional part of x.

Embedded Studio Reference Manual C Library User Guide

516

nearbyint

Synopsis

double nearbyint(double);

Description

nearbyint Rounds x to an integral value.

Embedded Studio Reference Manual C Library User Guide

517

nearbyintf

Synopsis

float nearbyintf(float);

Description

nearbyintf Rounds x to an integral value.

Embedded Studio Reference Manual C Library User Guide

518

nextafter

Synopsis

double nextafter(double x,
 double y);

Description

nextafter Returns the next representable value after x in the direction of y.

Embedded Studio Reference Manual C Library User Guide

519

nextafterf

Synopsis

float nextafterf(float x,
 float y);

Description

nextafterf Returns the next representable value after x in the direction of y.

Embedded Studio Reference Manual C Library User Guide

520

pow

Synopsis

double pow(double x,
 double y);

Description

pow computes x raised to the power y.

If x < 0 and y 0, errno is set to EDOM and pow returns HUGE_VAL. If x 0 and y is not an integer value, errno is set

to EDOM and pow returns HUGE_VAL.

If y = 0, pow returns 1.

If y = 1, pow returns x.

If y = NaN, pow returns NaN.

If x = NaN and y is anything other than 0, pow returns NaN.

If x < 1 or 1 < x, and y = +, pow returns +.

If x < 1 or 1 < x, and y = , pow returns 0.

If 1 < x < 1 and y = +, pow returns +0.

If 1 < x < 1 and y = , pow returns +.

If x = +1 or x = 1 and y = + or y = , pow returns NaN.

If x = +0 and y > 0 and y NaN, pow returns +0.

If x = 0 and y > 0 and y NaN or y not an odd integer, pow returns +0.

If x = +0 and y and y NaN, pow returns +.

If x = 0 and y > 0 and y NaN or y not an odd integer, pow returns +.

If x = 0 and y is an odd integer, pow returns 0.

If x = + and y > 0 and y NaN, pow returns +.

If x = + and y < 0 and y NaN, pow returns +0.

If x = , pow returns pow(0, y)

If x < 0 and x and y is a non-integer, pow returns NaN.

Embedded Studio Reference Manual C Library User Guide

521

powf

Synopsis

float powf(float x,
 float y);

Description

powf computes x raised to the power y.

If x < 0 and y 0, errno. is set to EDOM and powf returns HUGE_VALF. If x 0 and y is not an integer value, errno is

set to EDOM and pow returns HUGE_VALF.

If y = 0, powf returns 1.

If y = 1, powf returns x.

If y = NaN, powf returns NaN.

If x = NaN and y is anything other than 0, powf returns NaN.

If x < 1 or 1 < x, and y = +, powf returns +.

If x < 1 or 1 < x, and y = , powf returns 0.

If 1 < x < 1 and y = +, powf returns +0.

If 1 < x < 1 and y = , powf returns +.

If x = +1 or x = 1 and y = + or y = , powf returns NaN.

If x = +0 and y > 0 and y NaN, powf returns +0.

If x = 0 and y > 0 and y NaN or y not an odd integer, powf returns +0.

If x = +0 and y and y NaN, powf returns +.

If x = 0 and y > 0 and y NaN or y not an odd integer, powf returns +.

If x = 0 and y is an odd integer, powf returns 0.

If x = + and y > 0 and y NaN, powf returns +.

If x = + and y < 0 and y NaN, powf returns +0.

If x = , powf returns powf(0, y)

If x < 0 and x and y is a non-integer, powf returns NaN.

Embedded Studio Reference Manual C Library User Guide

522

remainder

Synopsis

double remainder(double numer,
 double denom);

Description

remainder computes the remainder of numer divided by denom.

Embedded Studio Reference Manual C Library User Guide

523

remainderf

Synopsis

float remainderf(float numer,
 float denom);

Description

remainderf computes the remainder of numer divided by denom.

Embedded Studio Reference Manual C Library User Guide

524

remquo

Synopsis

double remquo(double numer,
 double denom,
 int *quot);

Description

remquo computes the remainder of numer divided by denom and the quotient pointed by quot.

Embedded Studio Reference Manual C Library User Guide

525

remquof

Synopsis

float remquof(float numer,
 float denom,
 int *quot);

Description

remquof computes the remainder of numer divided by denom and the quotient pointed by quot.

Embedded Studio Reference Manual C Library User Guide

526

rint

Synopsis

double rint(double x);

Description

rint rounds x to an integral value.

Embedded Studio Reference Manual C Library User Guide

527

rintf

Synopsis

float rintf(float x);

Description

rintf rounds x to an integral value.

Embedded Studio Reference Manual C Library User Guide

528

round

Synopsis

double round(double x);

Description

round rounds x to an integral value, with halfway cases rounded away from zero.

Embedded Studio Reference Manual C Library User Guide

529

roundf

Synopsis

float roundf(float x);

Description

roundf rounds x to an integral value, with halfway cases rounded away from zero.

Embedded Studio Reference Manual C Library User Guide

530

scalbln

Synopsis

double scalbln(double x,
 long int exp);

Description

scalbln multiplies x by FLT_RADIX raised to the power exp.

Embedded Studio Reference Manual C Library User Guide

531

scalblnf

Synopsis

float scalblnf(float x,
 long int exp);

Description

scalblnf multiplies x by FLT_RADIX raised to the power exp.

Embedded Studio Reference Manual C Library User Guide

532

scalbn

Synopsis

double scalbn(double x,
 int exp);

Description

scalbn multiplies a floating-point number by an integral power of DBL_RADIX.

As floating-point arithmetic conforms to IEC 60559, DBL_RADIX is 2 and scalbn is (in this implementation)

identical to ldexp.

scalbn returns x * DBL_RADIX^exp.

If the result overflows, errno is set to ERANGE and scalbn returns HUGE_VAL.

If x is or NaN, scalbn returns x.

If the result overflows, scalbn returns .

See Also

ldexp

Embedded Studio Reference Manual C Library User Guide

533

scalbnf

Synopsis

float scalbnf(float x,
 int exp);

Description

scalbnf multiplies a floating-point number by an integral power of FLT_RADIX.

As floating-point arithmetic conforms to IEC 60559, FLT_RADIX is 2 and scalbnf is (in this implementation)

identical to ldexpf.

scalbnf returns x * FLT_RADIX ^exp.

If the result overflows, errno is set to ERANGE and scalbnf returns HUGE_VALF.

If x is or NaN, scalbnf returns x. If the result overflows, scalbnf returns .

See Also

ldexpf

Embedded Studio Reference Manual C Library User Guide

534

signbit

Synopsis

#define signbit(x) (sizeof(x) == sizeof(float) ? __float32_signbit(x) : __float64_signbit(x))

Description

signbit macro determines whether the sign of x is negative. signbit returns a non-zero value if and only if x is

negative.

Embedded Studio Reference Manual C Library User Guide

535

sin

Synopsis

double sin(double x);

Description

sin returns the radian circular sine of x.

If |x| > 10^9, errno is set to EDOM and sin returns HUGE_VAL.

sin returns x if x is NaN. sin returns NaN if |x| is .

Embedded Studio Reference Manual C Library User Guide

536

sinf

Synopsis

float sinf(float x);

Description

sinf returns the radian circular sine of x.

If |x| > 10^9, errno is set to EDOM and sinf returns HUGE_VALF.

sinf returns x if x is NaN. sinf returns NaN if |x| is .

Embedded Studio Reference Manual C Library User Guide

537

sinh

Synopsis

double sinh(double x);

Description

sinh calculates the hyperbolic sine of x.

If |x| .782, errno is set to EDOM and sinh returns HUGE_VAL.

If x is +, , or NaN, sinh returns |x|. If |x| > ~709.782, sinh returns + or depending upon the sign of x.

Embedded Studio Reference Manual C Library User Guide

538

sinhf

Synopsis

float sinhf(float x);

Description

sinhf calculates the hyperbolic sine of x.

If |x| > ~88.7228, errno is set to EDOM and sinhf returns HUGE_VALF.

If x is +, , or NaN, sinhf returns |x|. If |x| > ~88.7228, sinhf returns + or depending upon the sign of x.

Embedded Studio Reference Manual C Library User Guide

539

sqrt

Synopsis

double sqrt(double x);

Description

sqrt computes the nonnegative square root of x. C90 and C99 require that a domain error occurs if the argument

is less than zero sqrt deviates and always uses IEC 60559 semantics.

If x is +0, sqrt returns +0.

If x is 0, sqrt returns 0.

If x is , sqrt returns .

If x < 0, sqrt returns NaN.

If x is NaN, sqrt returns that NaN.

Embedded Studio Reference Manual C Library User Guide

540

sqrtf

Synopsis

float sqrtf(float x);

Description

sqrtf computes the nonnegative square root of x. C90 and C99 require that a domain error occurs if the

argument is less than zero sqrtf deviates and always uses IEC 60559 semantics.

If x is +0, sqrtf returns +0.

If x is 0, sqrtf returns 0.

If x is , sqrtf returns .

If x < 0, sqrtf returns NaN.

If x is NaN, sqrtf returns that NaN.

Embedded Studio Reference Manual C Library User Guide

541

tan

Synopsis

double tan(double x);

Description

tan returns the radian circular tangent of x.

If |x| > 10^9, errno is set to EDOM and tan returns HUGE_VAL.

If x is NaN, tan returns x. If |x| is , tan returns NaN.

Embedded Studio Reference Manual C Library User Guide

542

tanf

Synopsis

float tanf(float x);

Description

tanf returns the radian circular tangent of x.

If |x| > 10^9, errno is set to EDOM and tanf returns HUGE_VALF.

If x is NaN, tanf returns x. If |x| is , tanf returns NaN.

Embedded Studio Reference Manual C Library User Guide

543

tanh

Synopsis

double tanh(double x);

Description

tanh calculates the hyperbolic tangent of x.

If x is NaN, tanh returns NaN.

Embedded Studio Reference Manual C Library User Guide

544

tanhf

Synopsis

float tanhf(float x);

Description

tanhf calculates the hyperbolic tangent of x.

If x is NaN, tanhf returns NaN.

Embedded Studio Reference Manual C Library User Guide

545

tgamma

Synopsis

double tgamma(double x);

Description

tgamma returns the gamma function for x.

Embedded Studio Reference Manual C Library User Guide

546

tgammaf

Synopsis

float tgammaf(float x);

Description

tgammaf returns the gamma function for x.

Embedded Studio Reference Manual C Library User Guide

547

trunc

Synopsis

double trunc(double x);

Description

trunc rounds x to an integral value that is not larger in magnitude than x.

Embedded Studio Reference Manual C Library User Guide

548

truncf

Synopsis

float truncf(float x);

Description

truncf rounds x to an integral value that is not larger in magnitude than x.

Embedded Studio Reference Manual C Library User Guide

549

<setjmp.h>

API Summary

Functions

longjmp Restores the saved environment

setjmp Save calling environment for non-local jump

Embedded Studio Reference Manual C Library User Guide

550

longjmp

Synopsis

void longjmp(jmp_buf env,
 int val);

Description

longjmp restores the environment saved by setjmp in the corresponding env argument. If there has been no

such invocation, or if the function containing the invocation of setjmp has terminated execution in the interim,

the behavior of longjmp is undefined.

After longjmp is completed, program execution continues as if the corresponding invocation of setjmp had just

returned the value specified by val.

Note

longjmp cannot cause setjmp to return the value 0; if val is 0, setjmp returns the value 1.

Objects of automatic storage allocation that are local to the function containing the invocation of the

corresponding setjmp that do not have volatile qualified type and have been changed between the setjmp

invocation and this call are indeterminate.

Embedded Studio Reference Manual C Library User Guide

551

setjmp

Synopsis

int setjmp(jmp_buf env);

Description

setjmp saves its calling environment in the env for later use by the longjmp function.

On return from a direct invocation setjmp returns the value zero. On return from a call to the longjmp function,

the setjmp returns a nonzero value determined by the call to longjmp.

The environment saved by a call to setjmp consists of information sufficient for a call to the longjmp function to

return execution to the correct block and invocation of that block, were it called recursively.

Embedded Studio Reference Manual C Library User Guide

552

<stdarg.h>

API Summary

Macros

va_arg Get variable argument value

va_copy Copy var args

va_end Finish access to variable arguments

va_start Start access to variable arguments

Embedded Studio Reference Manual C Library User Guide

553

va_arg

Synopsis

type va_arg(va_list ap,
 type);

Description

va_arg expands to an expression that has the specified type and the value of the type argument. The ap

parameter must have been initialized by va_start or va_copy, without an intervening invocation of va_end. You

can create a pointer to a va_list and pass that pointer to another function, in which case the original function

may make further use of the original list after the other function returns.

Each invocation of the va_arg macro modifies ap so that the values of successive arguments are returned in

turn. The parameter type must be a type name such that the type of a pointer to an object that has the specified

type can be obtained simply by postfixing a * to type.

If there is no actual next argument, or if type is not compatible with the type of the actual next argument (as

promoted according to the default argument promotions), the behavior of va_arg is undefined, except for the

following cases:

one type is a signed integer type, the other type is the corresponding unsigned integer type, and the

value is representable in both types;

one type is pointer to void and the other is a pointer to a character type.

The first invocation of the va_arg macro after that of the va_start macro returns the value of the argument after

that specified by parmN. Successive invocations return the values of the remaining arguments in succession.

Embedded Studio Reference Manual C Library User Guide

554

va_copy

Synopsis

void va_copy(va_list dest,
 val_list src);

Description

va_copy initializes dest as a copy of src, as if the va_start macro had been applied to dest followed by the same

sequence of uses of the va_arg macro as had previously been used to reach the present state of src. Neither

the va_copy nor va_start macro shall be invoked to reinitialize dest without an intervening invocation of the

va_end macro for the same dest.

Embedded Studio Reference Manual C Library User Guide

555

va_end

Synopsis

void va_end(va_list ap);

Description

va_end indicates a normal return from the function whose variable argument list ap was initialised by va_start

or va_copy. The va_end macro may modify ap so that it is no longer usable without being reinitialized by

va_start or va_copy. If there is no corresponding invocation of va_start or va_copy, or if va_end is not invoked

before the return, the behavior is undefined.

Embedded Studio Reference Manual C Library User Guide

556

va_start

Synopsis

void va_start(va_list ap,
 paramN);

Description

va_start initializes ap for subsequent use by the va_arg and va_end macros.

The parameter parmN is the identifier of the last fixed parameter in the variable parameter list in the function

definition (the one just before the ', ...').

The behaviour of va_start and va_arg is undefined if the parameter parmN is declared with the register

storage class, with a function or array type, or with a type that is not compatible with the type that results after

application of the default argument promotions.

va_start must be invoked before any access to the unnamed arguments.

va_start and va_copy must not be invoked to reinitialize ap without an intervening invocation of the va_end

macro for the same ap.

Embedded Studio Reference Manual C Library User Guide

557

<stddef.h>

API Summary

Macros

NULL NULL pointer

offsetof offsetof

Types

ptrdiff_t ptrdiff_t type

size_t size_t type

Embedded Studio Reference Manual C Library User Guide

558

NULL

Synopsis

#define NULL 0

Description

NULL is the null pointer constant.

Embedded Studio Reference Manual C Library User Guide

559

offsetof

Synopsis

#define offsetof(type, member)

Description

offsetof returns the offset in bytes to the structure member, from the beginning of its structure type.

Embedded Studio Reference Manual C Library User Guide

560

ptrdiff_t

Synopsis

typedef __RAL_PTRDIFF_T ptrdiff_t;

Description

ptrdiff_t is the signed integral type of the result of subtracting two pointers.

Embedded Studio Reference Manual C Library User Guide

561

size_t

Synopsis

typedef __RAL_SIZE_T size_t;

Description

size_t is the unsigned integral type returned by the sizeof operator.

Embedded Studio Reference Manual C Library User Guide

562

<stdio.h>

API Summary

Character and string I/O functions

getchar Read a character from standard input

gets Read a string from standard input

putchar Write a character to standard output

puts Write a string to standard output

Formatted output functions

printf Write formatted text to standard output

snprintf Write formatted text to a string with truncation

sprintf Write formatted text to a string

vprintf Write formatted text to standard output using variable
argument context

vsnprintf Write formatted text to a string with truncation using
variable argument context

vsprintf Write formatted text to a string using variable
argument context

Formatted input functions

scanf Read formatted text from standard input

sscanf Read formatted text from string

vscanf Read formatted text from standard using variable
argument context

vsscanf Read formatted text from a string using variable
argument context

Embedded Studio Reference Manual C Library User Guide

563

getchar

Synopsis

int getchar(void);

Description

getchar reads a single character from the standard input stream.

If the stream is at end-of-file or a read error occurs, getchar returns EOF.

Embedded Studio Reference Manual C Library User Guide

564

gets

Synopsis

char *gets(char *s);

Description

gets reads characters from standard input into the array pointed to by s until end-of-file is encountered or a

new-line character is read. Any new-line character is discarded, and a null character is written immediately after

the last character read into the array.

gets returns s if successful. If end-of-file is encountered and no characters have been read into the array, the

contents of the array remain unchanged and gets returns a null pointer. If a read error occurs during the

operation, the array contents are indeterminate and gets returns a null pointer.

Embedded Studio Reference Manual C Library User Guide

565

printf

Synopsis

int printf(const char *format,
 ...);

Description

printf writes to the standard output stream using putchar, under control of the string pointed to by format that

specifies how subsequent arguments are converted for output.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

printf returns the number of characters transmitted, or a negative value if an output or encoding error occurred.

Formatted output control strings

The format is composed of zero or more directives: ordinary characters (not %, which are copied unchanged to

the output stream; and conversion specifications, each of which results in fetching zero or more subsequent

arguments, converting them, if applicable, according to the corresponding conversion specifier, and then

writing the result to the output stream.

Each conversion specification is introduced by the character %. After the % the following appear in sequence:

Zero or more flags (in any order) that modify the meaning of the conversion specification.

An optional minimum field width. If the converted value has fewer characters than the field width, it is

padded with spaces (by default) on the left (or right, if the left adjustment flag has been given) to the field

width. The field width takes the form of an asterisk * or a decimal integer.

An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x, and X

conversions, the number of digits to appear after the decimal-point character for e, E, f, and F conversions,

the maximum number of significant digits for the g and G conversions, or the maximum number of

bytes to be written for s conversions. The precision takes the form of a period . followed either by an

asterisk * or by an optional decimal integer; if only the period is specified, the precision is taken as zero. If

a precision appears with any other conversion specifier, the behavior is undefined.

An optional length modifier that specifies the size of the argument.

A conversion specifier character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this case, an int argument

supplies the field width or precision. The arguments specifying field width, or precision, or both, must appear

(in that order) before the argument (if any) to be converted. A negative field width argument is taken as a - flag

followed by a positive field width. A negative precision argument is taken as if the precision were omitted.

Embedded Studio Reference Manual C Library User Guide

566

Some library variants do not support width and precision specifiers in order to reduce code and data space

requirements; please ensure that you have selected the correct library in the Printf Width/Precision Support

property of the project if you use these.

Flag characters

The flag characters and their meanings are:

-
The result of the conversion is left-justified within the field. The default, if this flag is not specified, is that the

result of the conversion is left-justified within the field.

+
The result of a signed conversion always begins with a plus or minus sign. The default, if this flag is not

specified, is that it begins with a sign only when a negative value is converted.

space
If the first character of a signed conversion is not a sign, or if a signed conversion results in no characters, a

space is prefixed to the result. If the space and + flags both appear, the space flag is ignored.

#
The result is converted to an alternative form. For o conversion, it increases the precision, if and only

if necessary, to force the first digit of the result to be a zero (if the value and precision are both zero, a

single 0 is printed). For x or X conversion, a nonzero result has 0x or 0X prefixed to it. For e, E, f, F, g, and G

conversions, the result of converting a floating-point number always contains a decimal-point character,

even if no digits follow it. (Normally, a decimal-point character appears in the result of these conversions

only if a digit follows it.) For g and F conversions, trailing zeros are not removed from the result. As an

extension, when used in p conversion, the results has # prefixed to it. For other conversions, the behavior is

undefined.

0
For d, i, o, u, x, X, e, E, f, F, g, and G conversions, leading zeros (following any indication of sign or base) are

used to pad to the field width rather than performing space padding, except when converting an infinity or

NaN. If the 0 and - flags both appear, the 0 flag is ignored. For d, i, o, u, x, and X conversions, if a precision is

specified, the 0 flag is ignored. For other conversions, the behavior is undefined.

Length modifiers

The length modifiers and their meanings are:

hh
Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed char or unsigned char

argument (the argument will have been promoted according to the integer promotions, but its value will

be converted to signed char or unsigned char before printing); or that a following n conversion specifier

applies to a pointer to a signed char argument.

Embedded Studio Reference Manual C Library User Guide

567

h
Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short int or unsigned short int

argument (the argument will have been promoted according to the integer promotions, but its value is

converted to short int or unsigned short int before printing); or that a following n conversion specifier

applies to a pointer to a short int argument.

l
Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long int or unsigned long int

argument; that a following n conversion specifier applies to a pointer to a long int argument; or has no

effect on a following e, E, f, F, g, or G conversion specifier. Some library variants do not support the l length

modifier in order to reduce code and data space requirements; please ensure that you have selected the

correct library in the Printf Integer Support property of the project if you use this length modifier.

ll
Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long long int or unsigned

long long int argument; that a following n conversion specifier applies to a pointer to a long long int

argument. Some library variants do not support the ll length modifier in order to reduce code and data

space requirements; please ensure that you have selected the correct library in the Printf Integer Support

property of the project if you use this length modifier.

If a length modifier appears with any conversion specifier other than as specified above, the behavior is

undefined. Note that the C99 length modifiers j, z, t, and L are not supported.

Conversion specifiers

The conversion specifiers and their meanings are:

d, i
The argument is converted to signed decimal in the style [-]dddd. The precision specifies the minimum

number of digits to appear; if the value being converted can be represented in fewer digits, it is expanded

with leading spaces. The default precision is one. The result of converting a zero value with a precision of

zero is no characters.

o, u, x, X
The unsigned argument is converted to unsigned octal for o, unsigned decimal for u, or unsigned

hexadecimal notation for x or X in the style dddd the letters abcdef are used for x conversion and the

letters ABCDEF for X conversion. The precision specifies the minimum number of digits to appear; if the

value being converted can be represented in fewer digits, it is expanded with leading spaces. The default

precision is one. The result of converting a zero value with a precision of zero is no characters.

f, F
A double argument representing a floating-point number is converted to decimal notation in the

style [-]ddd.ddd, where the number of digits after the decimal-point character is equal to the precision

specification. If the precision is missing, it is taken as 6; if the precision is zero and the # flag is not specified,

Embedded Studio Reference Manual C Library User Guide

568

no decimal-point character appears. If a decimal-point character appears, at least one digit appears before

it. The value is rounded to the appropriate number of digits. A double argument representing an infinity

is converted to inf. A double argument representing a NaN is converted to nan. The F conversion specifier

produces INF or NAN instead of inf or nan, respectively. Some library variants do not support the f and F

conversion specifiers in order to reduce code and data space requirements; please ensure that you have

selected the correct library in the Printf Floating Point Support property of the project if you use these

conversion specifiers.

e, E
A double argument representing a floating-point number is converted in the style [-]d.dddedd, where

there is one digit (which is nonzero if the argument is nonzero) before the decimal-point character and the

number of digits after it is equal to the precision; if the precision is missing, it is taken as 6; if the precision

is zero and the # flag is not specified, no decimal-point character appears. The value is rounded to the

appropriate number of digits. The E conversion specifier produces a number with E instead of e introducing

the exponent. The exponent always contains at least two digits, and only as many more digits as necessary

to represent the exponent. If the value is zero, the exponent is zero. A double argument representing an

infinity is converted to inf. A double argument representing a NaN is converted to nan. The E conversion

specifier produces INF or NAN instead of inf or nan, respectively. Some library variants do not support the

f and F conversion specifiers in order to reduce code and data space requirements; please ensure that you

have selected the correct library in the Printf Floating Point Support} property of the project if you use

these conversion specifiers.

g, G
A double argument representing a floating-point number is converted in style f or e (or in style F or e in

the case of a G conversion specifier), with the precision specifying the number of significant digits. If the

precision is zero, it is taken as one. The style used depends on the value converted; style e (or E) is used only

if the exponent resulting from such a conversion is less than -4 or greater than or equal to the precision.

Trailing zeros are removed from the fractional portion of the result unless the # flag is specified; a decimal-

point character appears only if it is followed by a digit. A double argument representing an infinity is

converted to inf. A double argument representing a NaN is converted to nan. The G conversion specifier

produces INF or NAN instead of inf or nan, respectively. Some library variants do not support the f and F

conversion specifiers in order to reduce code and data space requirements; please ensure that you have

selected the correct library in the Printf Floating Point Support property of the project if you use these

conversion specifiers.

c
The argument is converted to an unsigned char, and the resulting character is written.

s
The argument is be a pointer to the initial element of an array of character type. Characters from the array

are written up to (but not including) the terminating null character. If the precision is specified, no more

than that many characters are written. If the precision is not specified or is greater than the size of the array,

the array must contain a null character.

Embedded Studio Reference Manual C Library User Guide

569

p
The argument is a pointer to void. The value of the pointer is converted in the same format as the x

conversion specifier with a fixed precision of 2*sizeof(void *).

n
The argument is a pointer to a signed integer into which is written the number of characters written to the

output stream so far by the call to the formatting function. No argument is converted, but one is consumed.

If the conversion specification includes any flags, a field width, or a precision, the behavior is undefined.

%
A % character is written. No argument is converted.

Note that the C99 width modifier l used in conjunction with the c and s conversion specifiers is not supported

and nor are the conversion specifiers a and A.

Embedded Studio Reference Manual C Library User Guide

570

putchar

Synopsis

int putchar(int c);

Description

putchar writes the character c to the standard output stream.

putchar returns the character written. If a write error occurs, putchar returns EOF.

Embedded Studio Reference Manual C Library User Guide

571

puts

Synopsis

int puts(const char *s);

Description

puts writes the string pointed to by s to the standard output stream using putchar and appends a new-line

character to the output. The terminating null character is not written.

puts returns EOF if a write error occurs; otherwise it returns a nonnegative value.

Embedded Studio Reference Manual C Library User Guide

572

scanf

Synopsis

int scanf(const char *format,
 ...);

Description

scanf reads input from the standard input stream under control of the string pointed to by format that specifies

the admissible input sequences and how they are to be converted for assignment, using subsequent arguments

as pointers to the objects to receive the converted input.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

scanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, scanf

returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

Formatted input control strings

The format is composed of zero or more directives: one or more white-space characters, an ordinary character

(neither % nor a white-space character), or a conversion specification.

Each conversion specification is introduced by the character %. After the %, the following appear in sequence:

An optional assignment-suppressing character *.

An optional nonzero decimal integer that specifies the maximum field width (in characters).

An optional length modifier that specifies the size of the receiving object.

A conversion specifier character that specifies the type of conversion to be applied.

The formatted input function executes each directive of the format in turn. If a directive fails, the function

returns. Failures are described as input failures (because of the occurrence of an encoding error or the

unavailability of input characters), or matching failures (because of inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the first non-white-space

character (which remains unread), or until no more characters can be read.

A directive that is an ordinary character is executed by reading the next characters of the stream. If any of those

characters differ from the ones composing the directive, the directive fails and the differing and subsequent

characters remain unread. Similarly, if end-of-file, an encoding error, or a read error prevents a character from

being read, the directive fails.

A directive that is a conversion specification defines a set of matching input sequences, as described below for

each specifier. A conversion specification is executed in the following steps:

Embedded Studio Reference Manual C Library User Guide

573

Input white-space characters (as specified by the isspace function) are skipped, unless the specification

includes a [, c, or n specifier.

An input item is read from the stream, unless the specification includes an n specifier. An input item is

defined as the longest sequence of input characters which does not exceed any specified field width

and which is, or is a prefix of, a matching input sequence. The first character, if any, after the input item

remains unread. If the length of the input item is zero, the execution of the directive fails; this condition is

a matching failure unless end-of-file, an encoding error, or a read error prevented input from the stream,

in which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count of input

characters) is converted to a type appropriate to the conversion specifier. If the input item is not a

matching sequence, the execution of the directive fails: this condition is a matching failure. Unless

assignment suppression was indicated by a *, the result of the conversion is placed in the object pointed

to by the first argument following the format argument that has not already received a conversion result.

If this object does not have an appropriate type, or if the result of the conversion cannot be represented

in the object, the behavior is undefined.

Length modifiers

The length modifiers and their meanings are:

hh
Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with type pointer to

signed char or pointer to unsigned char.

h
Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with type pointer to

short int or unsigned short int.

l
Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with type pointer to

long int or unsigned long int; that a following e, E, f, F, g, or G conversion specifier applies to an argument

with type pointer to double. Some library variants do not support the l length modifier in order to reduce

code and data space requirements; please ensure that you have selected the correct library in the Printf

Integer Support property of the project if you use this length modifier.

ll
Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with type pointer to

long long int or unsigned long long int. Some library variants do not support the ll length modifier in order

to reduce code and data space requirements; please ensure that you have selected the correct library in the

Printf Integer Support property of the project if you use this length modifier.

If a length modifier appears with any conversion specifier other than as specified above, the behavior is

undefined. Note that the C99 length modifiers j, z, t, and L are not supported.

Embedded Studio Reference Manual C Library User Guide

574

Conversion specifiers

d
Matches an optionally signed decimal integer, whose format is the same as expected for the subject

sequence of the strtol function with the value 10 for the base argument. The corresponding argument

must be a pointer to signed integer.

i
Matches an optionally signed integer, whose format is the same as expected for the subject sequence of the

strtol function with the value zero for the base argument. The corresponding argument must be a pointer

to signed integer.

o
Matches an optionally signed octal integer, whose format is the same as expected for the subject sequence

of the strtol function with the value 18 for the base argument. The corresponding argument must be a

pointer to signed integer.

u
Matches an optionally signed decimal integer, whose format is the same as expected for the subject

sequence of the strtoul function with the value 10 for the base argument. The corresponding argument

must be a pointer to unsigned integer.

x
Matches an optionally signed hexadecimal integer, whose format is the same as expected for the subject

sequence of the strtoul function with the value 16 for the base argument. The corresponding argument

must be a pointer to unsigned integer.

e, f, g
Matches an optionally signed floating-point number whose format is the same as expected for the

subject sequence of the strtod function. The corresponding argument shall be a pointer to floating. Some

library variants do not support the e, f and F conversion specifiers in order to reduce code and data space

requirements; please ensure that you have selected the correct library in the Scanf Floating Point Support

property of the project if you use these conversion specifiers.

c
Matches a sequence of characters of exactly the number specified by the field width (one if no field width

is present in the directive). The corresponding argument must be a pointer to the initial element of a

character array large enough to accept the sequence. No null character is added.

s
Matches a sequence of non-white-space characters The corresponding argument must be a pointer to the

initial element of a character array large enough to accept the sequence and a terminating null character,

which will be added automatically.

Embedded Studio Reference Manual C Library User Guide

575

[
Matches a nonempty sequence of characters from a set of expected characters (the scanset). The

corresponding argument must be a pointer to the initial element of a character array large enough to

accept the sequence and a terminating null character, which will be added automatically. The conversion

specifier includes all subsequent characters in the format string, up to and including the matching right

bracket]. The characters between the brackets (the scanlist) compose the scanset, unless the character after

the left bracket is a circumflex ^, in which case the scanset contains all characters that do not appear in

the scanlist between the circumflex and the right bracket. If the conversion specifier begins with [] or[^],

the right bracket character is in the scanlist and the next following right bracket character is the matching

right bracket that ends the specification; otherwise the first following right bracket character is the one that

ends the specification. If a - character is in the scanlist and is not the first, nor the second where the first

character is a ^, nor the last character, it is treated as a member of the scanset. Some library variants do not

support the [conversion specifier in order to reduce code and data space requirements; please ensure that

you have selected the correct library in the Scanf Classes Supported property of the project if you use this

conversion specifier.

p
Reads a sequence output by the corresponding %p formatted output conversion. The corresponding

argument must be a pointer to a pointer to void.

n
No input is consumed. The corresponding argument shall be a pointer to signed integer into which is to

be written the number of characters read from the input stream so far by this call to the formatted input

function. Execution of a %n directive does not increment the assignment count returned at the completion

of execution of the fscanf function. No argument is converted, but one is consumed. If the conversion

specification includes an assignment-suppressing character or a field width, the behavior is undefined.

%
Matches a single % character; no conversion or assignment occurs.

Note that the C99 width modifier l used in conjunction with the c, s, and [conversion specifiers is not supported

and nor are the conversion specifiers a and A.

Embedded Studio Reference Manual C Library User Guide

576

snprintf

Synopsis

int snprintf(char *s,
 size_t n,
 const char *format,
 ...);

Description

snprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how

subsequent arguments are converted for output.

If n is zero, nothing is written, and s can be a null pointer. Otherwise, output characters beyond the n1st are

discarded rather than being written to the array, and a null character is written at the end of the characters

actually written into the array. A null character is written at the end of the conversion; it is not counted as part of

the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

If copying takes place between objects that overlap, the behavior is undefined.

snprintf returns the number of characters that would have been written had n been sufficiently large, not

counting the terminating null character, or a negative value if an encoding error occurred. Thus, the null-

terminated output has been completely written if and only if the returned value is nonnegative and less than n>.

Embedded Studio Reference Manual C Library User Guide

577

sprintf

Synopsis

int sprintf(char *s,
 const char *format,
 ...);

Description

sprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how

subsequent arguments are converted for output. A null character is written at the end of the characters written;

it is not counted as part of the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

If copying takes place between objects that overlap, the behavior is undefined.

sprintf returns number of characters transmitted (not counting the terminating null), or a negative value if an

output or encoding error occurred.

Embedded Studio Reference Manual C Library User Guide

578

sscanf

Synopsis

int sscanf(const char *s,
 const char *format,
 ...);

Description

sscanf reads input from the string s under control of the string pointed to by format that specifies the

admissible input sequences and how they are to be converted for assignment, using subsequent arguments as

pointers to the objects to receive the converted input.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

sscanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, sscanf

returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

Embedded Studio Reference Manual C Library User Guide

579

vprintf

Synopsis

int vprintf(const char *format,
 __va_list arg);

Description

vprintf writes to the standard output stream using putchar under control of the string pointed to by format that

specifies how subsequent arguments are converted for output. Before calling vprintf, arg must be initialized by

the va_start macro (and possibly subsequent va_arg calls). vprintf does not invoke the va_end macro.

vprintf returns the number of characters transmitted, or a negative value if an output or encoding error

occurred.

Note

vprintf is equivalent to printf with the variable argument list replaced by arg.

Embedded Studio Reference Manual C Library User Guide

580

vscanf

Synopsis

int vscanf(const char *format,
 __va_list arg);

Description

vscanf reads input from the standard input stream under control of the string pointed to by format that

specifies the admissible input sequences and how they are to be converted for assignment, using subsequent

arguments as pointers to the objects to receive the converted input. Before calling vscanf, arg must be

initialized by the va_start macro (and possibly subsequent va_arg calls). vscanf does not invoke the va_end

macro.

If there are insufficient arguments for the format, the behavior is undefined.

vscanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, vscanf

returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

Note

vscanf is equivalent to scanf with the variable argument list replaced arg.

Embedded Studio Reference Manual C Library User Guide

581

vsnprintf

Synopsis

int vsnprintf(char *s,
 size_t n,
 const char *format,
 __va_list arg);

Description

vsnprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how

subsequent arguments are converted for output. Before calling vsnprintf, arg must be initialized by the va_start

macro (and possibly subsequent va_arg calls). vsnprintf does not invoke the va_end macro.

If n is zero, nothing is written, and s can be a null pointer. Otherwise, output characters beyond the n1st are

discarded rather than being written to the array, and a null character is written at the end of the characters

actually written into the array. A null character is written at the end of the conversion; it is not counted as part of

the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

If copying takes place between objects that overlap, the behavior is undefined.

vsnprintf returns the number of characters that would have been written had n been sufficiently large, not

counting the terminating null character, or a negative value if an encoding error occurred. Thus, the null-

terminated output has been completely written if and only if the returned value is nonnegative and less than n.

Note

vsnprintf is equivalent to snprintf with the variable argument list replaced by arg.

Embedded Studio Reference Manual C Library User Guide

582

vsprintf

Synopsis

int vsprintf(char *s,
 const char *format,
 __va_list arg);

Description

vsprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how

subsequent arguments are converted for output. Before calling vsprintf, arg must be initialized by the va_start

macro (and possibly subsequent va_arg calls). vsprintf does not invoke the va_end macro.

A null character is written at the end of the characters written; it is not counted as part of the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

If copying takes place between objects that overlap, the behavior is undefined.

vsprintf returns number of characters transmitted (not counting the terminating null), or a negative value if an

output or encoding error occurred.

Note

vsprintf is equivalent to sprintf with the variable argument list replaced by arg.

Embedded Studio Reference Manual C Library User Guide

583

vsscanf

Synopsis

int vsscanf(const char *s,
 const char *format,
 __va_list arg);

Description

vsscanf reads input from the string s under control of the string pointed to by format that specifies the

admissible input sequences and how they are to be converted for assignment, using subsequent arguments

as pointers to the objects to receive the converted input. Before calling vsscanf, arg must be initialized by the

va_start macro (and possibly subsequent va_arg calls). vsscanf does not invoke the va_end macro.

If there are insufficient arguments for the format, the behavior is undefined.

vsscanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, vsscanf

returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

Note

vsscanf is equivalent to sscanf with the variable argument list replaced by arg.

Embedded Studio Reference Manual C Library User Guide

584

<stdlib.h>

API Summary

Macros

EXIT_FAILURE EXIT_FAILURE

EXIT_SUCCESS EXIT_SUCCESS

MB_CUR_MAX Maximum number of bytes in a multi-byte character in
the current locale

RAND_MAX RAND_MAX

Types

div_t Structure containing quotient and remainder after
division of an int

ldiv_t Structure containing quotient and remainder after
division of a long

lldiv_t Structure containing quotient and remainder after
division of a long long

Integer arithmetic functions

abs Return an integer absolute value

div Divide two ints returning quotient and remainder

labs Return a long integer absolute value

ldiv Divide two longs returning quotient and remainder

llabs Return a long long integer absolute value

lldiv Divide two long longs returning quotient and
remainder

Memory allocation functions

calloc Allocate space for an array of objects and initialize
them to zero

free Frees allocated memory for reuse

malloc Allocate space for a single object

realloc Resizes allocated memory space or allocates memory
space

String to number conversions

atof Convert string to double

atoi Convert string to int

atol Convert string to long

atoll Convert string to long long

Embedded Studio Reference Manual C Library User Guide

585

strtod Convert string to double

strtof Convert string to float

strtol Convert string to long

strtoll Convert string to long long

strtoul Convert string to unsigned long

strtoull Convert string to unsigned long long

Pseudo-random sequence generation functions

rand Return next random number in sequence

srand Set seed of random number sequence

Search and sort functions

bsearch Search a sorted array

qsort Sort an array

Environment

atexit Set function to be execute on exit

exit Terminates the calling process

Number to string conversions

itoa Convert int to string

lltoa Convert long long to string

ltoa Convert long to string

ulltoa Convert unsigned long long to string

ultoa Convert unsigned long to string

utoa Convert unsigned to string

Multi-byte/wide character conversion functions

mblen Determine number of bytes in a multi-byte character

mblen_l Determine number of bytes in a multi-byte character

Multi-byte/wide string conversion functions

mbstowcs Convert multi-byte string to wide string

mbstowcs_l Convert multi-byte string to wide string using
specified locale

mbtowc Convert multi-byte character to wide character

mbtowc_l Convert multi-byte character to wide character

Embedded Studio Reference Manual C Library User Guide

586

EXIT_FAILURE

Synopsis

#define EXIT_FAILURE 1

Description

EXIT_FAILURE pass to exit on unsuccessful termination.

Embedded Studio Reference Manual C Library User Guide

587

EXIT_SUCCESS

Synopsis

#define EXIT_SUCCESS 0

Description

EXIT_SUCCESS pass to exit on successful termination.

Embedded Studio Reference Manual C Library User Guide

588

MB_CUR_MAX

Synopsis

#define MB_CUR_MAX __RAL_mb_max(&__RAL_global_locale)

Description

MB_CUR_MAX expands to a positive integer expression with type size_t that is the maximum number of bytes

in a multi-byte character for the extended character set specified by the current locale (category LC_CTYPE).

MB_CUR_MAX is never greater than MB_LEN_MAX.

Embedded Studio Reference Manual C Library User Guide

589

RAND_MAX

Synopsis

#define RAND_MAX 32767

Description

RAND_MAX expands to an integer constant expression that is the maximum value returned by rand.

Embedded Studio Reference Manual C Library User Guide

590

abs

Synopsis

int abs(int j);

Description

abs returns the absolute value of the integer argument j.

Embedded Studio Reference Manual C Library User Guide

591

atexit

Synopsis

int atexit(void (*func)(void));

Description

atexit registers function to be called when the application has exited. The functions registered with atexit are

executed in reverse order of their registration. atexit returns 0 on success and non-zero on failure.

Embedded Studio Reference Manual C Library User Guide

592

atof

Synopsis

double atof(const char *nptr);

Description

atof converts the initial portion of the string pointed to by nptr to a double representation.

atof does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior

is undefined.

Except for the behavior on error, atof is equivalent to strtod(nptr, (char **)NULL).

atof returns the converted value.

See Also

strtod

Embedded Studio Reference Manual C Library User Guide

593

atoi

Synopsis

int atoi(const char *nptr);

Description

atoi converts the initial portion of the string pointed to by nptr to an int representation.

atoi does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior

is undefined.

Except for the behavior on error, atoi is equivalent to (int)strtol(nptr, (char **)NULL, 10).

atoi returns the converted value.

See Also

strtol

Embedded Studio Reference Manual C Library User Guide

594

atol

Synopsis

long int atol(const char *nptr);

Description

atol converts the initial portion of the string pointed to by nptr to a long int representation.

atol does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior

is undefined.

Except for the behavior on error, atol is equivalent to strtol(nptr, (char **)NULL, 10).

atol returns the converted value.

See Also

strtol

Embedded Studio Reference Manual C Library User Guide

595

atoll

Synopsis

long long int atoll(const char *nptr);

Description

atoll converts the initial portion of the string pointed to by nptr to a long long int representation.

atoll does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior

is undefined.

Except for the behavior on error, atoll is equivalent to strtoll(nptr, (char **)NULL, 10).

atoll returns the converted value.

See Also

strtoll

Embedded Studio Reference Manual C Library User Guide

596

bsearch

Synopsis

void *bsearch(const void *key,
 const void *buf,
 size_t num,
 size_t size,
 int (*compare)(const void *, const void *));

Description

bsearch searches the array *base for the specified *key and returns a pointer to the first entry that matches or

null if no match. The array should have num elements of size bytes and be sorted by the same algorithm as the

compare function.

The compare function should return a negative value if the first parameter is less than second parameter, zero if

the parameters are equal, and a positive value if the first parameter is greater than the second parameter.

Embedded Studio Reference Manual C Library User Guide

597

calloc

Synopsis

void *calloc(size_t nobj,
 size_t size);

Description

calloc allocates space for an array of nmemb objects, each of whose size is size. The space is initialized to all zero

bits.

calloc returns a null pointer if the space for the array of object cannot be allocated from free memory; if space for

the array can be allocated, calloc returns a pointer to the start of the allocated space.

Embedded Studio Reference Manual C Library User Guide

598

div

Synopsis

div_t div(int numer,
 int denom);

Description

div computes numer / denom and numer % denom in a single operation.

div returns a structure of type div_t comprising both the quotient and the remainder. The structures contain

the members quot (the quotient) and rem (the remainder), each of which has the same type as the arguments

numer and denom. If either part of the result cannot be represented, the behavior is undefined.

See Also

div_t

Embedded Studio Reference Manual C Library User Guide

599

div_t

Description

div_t stores the quotient and remainder returned by div.

Embedded Studio Reference Manual C Library User Guide

600

exit

Synopsis

void exit(int exit_code);

Description

exit returns to the startup code and performs the appropriate cleanup process.

Embedded Studio Reference Manual C Library User Guide

601

free

Synopsis

void free(void *p);

Description

free causes the space pointed to by ptr to be deallocated, that is, made available for further allocation. If ptr is a

null pointer, no action occurs.

If ptr does not match a pointer earlier returned by calloc, malloc, or realloc, or if the space has been deallocated

by a call to free or realloc, the behavior is undefined.

Embedded Studio Reference Manual C Library User Guide

602

itoa

Synopsis

char *itoa(int val,
 char *buf,
 int radix);

Description

itoa converts val to a string in base radix and places the result in buf.

itoa returns buf as the result.

If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all other values of radix, value is

considered unsigned and never has a leading minus sign.

See Also

ltoa, lltoa, ultoa, ulltoa, utoa

Embedded Studio Reference Manual C Library User Guide

603

labs

Synopsis

long int labs(long int j);

Description

labs returns the absolute value of the long integer argument j.

Embedded Studio Reference Manual C Library User Guide

604

ldiv

Synopsis

ldiv_t ldiv(long int numer,
 long int denom);

Description

ldiv computes numer / denom and numer % denom in a single operation.

ldiv returns a structure of type ldiv_t comprising both the quotient and the remainder. The structures contain

the members quot (the quotient) and rem (the remainder), each of which has the same type as the arguments

numer and denom. If either part of the result cannot be represented, the behavior is undefined.

See Also

ldiv_t

Embedded Studio Reference Manual C Library User Guide

605

ldiv_t

Description

ldiv_t stores the quotient and remainder returned by ldiv.

Embedded Studio Reference Manual C Library User Guide

606

llabs

Synopsis

long long int llabs(long long int j);

Description

llabs returns the absolute value of the long long integer argument j.

Embedded Studio Reference Manual C Library User Guide

607

lldiv

Synopsis

lldiv_t lldiv(long long int numer,
 long long int denom);

lldiv computes numer / denom and numer % denom in a single operation.

lldiv returns a structure of type lldiv_t comprising both the quotient and the remainder. The structures contain

the members quot (the quotient) and rem (the remainder), each of which has the same type as the arguments

numer and denom. If either part of the result cannot be represented, the behavior is undefined.

See Also

lldiv_t

Embedded Studio Reference Manual C Library User Guide

608

lldiv_t

Description

lldiv_t stores the quotient and remainder returned by lldiv.

Embedded Studio Reference Manual C Library User Guide

609

lltoa

Synopsis

char *lltoa(long long val,
 char *buf,
 int radix);

Description

lltoa converts val to a string in base radix and places the result in buf.

lltoa returns buf as the result.

If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all other values of radix, value is

considered unsigned and never has a leading minus sign.

See Also

itoa, ltoa, ultoa, ulltoa, utoa

Embedded Studio Reference Manual C Library User Guide

610

ltoa

Synopsis

char *ltoa(long val,
 char *buf,
 int radix);

Description

ltoa converts val to a string in base radix and places the result in buf.

ltoa returns buf as the result.

If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all other values of radix, value is

considered unsigned and never has a leading minus sign.

See Also

itoa, lltoa, ultoa, ulltoa, utoa

Embedded Studio Reference Manual C Library User Guide

611

malloc

Synopsis

void *malloc(size_t size);

Description

malloc allocates space for an object whose size is specified by 'b size and whose value is indeterminate.

malloc returns a null pointer if the space for the object cannot be allocated from free memory; if space for the

object can be allocated, malloc returns a pointer to the start of the allocated space.

Embedded Studio Reference Manual C Library User Guide

612

mblen

Synopsis

int mblen(const char *s,
 size_t n);

Description

mblen determines the number of bytes contained in the multi-byte character pointed to by s in the current

locale.

If s is a null pointer, mblen returns a nonzero or zero value, if multi-byte character encodings, respectively, do or

do not have state-dependent encodings

If s is not a null pointer, mblen either returns 0 (if s points to the null character), or returns the number of bytes

that are contained in the multi-byte character (if the next n or fewer bytes form a valid multi-byte character), or

returns 1 (if they do not form a valid multi-byte character).

Note

Except that the conversion state of the mbtowc function is not affected, it is equivalent to

mbtowc((wchar_t *)0, s, n);

Note

It is guaranteed that no library function in the Standard C library calls mblen.

See Also

mblen_l, mbtowc

Embedded Studio Reference Manual C Library User Guide

613

mblen_l

Synopsis

int mblen_l(const char *s,
 size_t n,
 __locale_s *loc);

Description

mblen_l determines the number of bytes contained in the multi-byte character pointed to by s in the locale loc.

If s is a null pointer, mblen_l returns a nonzero or zero value, if multi-byte character encodings, respectively, do

or do not have state-dependent encodings

If s is not a null pointer, mblen_l either returns 0 (if s points to the null character), or returns the number of bytes

that are contained in the multi-byte character (if the next n or fewer bytes form a valid multi-byte character), or

returns 1 (if they do not form a valid multi-byte character).

Note

Except that the conversion state of the mbtowc_l function is not affected, it is equivalent to

mbtowc((wchar_t *)0, s, n, loc);

Note

It is guaranteed that no library function in the Standard C library calls mblen_l.

See Also

mblen_l, mbtowc_l

Embedded Studio Reference Manual C Library User Guide

614

mbstowcs

Synopsis

size_t mbstowcs(wchar_t *pwcs,
 const char *s,
 size_t n);

Description

mbstowcs converts a sequence of multi-byte characters that begins in the initial shift state from the array

pointed to by s into a sequence of corresponding wide characters and stores not more than n wide characters

into the array pointed to by pwcs.

No multi-byte characters that follow a null character (which is converted into a null wide character) will be

examined or converted. Each multi-byte character is converted as if by a call to the mbtowc function, except that

the conversion state of the mbtowc function is not affected.

No more than n elements will be modified in the array pointed to by pwcs. If copying takes place between

objects that overlap, the behavior is undefined.

mbstowcs returns 1 if an invalid multi-byte character is encountered, otherwise mbstowcs returns the number

of array elements modified (if any), not including a terminating null wide character.

Embedded Studio Reference Manual C Library User Guide

615

mbstowcs_l

Synopsis

size_t mbstowcs_l(wchar_t *pwcs,
 const char *s,
 size_t n,
 __locale_s *loc);

Description

mbstowcs_l is as mbstowcs except that the local loc is used for the conversion as opposed to the current locale.

See Also

mbstowcs.

Embedded Studio Reference Manual C Library User Guide

616

mbtowc

Synopsis

int mbtowc(wchar_t *pwc,
 const char *s,
 size_t n);

Description

mbtowc converts a single multi-byte character to a wide character in the current locale.

If s is a null pointer, mbtowc returns a nonzero value if multi-byte character encodings are state-dependent in

the current locale, and zero otherwise.

If s is not null and the object that s points to is a wide-character null character, mbtowc returns 0.

If s is not null and the object that points to forms a valid multi-byte character, mbtowc returns the length in

bytes of the multi-byte character.

If the object that points to does not form a valid multi-byte character within the first n characters, it returns 1.

See Also

mbtowc_l

Embedded Studio Reference Manual C Library User Guide

617

mbtowc_l

Synopsis

int mbtowc_l(wchar_t *pwc,
 const char *s,
 size_t n,
 __locale_s *loc);

Description

mbtowc_l converts a single multi-byte character to a wide character in locale loc.

If s is a null pointer, mbtowc_l returns a nonzero value if multi-byte character encodings are state-dependent in

the locale loc, and zero otherwise.

If s is not null and the object that s points to is a wide-character null character, mbtowc_l returns 0.

If s is not null and the object that points to forms a valid multi-byte character, mbtowc_l returns the length in

bytes of the multi-byte character.

If the object that s points to does not form a valid multi-byte character within the first n characters, it returns 1.

See Also

mbtowc

Embedded Studio Reference Manual C Library User Guide

618

qsort

Synopsis

void qsort(void *buf,
 size_t num,
 size_t size,
 int (*compare)(const void *, const void *));

qsort sorts the array *base using the compare function. The array should have num elements of size bytes. The

compare function should return a negative value if the first parameter is less than second parameter, zero if the

parameters are equal and a positive value if the first parameter is greater than the second parameter.

Embedded Studio Reference Manual C Library User Guide

619

rand

Synopsis

int rand(void);

Description

rand computes a sequence of pseudo-random integers in the range 0 to RAND_MAX.

rand returns the computed pseudo-random integer.

Embedded Studio Reference Manual C Library User Guide

620

realloc

Synopsis

void *realloc(void *p,
 size_t size);

Description

realloc deallocates the old object pointed to by ptr and returns a pointer to a new object that has the size

specified by size. The contents of the new object is identical to that of the old object prior to deallocation,

up to the lesser of the new and old sizes. Any bytes in the new object beyond the size of the old object have

indeterminate values.

If ptr is a null pointer, realloc behaves like realloc for the specified size. If memory for the new object cannot be

allocated, the old object is not deallocated and its value is unchanged.

realloc returns a pointer to the new object (which may have the same value as a pointer to the old object), or a

null pointer if the new object could not be allocated.

If ptr does not match a pointer earlier returned by calloc, malloc, or realloc, or if the space has been deallocated

by a call to free or realloc, the behavior is undefined.

Embedded Studio Reference Manual C Library User Guide

621

srand

Synopsis

void srand(unsigned int seed);

Description

srand uses the argument seed as a seed for a new sequence of pseudo-random numbers to be returned by

subsequent calls to rand. If srand is called with the same seed value, the same sequence of pseudo-random

numbers is generated.

If rand is called before any calls to srand have been made, a sequence is generated as if srand is first called with

a seed value of 1.

See Also

rand

Embedded Studio Reference Manual C Library User Guide

622

strtod

Synopsis

double strtod(const char *nptr,
 char **endptr);

Description

strtod converts the initial portion of the string pointed to by nptr to a double representation.

First, strtod decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling a floating-point constant, and a final string

of one or more unrecognized characters, including the terminating null character of the input string. strtod then

attempts to convert the subject sequence to a floating-point number, and return the result.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-

white-space character, that is of the expected form. The subject sequence contains no characters if the input

string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

The expected form of the subject sequence is an optional plus or minus sign followed by a nonempty sequence

of decimal digits optionally containing a decimal-point character, then an optional exponent part.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by strtod, provided that endptr is not a null

pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

strtod returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, HUGE_VAL is returned according to the sign of the value, if

any, and the value of the macro errno is stored in errno.

Embedded Studio Reference Manual C Library User Guide

623

strtof

Synopsis

float strtof(const char *nptr,
 char **endptr);

Description

strtof converts the initial portion of the string pointed to by nptr to a double representation.

First, strtof decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling a floating-point constant, and a final string

of one or more unrecognized characters, including the terminating null character of the input string. strtof then

attempts to convert the subject sequence to a floating-point number, and return the result.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-

white-space character, that is of the expected form. The subject sequence contains no characters if the input

string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

The expected form of the subject sequence is an optional plus or minus sign followed by a nonempty sequence

of decimal digits optionally containing a decimal-point character, then an optional exponent part.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated. A pointer

to the final string is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

strtof returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, HUGE_VALF is returned according to the sign of the value, if

any, and the value of the macro errno is stored in errno.

Embedded Studio Reference Manual C Library User Guide

624

strtol

Synopsis

long int strtol(const char *nptr,
 char **endptr,
 int base);

Description

strtol converts the initial portion of the string pointed to by nptr to a long int representation.

First, strtol decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling an integer represented in some radix

determined by the value of base, and a final string of one or more unrecognized characters, including the

terminating null character of the input string. strtol then attempts to convert the subject sequence to an integer,

and return the result.

When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an optional plus or minus sign followed

by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is an optional

plus or minus sign followed by a sequence of letters and digits representing an integer with the radix specified

by base. The letters from a (or A) through z (or Z) represent the values 10 through 35; only letters and digits

whose ascribed values are less than that of base are permitted.

If the value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and digits,

following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-

white-space character, that is of the expected form. The subject sequence contains no characters if the input

string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters starting

with the first digit is interpreted as an integer constant. If the subject sequence has the expected form and the

value of base is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr, provided that endptr is not a null

pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Embedded Studio Reference Manual C Library User Guide

625

strtol returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, LONG_MIN or LONG_MAX is returned according to the sign

of the value, if any, and the value of the macro errno is stored in errno.

Embedded Studio Reference Manual C Library User Guide

626

strtoll

Synopsis

long long int strtoll(const char *nptr,
 char **endptr,
 int base);

Description

strtoll converts the initial portion of the string pointed to by nptr to a long int representation.

First, strtoll decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling an integer represented in some radix

determined by the value of base, and a final string of one or more unrecognized characters, including the

terminating null character of the input string. strtoll then attempts to convert the subject sequence to an

integer, and return the result.

When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an optional plus or minus sign followed

by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is an optional

plus or minus sign followed by a sequence of letters and digits representing an integer with the radix specified

by base. The letters from a (or A) through z (or Z) represent the values 10 through 35; only letters and digits

whose ascribed values are less than that of base are permitted.

If the value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and digits,

following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-

white-space character, that is of the expected form. The subject sequence contains no characters if the input

string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters starting

with the first digit is interpreted as an integer constant. If the subject sequence has the expected form and the

value of base is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr, provided that endptr is not a null

pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Embedded Studio Reference Manual C Library User Guide

627

strtoll returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, LLONG_MIN or LLONG_MAX is returned according to the

sign of the value, if any, and the value of the macro ERANGE is stored in errno.

Embedded Studio Reference Manual C Library User Guide

628

strtoul

Synopsis

unsigned long int strtoul(const char *nptr,
 char **endptr,
 int base);

Description

strtoul converts the initial portion of the string pointed to by nptr to a long int representation.

First, strtoul decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling an integer represented in some radix

determined by the value of base, and a final string of one or more unrecognized characters, including the

terminating null character of the input string. strtoul then attempts to convert the subject sequence to an

integer, and return the result.

When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an optional plus or minus sign followed

by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is an optional

plus or minus sign followed by a sequence of letters and digits representing an integer with the radix specified

by base. The letters from a (or A) through z (or Z) represent the values 10 through 35; only letters and digits

whose ascribed values are less than that of base are permitted.

If the value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and digits,

following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-

white-space character, that is of the expected form. The subject sequence contains no characters if the input

string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters starting

with the first digit is interpreted as an integer constant. If the subject sequence has the expected form and the

value of base is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr, provided that endptr is not a null

pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Embedded Studio Reference Manual C Library User Guide

629

strtoul returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, LONG_MAX or ULONG_MAX is returned according to the

sign of the value, if any, and the value of the macro ERANGE is stored in errno.

Embedded Studio Reference Manual C Library User Guide

630

strtoull

Synopsis

unsigned long long int strtoull(const char *nptr,
 char **endptr,
 int base);

Description

strtoull converts the initial portion of the string pointed to by nptr to a long int representation.

First, strtoull decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling an integer represented in some radix

determined by the value of base, and a final string of one or more unrecognized characters, including the

terminating null character of the input string. strtoull then attempts to convert the subject sequence to an

integer, and return the result.

When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an optional plus or minus sign followed

by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is an optional

plus or minus sign followed by a sequence of letters and digits representing an integer with the radix specified

by base. The letters from a (or A) through z (or Z) represent the values 10 through 35; only letters and digits

whose ascribed values are less than that of base are permitted.

If the value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and digits,

following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-

white-space character, that is of the expected form. The subject sequence contains no characters if the input

string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters starting

with the first digit is interpreted as an integer constant. If the subject sequence has the expected form and the

value of base is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr, provided that endptr is not a null

pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Embedded Studio Reference Manual C Library User Guide

631

strtoull returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, LLONG_MAX or ULLONG_MAX is returned according to the

sign of the value, if any, and the value of the macro ERANGE is stored in errno.

Embedded Studio Reference Manual C Library User Guide

632

ulltoa

Synopsis

char *ulltoa(unsigned long long val,
 char *buf,
 int radix);

Description

ulltoa converts val to a string in base radix and places the result in buf.

ulltoa returns buf as the result.

If radix is greater than 36, the result is undefined.

See Also

itoa, ltoa, lltoa, ultoa, utoa

Embedded Studio Reference Manual C Library User Guide

633

ultoa

Synopsis

char *ultoa(unsigned long val,
 char *buf,
 int radix);

Description

ultoa converts val to a string in base radix and places the result in buf.

ultoa returns buf as the result.

If radix is greater than 36, the result is undefined.

See Also

itoa, ltoa, lltoa, ulltoa, utoa

Embedded Studio Reference Manual C Library User Guide

634

utoa

Synopsis

char *utoa(unsigned val,
 char *buf,
 int radix);

Description

utoa converts val to a string in base radix and places the result in buf.

utoa returns buf as the result.

If radix is greater than 36, the result is undefined.

See Also

itoa, ltoa, lltoa, ultoa, ulltoa

Embedded Studio Reference Manual C Library User Guide

635

<string.h>

Overview

The header file <string.h> defines functions that operate on arrays that are interpreted as null-terminated

strings.

Various methods are used for determining the lengths of the arrays, but in all cases a char * or void * argument

points to the initial (lowest addressed) character of the array. If an array is accessed beyond the end of an object,

the behavior is undefined.

Where an argument declared as size_t n specifies the length of an array for a function, n can have the value zero

on a call to that function. Unless explicitly stated otherwise in the description of a particular function, pointer

arguments must have valid values on a call with a zero size. On such a call, a function that locates a character

finds no occurrence, a function that compares two character sequences returns zero, and a function that copies

characters copies zero characters.

API Summary

Copying functions

memccpy Copy memory with specified terminator (POSIX
extension)

memcpy Copy memory

memcpy_fast Copy memory

memmove Safely copy overlapping memory

mempcpy Copy memory (GNU extension)

strcat Concatenate strings

strcpy Copy string

strdup Duplicate string (POSIX extension)

strlcat Copy string up to a maximum length with terminator
(BSD extension)

strlcpy Copy string up to a maximum length with terminator
(BSD extension)

strncat Concatenate strings up to maximum length

strncpy Copy string up to a maximum length

strndup Duplicate string (POSIX extension)

Comparison functions

memcmp Compare memory

strcasecmp Compare strings ignoring case (POSIX extension)

Embedded Studio Reference Manual C Library User Guide

636

strcmp Compare strings

strncasecmp Compare strings up to a maximum length ignoring
case (POSIX extension)

strncmp Compare strings up to a maximum length

Search functions

memchr Search memory for a character

strcasestr Find first case-insensitive occurrence of a string within
string

strchr Find character within string

strcspn Compute size of string not prefixed by a set of
characters

strncasestr Find first case-insensitive occurrence of a string within
length-limited string

strnchr Find character in a length-limited string

strnlen Calculate length of length-limited string (POSIX
extension)

strnstr Find first occurrence of a string within length-limited
string

strpbrk Find first occurrence of characters within string

strrchr Find last occurrence of character within string

strsep Break string into tokens (4.4BSD extension)

strspn Compute size of string prefixed by a set of characters

strstr Find first occurrence of a string within string

strtok Break string into tokens

strtok_r Break string into tokens, reentrant version (POSIX
extension)

Miscellaneous functions

memset Set memory to character

strerror Decode error code

strlen Calculate length of string

Embedded Studio Reference Manual C Library User Guide

637

memccpy

Synopsis

void *memccpy(void *s1,
 const void *s2,
 int c,
 size_t n);

Description

memccpy copies at most n characters from the object pointed to by s2 into the object pointed to by s1. The

copying stops as soon as n characters are copied or the character c is copied into the destination object pointed

to by s1. The behavior of memccpy is undefined if copying takes place between objects that overlap.

memccpy returns a pointer to the character immediately following c in s1, or NULL if c was not found in the first

n characters of s2.

Note

memccpy conforms to POSIX.1-2008.

Embedded Studio Reference Manual C Library User Guide

638

memchr

Synopsis

void *memchr(const void *s,
 int c,
 size_t n);

Description

memchr locates the first occurrence of c (converted to an unsigned char) in the initial n characters (each

interpreted as unsigned char) of the object pointed to by s. Unlike strchr, memchr does not terminate a search

when a null character is found in the object pointed to by s.

memchr returns a pointer to the located character, or a null pointer if c does not occur in the object.

Embedded Studio Reference Manual C Library User Guide

639

memcmp

Synopsis

int memcmp(const void *s1,
 const void *s2,
 size_t n);

Description

memcmp compares the first n characters of the object pointed to by s1 to the first n characters of the object

pointed to by s2. memcmp returns an integer greater than, equal to, or less than zero as the object pointed to

by s1 is greater than, equal to, or less than the object pointed to by s2.

Embedded Studio Reference Manual C Library User Guide

640

memcpy

Synopsis

void *memcpy(void *s1,
 const void *s2,
 size_t n);

Description

memcpy copies n characters from the object pointed to by s2 into the object pointed to by s1. The behavior of

memcpy is undefined if copying takes place between objects that overlap.

memcpy returns the value of s1.

Embedded Studio Reference Manual C Library User Guide

641

memcpy_fast

Synopsis

void *memcpy_fast(void *s1,
 const void *s2,
 size_t n);

Description

memcpy_fast copies n characters from the object pointed to by s2 into the object pointed to by s1. The

behavior of memcpy_fast is undefined if copying takes place between objects that overlap. The implementation

of memcpy_fast is optimized for speed for all cases of memcpy and as such has a large code memory

requirement. This function is implemented for little-endian ARM and 32-bit Thumb-2 instruction sets only.

memcpy_fast returns the value of s1.

Embedded Studio Reference Manual C Library User Guide

642

memmove

Synopsis

void *memmove(void *s1,
 const void *s2,
 size_t n);

Description

memmove copies n characters from the object pointed to by s2 into the object pointed to by s1 ensuring that

if s1 and s2 overlap, the copy works correctly. Copying takes place as if the n characters from the object pointed

to by s2 are first copied into a temporary array of n characters that does not overlap the objects pointed to by s1

and s2, and then the n characters from the temporary array are copied into the object pointed to by s1.

memmove returns the value of s1.

Embedded Studio Reference Manual C Library User Guide

643

mempcpy

Synopsis

void *mempcpy(void *s1,
 const void *s2,
 size_t n);

Description

mempcpy copies n characters from the object pointed to by s2 into the object pointed to by s1. The behavior of

mempcpy is undefined if copying takes place between objects that overlap.

mempcpy returns a pointer to the byte following the last written byte.

Note

This is an extension found in GNU libc.

Embedded Studio Reference Manual C Library User Guide

644

memset

Synopsis

void *memset(void *s,
 int c,
 size_t n);

Description

memset copies the value of c (converted to an unsigned char) into each of the first n characters of the object

pointed to by s.

memset returns the value of s.

Embedded Studio Reference Manual C Library User Guide

645

strcasecmp

Synopsis

int strcasecmp(const char *s1,
 const char *s2);

Description

strcasecmp compares the string pointed to by s1 to the string pointed to by s2 ignoring differences in case.

strcasecmp returns an integer greater than, equal to, or less than zero if the string pointed to by s1 is greater

than, equal to, or less than the string pointed to by s2.

Note

strcasecmp conforms to POSIX.1-2008.

Embedded Studio Reference Manual C Library User Guide

646

strcasestr

Synopsis

char *strcasestr(const char *s1,
 const char *s2);

Description

strcasestr locates the first occurrence in the string pointed to by s1 of the sequence of characters (excluding the

terminating null character) in the string pointed to by s2 without regard to character case.

strcasestr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a string

with zero length, strcasestr returns s1.

Note

strcasestr is an extension commonly found in Linux and BSD C libraries.

Embedded Studio Reference Manual C Library User Guide

647

strcat

Synopsis

char *strcat(char *s1,
 const char *s2);

Description

strcat appends a copy of the string pointed to by s2 (including the terminating null character) to the end of the

string pointed to by s1. The initial character of s2 overwrites the null character at the end of s1. The behavior of

strcat is undefined if copying takes place between objects that overlap.

strcat returns the value of s1.

Embedded Studio Reference Manual C Library User Guide

648

strchr

Synopsis

char *strchr(const char *s,
 int c);

Description

strchr locates the first occurrence of c (converted to a char) in the string pointed to by s. The terminating null

character is considered to be part of the string.

strchr returns a pointer to the located character, or a null pointer if c does not occur in the string.

Embedded Studio Reference Manual C Library User Guide

649

strcmp

Synopsis

int strcmp(const char *s1,
 const char *s2);

Description

strcmp compares the string pointed to by s1 to the string pointed to by s2. strcmp returns an integer greater

than, equal to, or less than zero if the string pointed to by s1 is greater than, equal to, or less than the string

pointed to by s2.

Embedded Studio Reference Manual C Library User Guide

650

strcpy

Synopsis

char *strcpy(char *s1,
 const char *s2);

Description

strcpy copies the string pointed to by s2 (including the terminating null character) into the array pointed to by

s1. The behavior of strcpy is undefined if copying takes place between objects that overlap.

strcpy returns the value of s1.

Embedded Studio Reference Manual C Library User Guide

651

strcspn

Synopsis

size_t strcspn(const char *s1,
 const char *s2);

Description

strcspn computes the length of the maximum initial segment of the string pointed to by s1 which consists

entirely of characters not from the string pointed to by s2.

strcspn returns the length of the segment.

Embedded Studio Reference Manual C Library User Guide

652

strdup

Synopsis

char *strdup(const char *s1);

Description

strdup duplicates the string pointed to by s1 by using malloc to allocate memory for a copy of s and then

copying s, including the terminating null, to that memory strdup returns a pointer to the new string or a null

pointer if the new string cannot be created. The returned pointer can be passed to free.

Note

strdup conforms to POSIX.1-2008 and SC22 TR 24731-2.

Embedded Studio Reference Manual C Library User Guide

653

strerror

Synopsis

char *strerror(int num);

Description

strerror maps the number in num to a message string. Typically, the values for num come from errno, but

strerror can map any value of type int to a message.

strerror returns a pointer to the message string. The program must not modify the returned message string. The

message may be overwritten by a subsequent call to strerror.

Embedded Studio Reference Manual C Library User Guide

654

strlcat

Synopsis

size_t strlcat(char *s1,
 const char *s2,
 size_t n);

Description

strlcat appends no more than nstrlen(dst)1 characters pointed to by s2 into the array pointed to by s1 and

always terminates the result with a null character if n is greater than zero. Both the strings s1 and s2 must be

terminated with a null character on entry to strlcat and a byte for the terminating null should be included in n.

The behavior of strlcat is undefined if copying takes place between objects that overlap.

strlcat returns the number of characters it tried to copy, which is the sum of the lengths of the strings s1 and s2

or n, whichever is smaller.

Note

strlcat is commonly found in OpenBSD libraries.

Embedded Studio Reference Manual C Library User Guide

655

strlcpy

Synopsis

size_t strlcpy(char *s1,
 const char *s2,
 size_t n);

Description

strlcpy copies up to n1 characters from the string pointed to by s2 into the array pointed to by s1 and always

terminates the result with a null character. The behavior of strlcpy is undefined if copying takes place between

objects that overlap.

strlcpy returns the number of characters it tried to copy, which is the length of the string s2 or n, whichever is

smaller.

Note

strlcpy is commonly found in OpenBSD libraries and contrasts with strncpy in that the resulting string is always

terminated with a null character.

Embedded Studio Reference Manual C Library User Guide

656

strlen

Synopsis

size_t strlen(const char *s);

Description

strlen returns the length of the string pointed to by s, that is the number of characters that precede the

terminating null character.

Embedded Studio Reference Manual C Library User Guide

657

strncasecmp

Synopsis

int strncasecmp(const char *s1,
 const char *s2,
 size_t n);

Description

strncasecmp compares not more than n characters from the array pointed to by s1 to the array pointed to by s2

ignoring differences in case. Characters that follow a null character are not compared.

strncasecmp returns an integer greater than, equal to, or less than zero, if the possibly null-terminated array

pointed to by s1 is greater than, equal to, or less than the possibly null-terminated array pointed to by s2.

Note

strncasecmp conforms to POSIX.1-2008.

Embedded Studio Reference Manual C Library User Guide

658

strncasestr

Synopsis

char *strncasestr(const char *s1,
 const char *s2,
 size_t n);

Description

strncasestr searches at most n characters to locate the first occurrence in the string pointed to by s1 of the

sequence of characters (excluding the terminating null character) in the string pointed to by s2 without regard

to character case.

strncasestr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a

string with zero length, strncasestr returns s1.

Note

strncasestr is an extension commonly found in Linux and BSD C libraries.

Embedded Studio Reference Manual C Library User Guide

659

strncat

Synopsis

char *strncat(char *s1,
 const char *s2,
 size_t n);

Description

strncat appends not more than n characters from the array pointed to by s2 to the end of the string pointed to

by s1. A null character in s1 and characters that follow it are not appended. The initial character of s2 overwrites

the null character at the end of s1. A terminating null character is always appended to the result. The behavior of

strncat is undefined if copying takes place between objects that overlap.

strncat returns the value of s1.

Embedded Studio Reference Manual C Library User Guide

660

strnchr

Synopsis

char *strnchr(const char *str,
 size_t n,
 int ch);

Description

strnchr searches not more than n characters to locate the first occurrence of c (converted to a char) in the string

pointed to by s. The terminating null character is considered to be part of the string.

strnchr returns a pointer to the located character, or a null pointer if c does not occur in the string.

Embedded Studio Reference Manual C Library User Guide

661

strncmp

Synopsis

int strncmp(const char *s1,
 const char *s2,
 size_t n);

Description

strncmp compares not more than n characters from the array pointed to by s1 to the array pointed to by s2.

Characters that follow a null character are not compared.

strncmp returns an integer greater than, equal to, or less than zero, if the possibly null-terminated array pointed

to by s1 is greater than, equal to, or less than the possibly null-terminated array pointed to by s2.

Embedded Studio Reference Manual C Library User Guide

662

strncpy

Synopsis

char *strncpy(char *s1,
 const char *s2,
 size_t n);

Description

strncpy copies not more than n characters from the array pointed to by s2 to the array pointed to by s1.

Characters that follow a null character in s2 are not copied. The behavior of strncpy is undefined if copying takes

place between objects that overlap. If the array pointed to by s2 is a string that is shorter than n characters, null

characters are appended to the copy in the array pointed to by s1, until n characters in all have been written.

strncpy returns the value of s1.

Note

No null character is implicitly appended to the end of s1, so s1 will only be terminated by a null character if the

length of the string pointed to by s2 is less than n.

Embedded Studio Reference Manual C Library User Guide

663

strndup

Synopsis

char *strndup(const char *s1,
 size_t n);

Description

strndup duplicates at most n characters from the the string pointed to by s1 by using malloc to allocate memory

for a copy of s1.

If the length of string pointed to by s1 is greater than n characters, only n characters will be duplicated. If n is

greater than the length of string pointed to by s1, all characters in the string are copied into the allocated array

including the terminating null character.

strndup returns a pointer to the new string or a null pointer if the new string cannot be created. The returned

pointer can be passed to free.

Note

strndup conforms to POSIX.1-2008 and SC22 TR 24731-2.

Embedded Studio Reference Manual C Library User Guide

664

strnlen

Synopsis

size_t strnlen(const char *s,
 size_t n);

Description

strnlen returns the length of the string pointed to by s, up to a maximum of n characters. strnlen only examines

the first n characters of the string s.

Note

strnlen conforms to POSIX.1-2008.

Embedded Studio Reference Manual C Library User Guide

665

strnstr

Synopsis

char *strnstr(const char *s1,
 const char *s2,
 size_t n);

Description

strnstr searches at most n characters to locate the first occurrence in the string pointed to by s1 of the sequence

of characters (excluding the terminating null character) in the string pointed to by s2.

strnstr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a string

with zero length, strnstr returns s1.

Note

strnstr is an extension commonly found in Linux and BSD C libraries.

Embedded Studio Reference Manual C Library User Guide

666

strpbrk

Synopsis

char *strpbrk(const char *s1,
 const char *s2);

Description

strpbrk locates the first occurrence in the string pointed to by s1 of any character from the string pointed to by

s2.

strpbrk returns a pointer to the character, or a null pointer if no character from s2 occurs in s1.

Embedded Studio Reference Manual C Library User Guide

667

strrchr

Synopsis

char *strrchr(const char *s,
 int c);

Description

strrchr locates the last occurrence of c (converted to a char) in the string pointed to by s. The terminating null

character is considered to be part of the string.

strrchr returns a pointer to the character, or a null pointer if c does not occur in the string.

Embedded Studio Reference Manual C Library User Guide

668

strsep

Synopsis

char *strsep(char **stringp,
 const char *delim);

Description

strsep locates, in the string referenced by *stringp, the first occurrence of any character in the string delim (or

the terminating null character) and replaces it with a null character. The location of the next character after the

delimiter character (or NULL, if the end of the string was reached) is stored in *stringp. The original value of

*stringp is returned.

An empty field (that is, a character in the string delim occurs as the first character of *stringp can be detected by

comparing the location referenced by the returned pointer to the null character.

If *stringp is initially null, strsep returns null.

Note

strsep is an extension commonly found in Linux and BSD C libraries.

Embedded Studio Reference Manual C Library User Guide

669

strspn

Synopsis

size_t strspn(const char *s1,
 const char *s2);

Description

strspn computes the length of the maximum initial segment of the string pointed to by s1 which consists

entirely of characters from the string pointed to by s2.

strspn returns the length of the segment.

Embedded Studio Reference Manual C Library User Guide

670

strstr

Synopsis

char *strstr(const char *s1,
 const char *s2);

Description

strstr locates the first occurrence in the string pointed to by s1 of the sequence of characters (excluding the

terminating null character) in the string pointed to by s2.

strstr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a string with

zero length, strstr returns s1.

Embedded Studio Reference Manual C Library User Guide

671

strtok

Synopsis

char *strtok(char *s1,
 const char *s2);

Description

strtok A sequence of calls to strtok breaks the string pointed to by s1 into a sequence of tokens, each of which

is delimited by a character from the string pointed to by s2. The first call in the sequence has a non-null first

argument; subsequent calls in the sequence have a null first argument. The separator string pointed to by s2

may be different from call to call.

The first call in the sequence searches the string pointed to by s1 for the first character that is not contained in

the current separator string pointed to by s2. If no such character is found, then there are no tokens in the string

pointed to by s1 and strtok returns a null pointer. If such a character is found, it is the start of the first token.

strtok then searches from there for a character that is contained in the current separator string. If no such

character is found, the current token extends to the end of the string pointed to by s1, and subsequent searches

for a token will return a null pointer. If such a character is found, it is overwritten by a null character, which

terminates the current token. strtok saves a pointer to the following character, from which the next search for a

token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from the saved

pointer and behaves as described above.

Note

strtok maintains static state and is therefore not reentrant and not thread safe. See strtok_r for a thread-safe and

reentrant variant.

See Also

strsep, strtok_r.

Embedded Studio Reference Manual C Library User Guide

672

strtok_r

Synopsis

char *strtok_r(char *s1,
 const char *s2,
 char **s3);

Description

strtok_r is a reentrant version of the function strtok where the state is maintained in the object of type char *

pointed to by s3.

Note

strtok_r conforms to POSIX.1-2008 and is commonly found in Linux and BSD C libraries.

See Also

strtok.

Embedded Studio Reference Manual C Library User Guide

673

<time.h>

API Summary

Types

clock_t Clock type

time_t Time type

tm Time structure

Functions

asctime Convert a struct tm to a string

asctime_r Convert a struct tm to a string

ctime Convert a time_t to a string

ctime_r Convert a time_t to a string

difftime Calculates the difference between two times

gmtime Convert a time_t to a struct tm

gmtime_r Convert a time_t to a struct tm

localtime Convert a time_t to a struct tm

localtime_r Convert a time_t to a struct tm

mktime Convert a struct tm to time_t

strftime Format a struct tm to a string

Embedded Studio Reference Manual C Library User Guide

674

asctime

Synopsis

char *asctime(const tm *tp);

Description

asctime converts the *tp struct to a null terminated string of the form Sun Sep 16 01:03:52 1973. The

returned string is held in a static buffer. asctime is not re-entrant.

Embedded Studio Reference Manual C Library User Guide

675

asctime_r

Synopsis

char *asctime_r(const tm *tp,
 char *buf);

Description

asctime_r converts the *tp struct to a null terminated string of the form Sun Sep 16 01:03:52 1973 in buf and

returns buf. The buf must point to an array at least 26 bytes in length.

Embedded Studio Reference Manual C Library User Guide

676

clock_t

Synopsis

typedef long clock_t;

Description

clock_t is the type returned by the clock function.

Embedded Studio Reference Manual C Library User Guide

677

ctime

Synopsis

char *ctime(const time_t *tp);

Description

ctime converts the *tp to a null terminated string. The returned string is held in a static buffer, this function is

not re-entrant.

Embedded Studio Reference Manual C Library User Guide

678

ctime_r

Synopsis

char *ctime_r(const time_t *tp,
 char *buf);

Description

ctime_r converts the *tp to a null terminated string in buf and returns buf. The buf must point to an array at

least 26 bytes in length.

Embedded Studio Reference Manual C Library User Guide

679

difftime

Synopsis

double difftime(time_t time2,
 time_t time1);

Description

difftime returns time1 - time0 as a double precision number.

Embedded Studio Reference Manual C Library User Guide

680

gmtime

Synopsis

 gmtime(const time_t *tp);

Description

gmtime converts the *tp time format to a struct tm time format. The returned value points to a static object -

this function is not re-entrant.

Embedded Studio Reference Manual C Library User Guide

681

gmtime_r

Synopsis

 gmtime_r(const time_t *tp,
 tm *result);

Description

gmtime_r converts the *tp time format to a struct tm time format in *result and returns result.

Embedded Studio Reference Manual C Library User Guide

682

localtime

Synopsis

 localtime(const time_t *tp);

Description

localtime converts the *tp time format to a struct tm local time format. The returned value points to a static

object - this function is not re-entrant.

Embedded Studio Reference Manual C Library User Guide

683

localtime_r

Synopsis

 localtime_r(const time_t *tp,
 tm *result);

Description

localtime_r converts the *tp time format to a struct tm local time format in *result and returns result.

Embedded Studio Reference Manual C Library User Guide

684

mktime

Synopsis

time_t mktime(tm *tp);

Description

mktime validates (and updates) the *tp struct to ensure that the tm_sec, tm_min, tm_hour, tm_mon fields

are within the supported integer ranges and the tm_mday, tm_mon and tm_year fields are consistent. The

validated *tp struct is converted to the number of seconds since UTC 1 January 1970 and returned.

Embedded Studio Reference Manual C Library User Guide

685

strftime

Synopsis

size_t strftime(char *s,
 size_t smax,
 const char *fmt,
 const tm *tp);

Description

strftime formats the *tp struct to a null terminated string of maximum size smax-1 into the array at *s based

on the fmt format string. The format string consists of conversion specifications and ordinary characters.

Conversion specifications start with a % character followed by an optional # character. The following conversion

specifications are supported:

Specification Description

%s Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Date and time representation appropriate for locale

%#c Date and time formatted as "%A, %B %#d, %Y, %H:%M:
%S" (Microsoft extension)

%C Century number

%d Day of month as a decimal number [01,31]

%#d Day of month without leading zero [1,31]

%D Date in the form %m/%d/%y (POSIX.1-2008 extension)

%e Day of month [1,31], single digit preceded by space

%F Date in the format %Y-%m-%d

%h Abbreviated month name as %b

%H Hour in 24-hour format [00,23]

%#H Hour in 24-hour format without leading zeros [0,23]

%I Hour in 12-hour format [01,12]

%#I Hour in 12-hour format without leading zeros [1,12]

%j Day of year as a decimal number [001,366]

%#j Day of year as a decimal number without leading zeros
[1,366]

%k Hour in 24-hour clock format [0,23] (POSIX.1-2008
extension)

Embedded Studio Reference Manual C Library User Guide

686

%l Hour in 12-hour clock format [0,12] (POSIX.1-2008
extension)

%m Month as a decimal number [01,12]

%#m Month as a decimal number without leading zeros
[1,12]

%M Minute as a decimal number [00,59]

%#M Minute as a decimal number without leading zeros
[0,59]

%n Insert newline character (POSIX.1-2008 extension)

%p Locale's a.m or p.m indicator for 12-hour clock

%r Time as %I:%M:%s %p (POSIX.1-2008 extension)

%R Time as %H:%M (POSIX.1-2008 extension)

%S Second as a decimal number [00,59]

%t Insert tab character (POSIX.1-2008 extension)

%T Time as %H:%M:%S

%#S Second as a decimal number without leading zeros
[0,59]

%U Week of year as a decimal number [00,53], Sunday is
first day of the week

%#U Week of year as a decimal number without leading
zeros [0,53], Sunday is first day of the week

%w Weekday as a decimal number [0,6], Sunday is 0

%W Week number as a decimal number [00,53], Monday is
first day of the week

%#W Week number as a decimal number without leading
zeros [0,53], Monday is first day of the week

%x Locale's date representation

%#x Locale's long date representation

%X Locale's time representation

%y Year without century, as a decimal number [00,99]

%#y Year without century, as a decimal number without
leading zeros [0,99]

%Y Year with century, as decimal number

%z,%Z Timezone name or abbreviation

%% %

Embedded Studio Reference Manual C Library User Guide

687

time_t

Synopsis

typedef long time_t;

Description

time_t is a long type that represents the time in number of seconds since UTC 1 January 1970, negative values

indicate time before UTC 1 January 1970.

Embedded Studio Reference Manual C Library User Guide

688

tm

Synopsis

typedef struct {
 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon;
 int tm_year;
 int tm_wday;
 int tm_yday;
 int tm_isdst;
} tm;

Description

tm structure has the following fields.

Member Description

tm_sec seconds after the minute - [0,59]

tm_min minutes after the hour - [0,59]

tm_hour hours since midnight - [0,23]

tm_mday day of the month - [1,31]

tm_mon months since January - [0,11]

tm_year years since 1900

tm_wday days since Sunday - [0,6]

tm_yday days since January 1 - [0,365]

tm_isdst daylight savings time flag

Embedded Studio Reference Manual C Library User Guide

689

<wchar.h>

API Summary

Character minimum and maximum values

WCHAR_MAX Maximum value of a wide character

WCHAR_MIN Minimum value of a wide character

Constants

WEOF End of file indication

Types

wchar_t Wide character type

wint_t Wide integer type

Copying functions

wcscat Concatenate strings

wcscpy Copy string

wcsncat Concatenate strings up to maximum length

wcsncpy Copy string up to a maximum length

wmemccpy Copy memory with specified terminator (POSIX
extension)

wmemcpy Copy memory

wmemmove Safely copy overlapping memory

wmempcpy Copy memory (GNU extension)

Comparison functions

wcscmp Compare strings

wcsncmp Compare strings up to a maximum length

wmemcmp Compare memory

Search functions

wcschr Find character within string

wcscspn Compute size of string not prefixed by a set of
characters

wcsnchr Find character in a length-limited string

wcsnlen Calculate length of length-limited string

wcsnstr Find first occurrence of a string within length-limited
string

wcspbrk Find first occurrence of characters within string

wcsrchr Find last occurrence of character within string

Embedded Studio Reference Manual C Library User Guide

690

wcsspn Compute size of string prefixed by a set of characters

wcsstr Find first occurrence of a string within string

wcstok Break string into tokens

wcstok_r Break string into tokens (reentrant version)

wmemchr Search memory for a wide character

wstrsep Break string into tokens

Miscellaneous functions

wcsdup Duplicate string

wcslen Calculate length of string

wmemset Set memory to wide character

Multi-byte/wide string conversion functions

mbrtowc Convert multi-byte character to wide character

mbrtowc_l Convert multi-byte character to wide character

msbinit Query conversion state

wcrtomb Convert wide character to multi-byte character
(restartable)

wcrtomb_l Convert wide character to multi-byte character
(restartable)

wctob Convert wide character to single-byte character

wctob_l Convert wide character to single-byte character

Multi-byte to wide character conversions

mbrlen Determine number of bytes in a multi-byte character

mbrlen_l Determine number of bytes in a multi-byte character

mbsrtowcs Convert multi-byte string to wide character string

mbsrtowcs_l Convert multi-byte string to wide character string

Single-byte to wide character conversions

btowc Convert single-byte character to wide character

btowc_l Convert single-byte character to wide character

Embedded Studio Reference Manual C Library User Guide

691

WCHAR_MAX

Synopsis

#define WCHAR_MAX ...

Description

WCHAR_MAX is the maximum value for an object of type wchar_t. Although capable of storing larger values,

the maximum value implemented by the conversion functions in the library is the value 0x10FFFF defined by ISO

10646.

Embedded Studio Reference Manual C Library User Guide

692

WCHAR_MIN

Synopsis

#define WCHAR_MIN ...

Description

WCHAR_MIN is the minimum value for an object of type wchar_t.

Embedded Studio Reference Manual C Library User Guide

693

WEOF

Synopsis

#define WEOF ((wint_t)~0U)

Description

WEOF expands to a constant value that does not correspond to any character in the wide character set. It is

typically used to indicate an end of file condition.

Embedded Studio Reference Manual C Library User Guide

694

btowc

Synopsis

wint_t btowc(int c);

Description

btowc function determines whether c constitutes a valid single-byte character. If c is a valid single-byte

character, btowc returns the wide character representation of that character

btowc returns WEOF if c has the value EOF or if (unsigned char)c does not constitute a valid single-byte

character in the initial shift state.

Embedded Studio Reference Manual C Library User Guide

695

btowc_l

Synopsis

wint_t btowc_l(int c,
 locale_t loc);

Description

btowc_l function determines whether c constitutes a valid single-byte character in the locale loc. If c is a valid

single-byte character, btowc_l returns the wide character representation of that character

btowc_l returns WEOF if c has the value EOF or if (unsigned char)c does not constitute a valid single-byte

character in the initial shift state.

Embedded Studio Reference Manual C Library User Guide

696

mbrlen

Synopsis

size_t mbrlen(const char *s,
 size_t n,
 mbstate_t *ps);

Note

mbrlen function is equivalent to the call:

mbrtowc(NULL, s, n, ps != NULL ? ps : &internal);

where internal is the mbstate_t object for the mbrlen function, except that the expression designated by ps is

evaluated only once.

Embedded Studio Reference Manual C Library User Guide

697

mbrlen_l

Synopsis

size_t mbrlen_l(const char *s,
 size_t n,
 mbstate_t *ps,
 locale_t loc);

Note

mbrlen_l function is equivalent to the call:

mbrtowc_l(NULL, s, n, ps != NULL ? ps : &internal, loc);

where internal is the mbstate_t object for the mbrlen function, except that the expression designated by ps is

evaluated only once.

Embedded Studio Reference Manual C Library User Guide

698

mbrtowc

Synopsis

size_t mbrtowc(wchar_t *pwc,
 const char *s,
 size_t n,
 mbstate_t *ps);

Description

mbrtowc converts a single multi-byte character to a wide character in the current locale.

If s is a null pointer, mbrtowc is equivalent to mbrtowc(NULL, "", 1, ps), ignoring pwc and n.

If s is not null and the object that s points to is a wide-character null character, mbrtowc returns 0.

If s is not null and the object that points to forms a valid multi-byte character with a most n bytes, mbrtowc

returns the length in bytes of the multi-byte character and stores that wide character to the object pointed to by

pwc (if pwc is not null).

If the object that points to forms an incomplete, but possibly valid, multi-byte character, mbrtowc returns 2. If

the object that points to does not form a partial multi-byte character, mbrtowc returns 1.

See Also

mbtowc, mbrtowc_l

Embedded Studio Reference Manual C Library User Guide

699

mbrtowc_l

Synopsis

size_t mbrtowc_l(wchar_t *pwc,
 const char *s,
 size_t n,
 mbstate_t *ps,
 locale_t loc);

Description

mbrtowc_l converts a single multi-byte character to a wide character in the locale loc.

If s is a null pointer, mbrtowc_l is equivalent to mbrtowc(NULL, "", 1, ps), ignoring pwc and n.

If s is not null and the object that s points to is a wide-character null character, mbrtowc_l returns 0.

If s is not null and the object that points to forms a valid multi-byte character with a most n bytes, mbrtowc_l

returns the length in bytes of the multi-byte character and stores that wide character to the object pointed to by

pwc (if pwc is not null).

If the object that points to forms an incomplete, but possibly valid, multi-byte character, mbrtowc_l returns 2. If

the object that points to does not form a partial multi-byte character, mbrtowc_l returns 1.

See Also

mbrtowc, mbtowc_l

Embedded Studio Reference Manual C Library User Guide

700

mbsrtowcs

Synopsis

size_t mbsrtowcs(wchar_t *dst,
 const char **src,
 size_t len,
 mbstate_t *ps);

Description

mbsrtowcs converts a sequence of multi-byte characters that begins in the conversion state described by the

object pointed to by ps, from the array indirectly pointed to by src into a sequence of corresponding wide

characters If dst is not a null pointer, the converted characters are stored into the array pointed to by dst.

Conversion continues up to and including a terminating null character, which is also stored.

Conversion stops earlier in two cases: when a sequence of bytes is encountered that does not form a valid multi-

byte character, or (if dst is not a null pointer) when len wide characters have been stored into the array pointed

to by dst. Each conversion takes place as if by a call to the mbrtowc function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if conversion

stopped due to reaching a terminating null character) or the address just past the last multi-byte character

converted (if any). If conversion stopped due to reaching a terminating null character and if dst is not a null

pointer, the resulting state described is the initial conversion state.

See Also

mbsrtowcs_l, mbrtowc

Embedded Studio Reference Manual C Library User Guide

701

mbsrtowcs_l

Synopsis

size_t mbsrtowcs_l(wchar_t *dst,
 const char **src,
 size_t len,
 mbstate_t *ps,
 locale_t loc);

Description

mbsrtowcs_l converts a sequence of multi-byte characters that begins in the conversion state described by

the object pointed to by ps, from the array indirectly pointed to by src into a sequence of corresponding wide

characters If dst is not a null pointer, the converted characters are stored into the array pointed to by dst.

Conversion continues up to and including a terminating null character, which is also stored.

Conversion stops earlier in two cases: when a sequence of bytes is encountered that does not form a valid multi-

byte character, or (if dst is not a null pointer) when len wide characters have been stored into the array pointed

to by dst. Each conversion takes place as if by a call to the mbrtowc function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if conversion

stopped due to reaching a terminating null character) or the address just past the last multi-byte character

converted (if any). If conversion stopped due to reaching a terminating null character and if dst is not a null

pointer, the resulting state described is the initial conversion state.

See Also

mbsrtowcs_l, mbrtowc

Embedded Studio Reference Manual C Library User Guide

702

msbinit

Synopsis

int msbinit(const mbstate_t *ps);

Description

msbinit function returns nonzero if ps is a null pointer or if the pointed-to object describes an initial conversion

state; otherwise, msbinit returns zero.

Embedded Studio Reference Manual C Library User Guide

703

wchar_t

Synopsis

typedef __RAL_WCHAR_T wchar_t;

Description

wchar_t holds a single wide character.

Depending on implementation you can control whether wchar_t is represented by a short 16-bit type or the

standard 32-bit type.

Embedded Studio Reference Manual C Library User Guide

704

wcrtomb

Synopsis

size_t wcrtomb(char *s,
 wchar_t wc,
 mbstate_t *ps);

If s is a null pointer, wcrtomb function is equivalent to the call wcrtomb(buf, L'\0', ps) where buf is an

internal buffer.

If s is not a null pointer, wcrtomb determines the number of bytes needed to represent the multibyte character

that corresponds to the wide character given by wc, and stores the multibyte character representation in

the array whose first element is pointed to by s. At most MB_CUR_MAX bytes are stored. If wc is a null wide

character, a null byte is stored; the resulting state described is the initial conversion state.

wcrtomb returns the number of bytes stored in the array object. When wc is not a valid wide character, an

encoding error occurs: wcrtomb stores the value of the macro EILSEQ in errno and returns (size_t)(-1); the

conversion state is unspecified.

Embedded Studio Reference Manual C Library User Guide

705

wcrtomb_l

Synopsis

size_t wcrtomb_l(char *s,
 wchar_t wc,
 mbstate_t *ps,
 locale_t loc);

If s is a null pointer, wcrtomb_l function is equivalent to the call wcrtomb_l(buf, L'\0', ps, loc)

where buf is an internal buffer.

If s is not a null pointer, wcrtomb_l determines the number of bytes needed to represent the multibyte

character that corresponds to the wide character given by wc, and stores the multibyte character representation

in the array whose first element is pointed to by s. At most MB_CUR_MAX bytes are stored. If wc is a null wide

character, a null byte is stored; the resulting state described is the initial conversion state.

wcrtomb_l returns the number of bytes stored in the array object. When wc is not a valid wide character, an

encoding error occurs: wcrtomb_l stores the value of the macro EILSEQ in errno and returns (size_t)(-1);

the conversion state is unspecified.

Embedded Studio Reference Manual C Library User Guide

706

wcscat

Synopsis

wchar_t *wcscat(wchar_t *s1,
 const wchar_t *s2);

Description

wcscat appends a copy of the wide string pointed to by s2 (including the terminating null wide character) to the

end of the wide string pointed to by s1. The initial character of s2 overwrites the null wide character at the end

of s1. The behavior of wcscat is undefined if copying takes place between objects that overlap.

wcscat returns the value of s1.

Embedded Studio Reference Manual C Library User Guide

707

wcschr

Synopsis

wchar_t *wcschr(const wchar_t *s,
 wchar_t c);

Description

wcschr locates the first occurrence of c in the wide string pointed to by s. The terminating wide null character is

considered to be part of the string.

wcschr returns a pointer to the located wide character, or a null pointer if c does not occur in the string.

Embedded Studio Reference Manual C Library User Guide

708

wcscmp

Synopsis

int wcscmp(const wchar_t *s1,
 const wchar_t *s2);

Description

wcscmp compares the wide string pointed to by s1 to the wide string pointed to by s2. wcscmp returns an

integer greater than, equal to, or less than zero if the wide string pointed to by s1 is greater than, equal to, or less

than the wide string pointed to by s2.

Embedded Studio Reference Manual C Library User Guide

709

wcscpy

Synopsis

wchar_t *wcscpy(wchar_t *s1,
 const wchar_t *s2);

Description

wcscpy copies the wide string pointed to by s2 (including the terminating null wide character) into the array

pointed to by s1. The behavior of wcscpy is undefined if copying takes place between objects that overlap.

wcscpy returns the value of s1.

Embedded Studio Reference Manual C Library User Guide

710

wcscspn

Synopsis

size_t wcscspn(const wchar_t *s1,
 const wchar_t *s2);

Description

wcscspn computes the length of the maximum initial segment of the wide string pointed to by s1 which

consists entirely of wide characters not from the wide string pointed to by s2.

wcscspn returns the length of the segment.

Embedded Studio Reference Manual C Library User Guide

711

wcsdup

Synopsis

wchar_t *wcsdup(const wchar_t *s1);

Description

wcsdup duplicates the wide string pointed to by s1 by using malloc to allocate memory for a copy of s and then

copying s, including the terminating wide null character, to that memory. The returned pointer can be passed to

free. wcsdup returns a pointer to the new wide string or a null pointer if the new string cannot be created.

Note

wcsdup is an extension commonly found in Linux and BSD C libraries.

Embedded Studio Reference Manual C Library User Guide

712

wcslen

Synopsis

size_t wcslen(const wchar_t *s);

Description

wcslen returns the length of the wide string pointed to by s, that is the number of wide characters that precede

the terminating null wide character.

Embedded Studio Reference Manual C Library User Guide

713

wcsncat

Synopsis

wchar_t *wcsncat(wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wcsncat appends not more than n wude characters from the array pointed to by s2 to the end of the wide string

pointed to by s1. A null wide character in s1 and wide characters that follow it are not appended. The initial

wide character of s2 overwrites the null wide character at the end of s1. A terminating wide null character is

always appended to the result. The behavior of wcsncat is undefined if copying takes place between objects

that overlap.

wcsncat returns the value of s1.

Embedded Studio Reference Manual C Library User Guide

714

wcsnchr

Synopsis

wchar_t *wcsnchr(const wchar_t *str,
 size_t n,
 wchar_t ch);

Description

wcsnchr searches not more than n wide characters to locate the first occurrence of c in the wide string pointed

to by s. The terminating wide null character is considered to be part of the wide string.

wcsnchr returns a pointer to the located wide character, or a null pointer if c does not occur in the string.

Embedded Studio Reference Manual C Library User Guide

715

wcsncmp

Synopsis

int wcsncmp(const wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wcsncmp compares not more than n wide characters from the array pointed to by s1 to the array pointed to by

s2. Characters that follow a null wide character are not compared.

wcsncmp returns an integer greater than, equal to, or less than zero, if the possibly null-terminated array

pointed to by s1 is greater than, equal to, or less than the possibly null-terminated array pointed to by s2.

Embedded Studio Reference Manual C Library User Guide

716

wcsncpy

Synopsis

wchar_t *wcsncpy(wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wcsncpy copies not more than n wide characters from the array pointed to by s2 to the array pointed to by s1.

Wide characters that follow a null wide character in s2 are not copied. The behavior of wcsncpy is undefined

if copying takes place between objects that overlap. If the array pointed to by s2 is a wide string that is shorter

than n wide characters, null wide characters are appended to the copy in the array pointed to by s1, until n

characters in all have been written.

wcsncpy returns the value of s1.

Embedded Studio Reference Manual C Library User Guide

717

wcsnlen

Synopsis

size_t wcsnlen(const wchar_t *s,
 size_t n);

Description

this returns the length of the wide string pointed to by s, up to a maximum of n wide characters. wcsnlen only

examines the first n wide characters of the string s.

Note

wcsnlen is an extension commonly found in Linux and BSD C libraries.

Embedded Studio Reference Manual C Library User Guide

718

wcsnstr

Synopsis

wchar_t *wcsnstr(const wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wcsnstr searches at most n wide characters to locate the first occurrence in the wide string pointed to by s1 of

the sequence of wide characters (excluding the terminating null wide character) in the wide string pointed to by

s2.

wcsnstr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a string

with zero length, wcsnstr returns s1.

Note

wcsnstr is an extension commonly found in Linux and BSD C libraries.

Embedded Studio Reference Manual C Library User Guide

719

wcspbrk

Synopsis

wchar_t *wcspbrk(const wchar_t *s1,
 const wchar_t *s2);

Description

wcspbrk locates the first occurrence in the wide string pointed to by s1 of any wide character from the wide

string pointed to by s2.

wcspbrk returns a pointer to the wide character, or a null pointer if no wide character from s2 occurs in s1.

Embedded Studio Reference Manual C Library User Guide

720

wcsrchr

Synopsis

wchar_t *wcsrchr(const wchar_t *s,
 wchar_t c);

Description

wcsrchr locates the last occurrence of c in the wide string pointed to by s. The terminating wide null character is

considered to be part of the string.

wcsrchr returns a pointer to the wide character, or a null pointer if c does not occur in the wide string.

Embedded Studio Reference Manual C Library User Guide

721

wcsspn

Synopsis

size_t wcsspn(const wchar_t *s1,
 const wchar_t *s2);

Description

wcsspn computes the length of the maximum initial segment of the wide string pointed to by s1 which consists

entirely of wide characters from the wide string pointed to by s2.

wcsspn returns the length of the segment.

Embedded Studio Reference Manual C Library User Guide

722

wcsstr

Synopsis

wchar_t *wcsstr(const wchar_t *s1,
 const wchar_t *s2);

Description

wcsstr locates the first occurrence in the wide string pointed to by s1 of the sequence of wide characters

(excluding the terminating null wide character) in the wide string pointed to by s2.

wcsstr returns a pointer to the located wide string, or a null pointer if the wide string is not found. If s2 points to

a wide string with zero length, wcsstr returns s1.

Embedded Studio Reference Manual C Library User Guide

723

wcstok

Synopsis

wchar_t *wcstok(wchar_t *s1,
 const wchar_t *s2);

Description

wcstok A sequence of calls to wcstok breaks the wide string pointed to by s1 into a sequence of tokens, each of

which is delimited by a wide character from the wide string pointed to by s2. The first call in the sequence has a

non-null first argument; subsequent calls in the sequence have a null first argument. The separator wide string

pointed to by s2 may be different from call to call.

The first call in the sequence searches the wide string pointed to by s1 for the first wide character that is not

contained in the current separator wide string pointed to by s2. If no such wide character is found, then there are

no tokens in the wide string pointed to by s1 and wcstok returns a null pointer. If such a wide character is found,

it is the start of the first token.

wcstok then searches from there for a wide character that is contained in the current wide separator string. If

no such wide character is found, the current token extends to the end of the wide string pointed to by s1, and

subsequent searches for a token will return a null pointer. If such a wude character is found, it is overwritten by a

wide null character, which terminates the current token. wcstok saves a pointer to the following wide character,

from which the next search for a token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from the saved

pointer and behaves as described above.

Note

wcstok maintains static state and is therefore not reentrant and not thread safe. See wcstok_r for a thread-safe

and reentrant variant.

Embedded Studio Reference Manual C Library User Guide

724

wcstok_r

Synopsis

wchar_t *wcstok_r(wchar_t *s1,
 const wchar_t *s2,
 wchar_t **s3);

Description

wcstok_r is a reentrant version of the function wcstok where the state is maintained in the object of type

wchar_t * pointed to by s3.

Note

wcstok_r is an extension commonly found in Linux and BSD C libraries.

See Also

wcstok.

Embedded Studio Reference Manual C Library User Guide

725

wctob

Synopsis

int wctob(wint_t c);

Description

wctob determines whether c corresponds to a member of the extended character set whose multi-byte

character representation is a single byte when in the initial shift state in the current locale.

Description

this returns EOF if c does not correspond to a multi-byte character with length one in the initial shift state.

Otherwise, it returns the single-byte representation of that character as an unsigned char converted to an int.

Embedded Studio Reference Manual C Library User Guide

726

wctob_l

Synopsis

int wctob_l(wint_t c,
 locale_t loc);

Description

wctob_l determines whether c corresponds to a member of the extended character set whose multi-byte

character representation is a single byte when in the initial shift state in locale loc.

Description

wctob_l returns EOF if c does not correspond to a multi-byte character with length one in the initial shift state.

Otherwise, it returns the single-byte representation of that character as an unsigned char converted to an int.

Embedded Studio Reference Manual C Library User Guide

727

wint_t

Synopsis

typedef long wint_t;

Description

wint_t is an integer type that is unchanged by default argument promotions that can hold any value

corresponding to members of the extended character set, as well as at least one value that does not correspond

to any member of the extended character set (WEOF).

Embedded Studio Reference Manual C Library User Guide

728

wmemccpy

Synopsis

wchar_t *wmemccpy(wchar_t *s1,
 const wchar_t *s2,
 wchar_t c,
 size_t n);

Description

wmemccpy copies at most n wide characters from the object pointed to by s2 into the object pointed to by s1.

The copying stops as soon as n wide characters are copied or the wide character c is copied into the destination

object pointed to by s1. The behavior of wmemccpy is undefined if copying takes place between objects that

overlap.

wmemccpy returns a pointer to the wide character immediately following c in s1, or NULL if c was not found in

the first n wide characters of s2.

Note

wmemccpy conforms to POSIX.1-2008.

Embedded Studio Reference Manual C Library User Guide

729

wmemchr

Synopsis

wchar_t *wmemchr(const wchar_t *s,
 wchar_t c,
 size_t n);

Description

wmemchr locates the first occurrence of c in the initial n characters of the object pointed to by s. Unlike wcschr,

wmemchr does not terminate a search when a null wide character is found in the object pointed to by s.

wmemchr returns a pointer to the located wide character, or a null pointer if c does not occur in the object.

Embedded Studio Reference Manual C Library User Guide

730

wmemcmp

Synopsis

int wmemcmp(const wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wmemcmp compares the first n wide characters of the object pointed to by s1 to the first n wide characters of

the object pointed to by s2. wmemcmp returns an integer greater than, equal to, or less than zero as the object

pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.

Embedded Studio Reference Manual C Library User Guide

731

wmemcpy

Synopsis

wchar_t *wmemcpy(wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wmemcpy copies n wide characters from the object pointed to by s2 into the object pointed to by s1. The

behavior of wmemcpy is undefined if copying takes place between objects that overlap.

wmemcpy returns the value of s1.

Embedded Studio Reference Manual C Library User Guide

732

wmemmove

Synopsis

wchar_t *wmemmove(wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wmemmove copies n wide characters from the object pointed to by s2 into the object pointed to by s1 ensuring

that if s1 and s2 overlap, the copy works correctly. Copying takes place as if the n wide characters from the

object pointed to by s2 are first copied into a temporary array of n wide characters that does not overlap the

objects pointed to by s1 and s2, and then the n wide characters from the temporary array are copied into the

object pointed to by s1.

wmemmove returns the value of s1.

Embedded Studio Reference Manual C Library User Guide

733

wmempcpy

Synopsis

wchar_t *wmempcpy(wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wmempcpy copies n wide characters from the object pointed to by s2 into the object pointed to by s1. The

behavior of wmempcpy is undefined if copying takes place between objects that overlap.

wmempcpy returns it returns a pointer to the wide character following the last written wide character.

Note

This is an extension found in GNU libc.

Embedded Studio Reference Manual C Library User Guide

734

wmemset

Synopsis

wchar_t *wmemset(wchar_t *s,
 wchar_t c,
 size_t n);

Description

wmemset copies the value of c into each of the first n wide characters of the object pointed to by s.

wmemset returns the value of s.

Embedded Studio Reference Manual C Library User Guide

735

wstrsep

Synopsis

wchar_t *wstrsep(wchar_t **stringp,
 const wchar_t *delim);

Description

wstrsep locates, in the wide string referenced by *stringp, the first occurrence of any wide character in the wide

string delim (or the terminating wide null character) and replaces it with a wide null character. The location of

the next character after the delimiter wide character (or NULL, if the end of the string was reached) is stored in

*stringp. The original value of *stringp is returned.

An empty field (that is, a wide character in the string delim occurs as the first wide character of *stringp can be

detected by comparing the location referenced by the returned pointer to a wide null character.

If *stringp is initially null, wstrsep returns null.

Note

wstrsep is not an ISO C function, but appears in BSD4.4 and Linux.

Embedded Studio Reference Manual C Library User Guide

736

<wctype.h>

API Summary

Classification functions

iswalnum Is character alphanumeric?

iswalpha Is character alphabetic?

iswblank Is character blank?

iswcntrl Is character a control?

iswctype Determine character type

iswdigit Is character a decimal digit?

iswgraph Is character a control?

iswlower Is character a lowercase letter?

iswprint Is character printable?

iswpunct Is character punctuation?

iswspace Is character a whitespace character?

iswupper Is character an uppercase letter?

iswxdigit Is character a hexadecimal digit?

wctype Construct character class

Conversion functions

towctrans Translate character

towlower Convert uppercase character to lowercase

towupper Convert lowercase character to uppercase

wctrans Construct character mapping

Classification functions (extended)

iswalnum_l Is character alphanumeric?

iswalpha_l Is character alphabetic?

iswblank_l Is character blank?

iswcntrl_l Is character a control?

iswctype_l Determine character type

iswdigit_l Is character a decimal digit?

iswgraph_l Is character a control?

iswlower_l Is character a lowercase letter?

iswprint_l Is character printable?

iswpunct_l Is character punctuation?

Embedded Studio Reference Manual C Library User Guide

737

iswspace_l Is character a whitespace character?

iswupper_l Is character an uppercase letter?

iswxdigit_l Is character a hexadecimal digit?

Conversion functions (extended)

towctrans_l Translate character

towlower_l Convert uppercase character to lowercase

towupper_l Convert lowercase character to uppercase

wctrans_l Construct character mapping

Embedded Studio Reference Manual C Library User Guide

738

iswalnum

Synopsis

int iswalnum(wint_t c);

Description

iswalnum tests for any wide character for which iswalpha or iswdigit is true.

Embedded Studio Reference Manual C Library User Guide

739

iswalnum_l

Synopsis

int iswalnum_l(wint_t c,
 locale_t loc);

Description

iswalnum_l tests for any wide character for which iswalpha_l or iswdigit_l is true in the locale loc.

Embedded Studio Reference Manual C Library User Guide

740

iswalpha

Synopsis

int iswalpha(wint_t c);

Description

iswalpha returns true if the wide character c is alphabetic. Any character for which iswupper or iswlower returns

true is considered alphabetic in addition to any of the locale-specific set of alphabetic characters for which none

of iswcntrl, iswdigit, iswpunct, or iswspace is true.

In the C locale, iswalpha returns nonzero (true) if and only if iswupper or iswlower return true for the value of

the argument c.

Embedded Studio Reference Manual C Library User Guide

741

iswalpha_l

Synopsis

int iswalpha_l(wint_t c,
 locale_t loc);

Description

iswalpha_l returns true if the wide character c is alphabetic in the locale loc. Any character for which iswupper_l

or iswlower_l returns true is considered alphabetic in addition to any of the locale-specific set of alphabetic

characters for which none of iswcntrl_l, iswdigit_l, iswpunct_l, or iswspace_l is true.

Embedded Studio Reference Manual C Library User Guide

742

iswblank

Synopsis

int iswblank(wint_t c);

Description

iswblank tests for any wide character that is a standard blank wide character or is one of a locale-specific set of

wide characters for which iswspace is true and that is used to separate words within a line of text. The standard

blank wide are space and horizontal tab.

In the C locale, iswblank returns true only for the standard blank characters.

Embedded Studio Reference Manual C Library User Guide

743

iswblank_l

Synopsis

int iswblank_l(wint_t c,
 locale_t loc);

Description

iswblank_l tests for any wide character that is a standard blank wide character in the locale loc or is one of a

locale-specific set of wide characters for which iswspace_l is true and that is used to separate words within a line

of text. The standard blank wide are space and horizontal tab.

Embedded Studio Reference Manual C Library User Guide

744

iswcntrl

Synopsis

int iswcntrl(wint_t c);

Description

iswcntrl tests for any wide character that is a control character.

Embedded Studio Reference Manual C Library User Guide

745

iswcntrl_l

Synopsis

int iswcntrl_l(wint_t c,
 locale_t loc);

Description

iswcntrl_l tests for any wide character that is a control character in the locale loc.

Embedded Studio Reference Manual C Library User Guide

746

iswctype

Synopsis

int iswctype(wint_t c,
 wctype_t t);

Description

iswctype determines whether the wide character c has the property described by t in the current locale.

Embedded Studio Reference Manual C Library User Guide

747

iswctype_l

Synopsis

int iswctype_l(wint_t c,
 wctype_t t,
 locale_t loc);

Description

iswctype_l determines whether the wide character c has the property described by t in the locale loc.

Embedded Studio Reference Manual C Library User Guide

748

iswdigit

Synopsis

int iswdigit(wint_t c);

Description

iswdigit tests for any wide character that corresponds to a decimal-digit character.

Embedded Studio Reference Manual C Library User Guide

749

iswdigit_l

Synopsis

int iswdigit_l(wint_t c,
 locale_t loc);

Description

iswdigit_l tests for any wide character that corresponds to a decimal-digit character in the locale loc.

Embedded Studio Reference Manual C Library User Guide

750

iswgraph

Synopsis

int iswgraph(wint_t c);

Description

iswgraph tests for any wide character for which iswprint is true and iswspace is false.

Embedded Studio Reference Manual C Library User Guide

751

iswgraph_l

Synopsis

int iswgraph_l(wint_t c,
 locale_t loc);

Description

iswgraph_l tests for any wide character for which iswprint is true and iswspace is false in the locale loc.

Embedded Studio Reference Manual C Library User Guide

752

iswlower

Synopsis

int iswlower(wint_t c);

Description

iswlower tests for any wide character that corresponds to a lowercase letter or is one of a locale-specific set of

wide characters for which none of iswcntrl, iswdigit, iswpunct, or iswspace is true.

Embedded Studio Reference Manual C Library User Guide

753

iswlower_l

Synopsis

int iswlower_l(wint_t c,
 locale_t loc);

Description

iswlower_l tests for any wide character that corresponds to a lowercase letter in the locale loc or is one of a

locale-specific set of wide characters for which none of iswcntrl_l, iswdigit_l, iswpunct_l, or iswspace_l is true.

Embedded Studio Reference Manual C Library User Guide

754

iswprint

Synopsis

int iswprint(wint_t c);

Description

iswprint returns nonzero (true) if and only if the value of the argument c is any printing character.

Embedded Studio Reference Manual C Library User Guide

755

iswprint_l

Synopsis

int iswprint_l(wint_t c,
 locale_t loc);

Description

iswprint_l returns nonzero (true) if and only if the value of the argument c is any printing character in the locale

loc.

Embedded Studio Reference Manual C Library User Guide

756

iswpunct

Synopsis

int iswpunct(wint_t c);

Description

iswpunct tests for any printing wide character that is one of a locale-specific set of punctuation wide characters

for which neither iswspace nor iswalnum is true.

Embedded Studio Reference Manual C Library User Guide

757

iswpunct_l

Synopsis

int iswpunct_l(wint_t c,
 locale_t loc);

Description

iswpunct_l tests for any printing wide character that is one of a locale-specific set of punctuation wide

characters in locale loc for which neither iswspace_l nor iswalnum_l is true.

Embedded Studio Reference Manual C Library User Guide

758

iswspace

Synopsis

int iswspace(wint_t c);

Description

iswspace tests for any wide character that corresponds to a locale-specific set of white-space wide characters for

which none of iswalnum, iswgraph, or iswpunct is true.

Embedded Studio Reference Manual C Library User Guide

759

iswspace_l

Synopsis

int iswspace_l(wint_t c,
 locale_t loc);

Description

iswspace_l tests for any wide character that corresponds to a locale-specific set of white-space wide characters

in the locale loc for which none of iswalnum, iswgraph_l, or iswpunct_l is true.

Embedded Studio Reference Manual C Library User Guide

760

iswupper

Synopsis

int iswupper(wint_t c);

Description

iswupper tests for any wide character that corresponds to an uppercase letter or is one of a locale-specific set of

wide characters for which none of iswcntrl, iswdigit, iswpunct, or iswspace is true.

Embedded Studio Reference Manual C Library User Guide

761

iswupper_l

Synopsis

int iswupper_l(wint_t c,
 locale_t loc);

Description

iswupper_l tests for any wide character that corresponds to an uppercase letter or is one of a locale-specific set

of wide characters in the locale loc for which none of iswcntrl_l, iswdigit_l, iswpunct_l, or iswspace_l is true.

Embedded Studio Reference Manual C Library User Guide

762

iswxdigit

Synopsis

int iswxdigit(wint_t c);

Description

iswxdigit tests for any wide character that corresponds to a hexadecimal digit.

Embedded Studio Reference Manual C Library User Guide

763

iswxdigit_l

Synopsis

int iswxdigit_l(wint_t c,
 locale_t loc);

Description

iswxdigit_l tests for any wide character that corresponds to a hexadecimal digit in the locale loc.

Embedded Studio Reference Manual C Library User Guide

764

towctrans

Synopsis

wint_t towctrans(wint_t c,
 wctrans_t t);

Description

towctrans maps the wide character c using the mapping described by t in the current locale.

Embedded Studio Reference Manual C Library User Guide

765

towctrans_l

Synopsis

wint_t towctrans_l(wint_t c,
 wctrans_t t,
 locale_t loc);

Description

towctrans_l maps the wide character c using the mapping described by t in the current locale.

Embedded Studio Reference Manual C Library User Guide

766

towlower

Synopsis

wint_t towlower(wint_t c);

Description

towlower converts an uppercase letter to a corresponding lowercase letter.

If the argument c is a wide character for which iswupper is true and there are one or more corresponding wide

characters, in the current locale, for which iswlower is true, towlower returns one (and always the same one for

any given locale) of the corresponding wide characters; otherwise, c is returned unchanged.

Embedded Studio Reference Manual C Library User Guide

767

towlower_l

Synopsis

wint_t towlower_l(wint_t c,
 locale_t loc);

Description

towlower_l converts an uppercase letter to a corresponding lowercase letter in locale loc.

If the argument c is a wide character for which iswupper_l is true and there are one or more corresponding wide

characters, in the locale loc, for which iswlower_l is true, towlower_l returns one (and always the same one for

any given locale) of the corresponding wide characters; otherwise, c is returned unchanged.

Embedded Studio Reference Manual C Library User Guide

768

towupper

Synopsis

wint_t towupper(wint_t c);

Description

towupper converts a lowercase letter to a corresponding uppercase letter.

If the argument c is a wide character for which iswlower is true and there are one or more corresponding wide

characters, in the current current locale, for which iswupper is true, towupper returns one (and always the same

one for any given locale) of the corresponding wide characters; otherwise, c is returned unchanged.

Embedded Studio Reference Manual C Library User Guide

769

towupper_l

Synopsis

wint_t towupper_l(wint_t c,
 locale_t loc);

Description

towupper_l converts a lowercase letter to a corresponding uppercase letter in locale loc.

If the argument c is a wide character for which iswlower_l is true and there are one or more corresponding wide

characters, in the locale loc, for which iswupper_l is true, towupper_l returns one (and always the same one for

any given locale) of the corresponding wide characters; otherwise, c is returned unchanged.

Embedded Studio Reference Manual C Library User Guide

770

wctrans

Synopsis

wctrans_t wctrans(const char *property);

Description

wctrans constructs a value of type wctrans_t that describes a mapping between wide characters identified by

the string argument property.

If property identifies a valid mapping of wide characters in the current locale, wctrans returns a nonzero value

that is valid as the second argument to towctrans; otherwise, it returns zero.

Note

The only mappings supported are "tolower" and "toupper".

Embedded Studio Reference Manual C Library User Guide

771

wctrans_l

Synopsis

wctrans_t wctrans_l(const char *property,
 locale_t loc);

Description

wctrans_l constructs a value of type wctrans_t that describes a mapping between wide characters identified by

the string argument property in locale loc.

If property identifies a valid mapping of wide characters in the locale loc, wctrans_l returns a nonzero value that

is valid as the second argument to towctrans_l; otherwise, it returns zero.

Note

The only mappings supported are "tolower" and "toupper".

Embedded Studio Reference Manual C Library User Guide

772

wctype

Synopsis

wctype_t wctype(const char *property);

Description

wctype constructs a value of type wctype_t that describes a class of wide characters identified by the string

argument property.

If property identifies a valid class of wide characters in the current locale, wctype returns a nonzero value that is

valid as the second argument to iswctype; otherwise, it returns zero.

Note

The only mappings supported are "alnum", "alpha", "blank", "cntrl", "digit", "graph", "lower",

"print", "punct", "space", "upper", and "xdigit".

Embedded Studio Reference Manual C Library User Guide

773

<xlocale.h>

API Summary

Functions

duplocale Duplicate current locale data

freelocale Free a locale

localeconv_l Get locale data

newlocale Create a new locale

Embedded Studio Reference Manual C Library User Guide

774

duplocale

Synopsis

locale_t duplocale(locale_t loc);

Description

duplocale duplicates the locale object referenced by loc.

If there is insufficient memory to duplicate loc, duplocale returns NULL and sets errno to ENOMEM as required

by POSIX.1-2008.

Duplicated locales must be freed with freelocale.

This is different behavior from the GNU glibc implementation which makes no mention of setting errno on

failure.

Note

This extension is derived from BSD, POSIX.1, and glibc.

Embedded Studio Reference Manual C Library User Guide

775

freelocale

Synopsis

int freelocale(locale_t loc);

Description

freelocale frees the storage associated with loc.

freelocale zero on success, 1 on error.

Embedded Studio Reference Manual C Library User Guide

776

localeconv_l

Synopsis

 localeconv_l(locale_t loc);

Description

localeconv_l returns a pointer to a structure of type lconv with the corresponding values for the locale loc filled

in.

Embedded Studio Reference Manual C Library User Guide

777

newlocale

Synopsis

locale_t newlocale(int category_mask,
 const char *locale,
 locale_t base);

Description

newlocale creates a new locale object or modifies an existing one. If the base argument is NULL, a new locale

object is created.

category_mask specifies the locale categories to be set or modified. Values for category_mask are constructed

by a bitwise-inclusive OR of the symbolic constants LC_CTYPE_MASK, LC_NUMERIC_MASK, LC_TIME_MASK,

LC_COLLATE_MASK, LC_MONETARY_MASK, and LC_MESSAGES_MASK.

For each category with the corresponding bit set in category_mask, the data from the locale named by locale

is used. In the case of modifying an existing locale object, the data from the locale named by locale replaces the

existing data within the locale object. If a completely new locale object is created, the data for all sections not

requested by category_mask are taken from the default locale.

The locales C and POSIX are equivalent and defined for all settings of category_mask:

If locale is NULL, then the C locale is used. If locale is an empty string, newlocale will use the default locale.

If base is NULL, the current locale is used. If base is LC_GLOBAL_LOCALE, the global locale is used.

If mask is LC_ALL_MASK, base is ignored.

Note

POSIX.1-2008 does not specify whether the locale object pointed to by base is modified or whether it is freed

and a new locale object created.

Implementation

The category mask LC_MESSAGES_MASK is not implemented as POSIX messages are not implemented.

Embedded Studio Reference Manual C Library User Guide

778

Embedded Studio Reference Manual C++ Library User Guide

779

C++ Library User Guide
SEGGER Embedded Studio provides a limited C++ library suitable for use in an embedded application.

Standard library

The following C++ standard header files are provided in $(StudioDir)/include:

File Description

<cassert> C++ wrapper on assert.h.

<cctype> C++ wrapper on ctype.h.

<cerrno> C++ wrapper on errno.h.

<cfloat> C++ wrapper on float.h.

<ciso646> C++ wrapper on iso646.h.

<climits> C++ wrapper on limits.h.

<clocale> C++ wrapper on locale.h.

<cmath> C++ wrapper on math.h.

<csetjmp> C++ wrapper on setjmp.h.

<cstdarg> C++ wrapper on stdarg.h.

<cstddef> C++ wrapper on stddef.h.

<cstdio> C++ wrapper on stdio.h.

<cstdlib> C++ wrapper on stdlib.h.

Embedded Studio Reference Manual C++ Library User Guide

780

<cstring> C++ wrapper on string.h.

<ctime> C++ wrapper on time.h.

<cwchar> C++ wrapper on wchar.h.

<cwctype> C++ wrapper on wctype.h.

<exception> Definitions for exceptions.

<new> Types and definitions for placement new and delete.

<typeinfo> Definitions for RTTI. Note that this file is licensed under
the GPL.

It's worth mentioning again: to use exceptions or RTTI requires header files and or library code to be linked into

your application that is licensed under the GPL.

Embedded Studio Reference Manual C++ Library User Guide

781

Standard template library
The C++ STL functionality of STLPort 5.1.0 is provided in SEGGER Embedded Studio. To use STLPort you must

put $(StudioDir)/include/stlport as the first entry in the User Include Directories project property.

The STLPort is configured to not support long doubles and iostreams. The following STLPort header files are

supported (not including the above list of standard C++ header files)

<algorithm> <bitset> <deque>

<functional> <hash_map> <hash_set>

<iterator> <limits> <list>

<locale> <map> <memory>

<numeric> <queue> <set>

<stack> <stdexcept> <string>

<utility> <valarray> <vector>

Embedded Studio Reference Manual C++ Library User Guide

782

Subset API reference
This section contains a subset reference to the SEGGER Embedded Studio C++ library.

Embedded Studio Reference Manual C++ Library User Guide

783

<new> - memory allocation
The header file <new> defines functions for memory allocation.

Functions

set_new_handler Establish a function which is called when memory
allocation fails.

Operators

operator delete Heap storage deallocators operator.

operator new Heap storage allocators operator.

Embedded Studio Reference Manual C++ Library User Guide

784

operator delete

Synopsis

void operator delete(void *ptr) throw();

void operator delete[](void *ptr) throw();

Description

operator delete deallocates space of an object.

operator delete will do nothing if ptr is null. If ptr is not null then it should have been returned from a call to

operator new.

operator delete[] has the same behaviour as operator delete but is used for array deallocation.

Portability

Standard C++.

Embedded Studio Reference Manual C++ Library User Guide

785

operator new

Synopsis

void *operator new(size_t size) throw();

void *operator new[](size_t size) throw();

Description

operator new allocates space for an object whose size is specified by size and whose value is indeterminate.

operator new returns a null pointer if the space for the object cannot be allocated from free memory; if space for

the object can be allocated, operator new returns a pointer to the start of the allocated space.

operator new[] has the same behaviour as operator new but is used for array allocation.

Portability

The implementation is not standard. The standard C++ implementation should throw an exception if memory

allocation fails.

Embedded Studio Reference Manual C++ Library User Guide

786

set_new_handler

Synopsis

typedef void (*new_handler)();

new_handler set_new_handler(new_handler) throw();

Description

set_new_handler establishes a new_handler function.

set_new_handler establishes a new_handler function that is called when operator new fails to allocate the

requested memory. If the new_handler function returns then operator new will attempt to allocate the memory

again. The new_handler function can throw an exception to implement standard C++ behaviour for memory

allocation failure.

Portability

Standard C++.

Embedded Studio Reference Manual Utilities Reference

787

Utilities Reference

Embedded Studio Reference Manual Utilities Reference

788

Compiler driver
This section describes the switches accepted by the compiler driver, cc. The compiler driver is capable of

controlling compilation by all supported language compilers and the final link by the linker. It can also construct

libraries automatically.

In contrast to many compilation and assembly language development systems, with you don't invoke the

assembler or compiler directly. Instead you'll normally use the compiler driver cc as it provides an easy way to

get files compiled, assembled, and linked. This section will introduce you to using the compiler driver to convert

your source files to object files, executables, or other formats.

We recommend that you use the compiler driver rather than use the assembler or compiler directly because

there the driver can assemble multiple files using one command line and can invoke the linker for you too. There

is no reason why you should not invoke the assembler or compiler directly yourself, but you'll find that typing in

all the required options is quite tedious-and why do that when cc will provide them for you automatically?

Embedded Studio Reference Manual Utilities Reference

789

File naming conventions
The compiler driver uses file extensions to distinguish the language the source file is written in. The compiler

driver recognizes the extension .c as C source files, .cpp, .cc or .cxx as C++ source files, .s and .asm as assembly

code files.

The compiler driver recognizes the extension .o as object files, .a as library files, .ld as linker script files and .xml

as special-purpose XML files.

We strongly recommend that you adopt these extensions for your source files and object files because you'll find

that using the tools is much easier if you do.

C language files

When the compiler driver finds a file with a .c extension, it runs the C compiler to convert it to object code.

C++ language files

When the compiler driver finds a file with a .cpp extension, it runs the C++ compiler to convert it to object code.

Assembly language files

When the compiler driver finds a file with a .s or .asm extension, it runs the C preprocessor and then the

assembler to convert it to object code.

Object code files

When the compiler driver finds a file with a .o or .a extension, it passes it to the linker to include it in the final

application.

Embedded Studio Reference Manual Utilities Reference

790

Command-line options
This section describes the command-line options accepted by the SEGGER Embedded Studio compiler driver.

Embedded Studio Reference Manual Utilities Reference

791

-ansi (Warn about potential ANSI problems)

Syntax

-ansi

Description

Warn about potential problems that conflict with the relevant ANSI or ISO standard for the files that are

compiled.

Embedded Studio Reference Manual Utilities Reference

792

-ar (Archive output)

Syntax

-ar

Description

This switch instructs the compiler driver to archive all output files into a library. Using -ar implies -c.

Example

The following command compiles file1.c, file2.asm, and file3.c to object code and archives them into the library

file libfunc.a together with the object file file4.o.

cc -ar file1.c file2.asm file3.c file4.o -o libfunc.a

Embedded Studio Reference Manual Utilities Reference

793

-arch (Set ARM architecture)

Syntax

-arch=a

Description

Specifies the version of the instruction set to generate code for. The options are:

-arch=v4T ARM7TDMI and ARM920T

-arch=v5TE ARM9E, Feroceon and XScale

-arch=v6 ARM11

-arch=v6M Cortex-M0 and Cortex-M1

-arch=v7A Cortex-A8 and Cortex-A9

-arch=v7M Cortex-M3

-arch=v7EM Cortex-M4

-arch=v7R Cortex-R4

Example

To force compilation for V7A architecture you would use:

cc -arch=v7A

Embedded Studio Reference Manual Utilities Reference

794

-be (Big Endian)

Syntax

-be

Description

Generate code for a big endian target.

Embedded Studio Reference Manual Utilities Reference

795

-c (Compile to object code, do not link)

Syntax

-c

Description

All named files are compiled to object code modules, but are not linked. You can use the -o option to name the

output if you just supply one input filename.

Example

The following command compiles file1.c and file4.c to produce the object files file1.o and file4.o.

cc -c file1.c file4.c

The following command compiles file1.c and produces the object file obj/file1.o.

cc -c file.c -o obj/file1.o

Embedded Studio Reference Manual Utilities Reference

796

-d (Define linker symbol)

Syntax

-dname=value

Description

You can define linker symbols using the -d option. The symbol definitions are passed to linker.

Example

The following defines the symbol, STACK_SIZE with a value of 512.

-dSTACK_SIZE=512

Embedded Studio Reference Manual Utilities Reference

797

-D (Define macro symbol)

Syntax

-Dname

-Dname=value

Description

You can define preprocessor macros using the -D option. The macro definitions are passed on to the respective

language compiler which is responsible for interpreting the definitions and providing them to the programmer

within the language.

The first form above defines the macro name but without an associated replacement value, and the second

defines the same macro with the replacement value value.

Example

The following defines two macros, SUPPORT_FLOAT with a value of 1 and LITTLE_ENDIAN with no replacement

value.

-DSUPPORT_FLOAT=1 -DLITTLE_ENDIAN

Embedded Studio Reference Manual Utilities Reference

798

-e (Set entry point symbol)

Syntax

-ename

Description

Linker option to set the entry point symbol to be name. The debugger will start execution from this symbol.

Embedded Studio Reference Manual Utilities Reference

799

-E (Preprocess)

Syntax

-E

Description

This option preprocesses the supplied file and outputs the result to the standard output.

Example

The following preprocesses the file file.c supplying the macros, SUPPORT_FLOAT with a value of 1 and

LITTLE_ENDIAN.

-E -DSUPPORT_FLOAT=1 -DLITTLE_ENDIAN file.c

Embedded Studio Reference Manual Utilities Reference

800

-exceptions (Enable C++ Exception Support)

Syntax

-exceptions

Description

Enables C++ exceptions to be compiled.

Embedded Studio Reference Manual Utilities Reference

801

-fabi (Floating Point Code Generation)

Syntax

-fabi=a

Description

Specifies the type of floating point code generation. The options are:

-fabi=SoftFP FPU instructions are generated, CPU registers are used for floating point parameters.

-fabi=Hard FPU instructions are generated, FPU registers are used for floating point parameters.

Embedded Studio Reference Manual Utilities Reference

802

-fpu (Set ARM FPU)

Syntax

-fpu=a

Description

Specifies the floating point unit to generate code for when the fpabi option has been supplied. The options are:

-fpu=VFP generate FPU instructions for ARM9 and ARM11

-fpu=VFPv3-D32 generate FPU instructions for CortexA

-fpu=VFPv3-D16 generate FPU instructions for CortexR

-fpu=FPv4-SP-D16 generate FPU instructions for CortexM4

Embedded Studio Reference Manual Utilities Reference

803

-F (Set output format)

Syntax

-Ffmt

Description

The -F option instructs the compiler driver to generate an additional output file in the format fmt. The compiler

driver supports the following formats:

-Fbin Create a .bin file

-Fhex Create a .hex file

-Fsrec Create a .srec file

The compiler driver will always output a .elf file as specified with the -o option. The name of the additional

output file is the same as the .elf file with the file extension changed.

For example

cc file.c -o file.elf -Fbin

will generate the files file.elf and file.bin.

Embedded Studio Reference Manual Utilities Reference

804

-g (Generate debugging information)

Syntax

-g

Description

The -g option instructs the compiler and assembler to generate source level debugging information for the

debugger to use.

Embedded Studio Reference Manual Utilities Reference

805

-g1 (Generate minimal debugging information)

Syntax

-g1

Description

The -g1 option instructs the compiler to generate debugging information that enables the debugger to be able

to backtrace only.

Embedded Studio Reference Manual Utilities Reference

806

-help (Display help information)

Syntax

-help

Description

Displays a short summary of the options accepted by the compiler driver.

Embedded Studio Reference Manual Utilities Reference

807

-io (Select I/O library implementation)

Syntax

-io=i

Description

This option specifies the I/O library implementation that is included in the linked image. The options are:

-io=d I/O library is implemented using debugIO e.g calls to printf will call debug_printf.

-io=t I/O library is implemented on the target, debugIO is not used.

-io=t+d I/O library is implemented on the target, debugIO is not used but debugIO is enabled.

Embedded Studio Reference Manual Utilities Reference

808

-I (Define user include directories)

Syntax

-Idirectory

Description

In order to find include files the compiler driver arranges for the compilers to search a number of standard

directories. You can add directories to the search path using the -I switch which is passed on to each of the

language processors.

You can specify more than one include directory by separating each directory component with either a comma

or semicolon.

Embedded Studio Reference Manual Utilities Reference

809

-I- (Exclude standard include directories)

Syntax

-I-

Description

Usually the compiler and assembler search for include files in the standard include directory created when the

product is installed. If for some reason you wish to exclude these system locations from being searched when

compiling a file, the -I- option will do this for you.

Embedded Studio Reference Manual Utilities Reference

810

-J (Define system include directories)

Syntax

-Jdirectory

Description

The -J option adds directory to the end of the list of directories to search for source files included (using

triangular brackets) by the #include preprocessor command.

You can specify more than one include directory by separating each directory component with either a comma

or semicolon in the property

Embedded Studio Reference Manual Utilities Reference

811

-K (Keep linker symbol)

Syntax

-Kname

Description

The linker removes unused code and data from the output file. This process is called deadstripping. To prevent

the linker from deadstripping unreferenced code and data you wish to keep, you must use the -K command line

option to force inclusion of symbols.

Example

If you have a C function, contextSwitch that must be kept in the output file (and which the linker will normally

remove), you can force its inclusion using:

-KcontextSwitch

Embedded Studio Reference Manual Utilities Reference

812

-L (Set library directory path)

Syntax

-Ldir

Description

Sets the library directory to dir. If -L is not specified on the command line, the default location to search for

libraries is set to $(InstallDir)/lib.

Embedded Studio Reference Manual Utilities Reference

813

-l- (Do not link standard libraries)

Syntax

-l-

Description

The -l option instructs the compiler driver not to link standard libraries. If you use this option you must supply

your own library functions or libraries.

Embedded Studio Reference Manual Utilities Reference

814

-make (Make-style build)

Syntax

-make

Description

The -make option avoids build steps based on the modification date of the output file and modification date of

the input file and its dependencies.

Embedded Studio Reference Manual Utilities Reference

815

-M (Display linkage map)

Syntax

-M

Description

The -M option prints a linkage map named the same as the linker output file with the .map file extension.

Embedded Studio Reference Manual Utilities Reference

816

-n (Dry run, no execution)

Syntax

-n

Description

When -n is specified, the compiler driver processes options as usual, but does not execute any subprocesses to

compile, assemble, archive or link applications.

Embedded Studio Reference Manual Utilities Reference

817

-nostderr (No stderr output)

Syntax

-nostderr

Description

When -nostderr is specified, any stderr output of subprocesses is redirected to stdout.

Embedded Studio Reference Manual Utilities Reference

818

-o (Set output file name)

Syntax

-o filename

Description

The -o option instructs the compiler driver to write linker or archiver output to filename.

Embedded Studio Reference Manual Utilities Reference

819

-oabi (Use oabi compiler)

Syntax

-oabi

Description

The -oabi option instructs the compiler driver to generate code and link libraries for the legacy GCC ARM ABI.

Embedded Studio Reference Manual Utilities Reference

820

-O (Optimize output)

Syntax

-Ox

Description

Pass the optimization option -Ox to the compiler and select library variant. The following options are supported:

-O0 No optimization, use libraries built with -O1.

-O1 Level 1 optimization, use libraries built with -O1.

-O2 Level 2 optimization, use libraries built with -O1.

-O3 Level 3 optimization, use libraries built with -O1.

-Os Optimize for size, use libraries built with -Os.

Embedded Studio Reference Manual Utilities Reference

821

-printf (Select printf capability)

Syntax

-printf=c

Description

The -printf option selects the printf capability for the linked executable. The options are:

-printf=i integer is supported

-printf=li long integer is supported

-printf=ll long long integer is supported

-printf=f floating point is supported

-printf=wp width and precision is supported

Embedded Studio Reference Manual Utilities Reference

822

-rtti (Enable C++ RTTI Support)

Syntax

-rtti

Description

Enables C++ run-time type information to be compiled.

Embedded Studio Reference Manual Utilities Reference

823

-R (Set section name)

Syntax

-R x name

Description

These options name the default name of the sections generated by the compiler/assembler to be name. The

options are:

-Rc name change the default name of the code section

-Rd name change the default name of the data section

-Rk name change the default name of the const section

-Rz name change the default name of the bss section

Embedded Studio Reference Manual Utilities Reference

824

-scanf (Select scanf capability)

Syntax

-scanf= c

Description

The -scanf option selects the scanf capability for the linked executable. The options are:

-scanf=i integer is supported

-scanf=li long integer is supported

-scanf=ll long long integer is supported

-scanf=f floating point is supported

-scanf=wp %[...] and %[^...] character class is supported

Embedded Studio Reference Manual Utilities Reference

825

-sd (Treat double as float)

Syntax

-sd

Description

The -sd option instructs the compiler to compile double as float and selects the appropriate library for linking.

Embedded Studio Reference Manual Utilities Reference

826

-Thumb (Generate Thumb code)

Syntax

-Thumb

Description

The -Thumb option instructs the compiler to generate Thumb code rather than ARM code and link in Thumb

libraries. This option is NOT needed for Cortex-M architectures.

Embedded Studio Reference Manual Utilities Reference

827

-v (Verbose execution)

Syntax

-v

Description

The -v switch displays command lines executed by the compiler driver.

Embedded Studio Reference Manual Utilities Reference

828

-w (Suppress warnings)

Syntax

-w

Description

This option instructs the compiler, assembler, and linker not to issue any warnings.

Embedded Studio Reference Manual Utilities Reference

829

-we (Treat warnings as errors)

Syntax

-we

Description

This option directs the compiler, assembler, and linker to treat all warnings as errors.

Embedded Studio Reference Manual Utilities Reference

830

-Wa (Pass option to tool)

Syntax

-Wtool option

Description

The -W command-line option passes option directly to the specified tool. Supported tools are

-Wa pass option to assembler

-Wc pass option to compiler

-Wl pass option to linker

Example

The following example passes the (compiler specific) -version option to the compiler

cc -Wc-version

Embedded Studio Reference Manual Utilities Reference

831

-x (Specify file types)

Syntax

-x type

Description

The -x option causes the compiler driver to treat subsequent files to be of the following file type

-xa archives/libraries

-xasm assembly code files

-xc C code files

-xc++ C++ code files

-xld linker script files

-xo object code files

Example

The following command line enables an assembly code file with the extension .arm to be assembled.

cc -xasm a.arm

Embedded Studio Reference Manual Utilities Reference

832

-y (Use project template)

Syntax

-y t

Description

If required this option must be the first option on the command line. It instantiates a project template type

from the installed packages. The files and common project properties of the project template are used by the

compiler driver. Project configurations are not supported by the compiler driver, use emBuild if you require

project configurations.

Example

The following command builds an executable based on the STM32_EXE project template.

cc -ySTM32_EXE -zTarget=STM32F100C4 file.c -o file.elf

Embedded Studio Reference Manual Utilities Reference

833

-z (Set project property)

Syntax

-z p = v

Description

Sets the value of the project property p to the value v.

Example

The following command compiles the file arguments and puts the resulting object files into the directory

objects.

cc -c file1.c file2.c -zbuild_output_directory=objects

Embedded Studio Reference Manual Utilities Reference

834

Command-Line Project Builder
emBuild is a program used to build your software from the command line without using SEGGER Embedded

Studio. You can, for example, use emBuild for nightly (automated) builds, production builds, and batch builds.

Embedded Studio Reference Manual Utilities Reference

835

Building with a SEGGER Embedded Studio project file
You can specify a SEGGER Embedded Studio project file:

Syntax

emBuild [options] project-file

You must specify a configuration to build using -config. For instance:

emBuild -config "V5T Thumb LE Release" arm.emProject

The above example uses the configuration V5T Thumb LE Release to build all projects in the solution contained

in arm.emProject.

To build a specific project that is in a solution, you can specify it using the -project option. For example:

emBuild -config "V5T Thumb LE Release" -project "libm" libc.emProject

This example will use the configuration V5T Thumb LE Release to build the project libm that is contained in

libc.emProject.

If your project file imports other project files (using the <import> mechanism), when denoting projects you must

specify the solution names as a comma-separated list in parentheses after the project name:

emBuild -config "V5T Thumb LE Release" -project "libc(C Library)" arm.emProject

libc(C Library) specifies the libc project in the C Library solution that has been imported by the project file

arm.emProject.

To build a specific solution that has been imported from other project files, you can use the -solution option.

This option takes the solution names as a comma-separated list. For example:

emBuild -config "ARM Debug" -solution "ARM Targets,EB55" arm.emProject

In this example, ARM Targets,EB55 specifies the EB55 solution imported by the ARM Targets solution, which

was itself imported by the project file arm.emProject.

You can do a batch build using the -batch option:

emBuild -config "ARM Debug" -batch libc.emProject

This will build the projects in libc.emProject that are marked for batch build in the configuration ARM Debug.

By default, a make-style build will be donei.e., the dates of input files are checked against the dates of output

files, and the build is avoided if the output is up to date. You can force a complete build by using the -rebuild

option. Alternatively, to remove all output files, use the -clean option.

Embedded Studio Reference Manual Utilities Reference

836

To see the commands being used in the build, use the -echo option. To also see why commands are being

executed, use the -verbose option. You can see what commands will be executed, without executing them, by

using the -show option.

Embedded Studio Reference Manual Utilities Reference

837

Building without a SEGGER Embedded Studio project
file
To use emBuild without a SEGGER Embedded Studio project, specify the name of an installed project template,

the name of the project, and the files to build. For example:

emBuild -config -template LM3S_EXE -project myproject -file main.c

Or, instead of a template, you can specify a project type:

emBuild -config -type "Library" -project myproject -file main.c

You can specify project properties with the -property option:

emBuild -property Target=LM3S811

Embedded Studio Reference Manual Utilities Reference

838

Command-line options
This section describes the command-line options accepted by emBuild.

Embedded Studio Reference Manual Utilities Reference

839

-batch (Batch build)

Syntax

-batch

Description

Perform a batch build.

Embedded Studio Reference Manual Utilities Reference

840

-config (Select build configuration)

Syntax

-config name

Description

Specify the configuration for a build. If the configuration name can't be found, emBuild will list the available

configurations.

Embedded Studio Reference Manual Utilities Reference

841

-clean (Remove output files)

Syntax

-clean

Description

Remove all output files resulting from the build process.

Embedded Studio Reference Manual Utilities Reference

842

-D (Define macro)

Syntax

-D macro=value

Description

Define a SEGGER Embedded Studio macro value for the build process.

Embedded Studio Reference Manual Utilities Reference

843

-echo (Show command lines)

Syntax

-echo

Description

Show the command lines as they are executed.

Embedded Studio Reference Manual Utilities Reference

844

-file (Build a named file)

Syntax

-file name

Description

Build the file name. Use with -template or -type.

Embedded Studio Reference Manual Utilities Reference

845

-packagesdir (Specify packages directory)

Syntax

-packagesdir dir

Description

Override the default value of the $(PackagesDir) macro.

Embedded Studio Reference Manual Utilities Reference

846

-project (Specify project to build)

Syntax

-project name

Description

Specify the name of the project to build. When used with a project file, if emBuild can't find the specified project,

the names of available projects are listed.

Embedded Studio Reference Manual Utilities Reference

847

-property (Set project property)

Syntax

-project name=value

Description

Specify the value of a project property use with -template or -type. If emBuild cannot find the specified

property, a list of the properties is shown.

Embedded Studio Reference Manual Utilities Reference

848

-rebuild (Always rebuild)

Syntax

-rebuild

Description

Always execute the build commands.

Embedded Studio Reference Manual Utilities Reference

849

-show (Dry run, don't execute)

Syntax

-show

Description

Show the command lines that would be executed, but do not execute them.

Embedded Studio Reference Manual Utilities Reference

850

-solution (Specify solution to build)

Syntax

-solution name

Description

Specify the name of the solution to build. If emBuild cannot find the given solution, the valid solution names are

listed.

Embedded Studio Reference Manual Utilities Reference

851

-studiodir (Specify SEGGER Embedded Studio
directory)

Syntax

-studiodir name

Description

Override the default value of the $(StudioDir) macro.

Embedded Studio Reference Manual Utilities Reference

852

-template (Specify project template)

Syntax

-template name

Description

Specify the project template to use. If emBuild cannot find the specified template then a list of template names

is shown.

Embedded Studio Reference Manual Utilities Reference

853

-time (Time the build)

Syntax

-time

Description

Show the time taken for the build.

Embedded Studio Reference Manual Utilities Reference

854

-threadnum (Specify number of build threads)

Syntax

-threadnum n

Description

Specify the number of build threads to use for the build. The default is zero which will use the number of

processor cores on your machine.

Embedded Studio Reference Manual Utilities Reference

855

-type (Specify project type)

Syntax

-type name

Description

Specify the project type to use. If emBuild cannot find the specified project type then a list of project type names

is shown.

Embedded Studio Reference Manual Utilities Reference

856

-verbose (Show build information)

Syntax

-verbose

Description

Show extra information relating to the build process.

Embedded Studio Reference Manual Utilities Reference

857

Command-Line Scripting
emScript is a program that allows you to run SEGGER Embedded Studio's JavaScript (ECMAScript) interpreter

from the command line.

The primary purpose of emScript is to facilitate the creation of platform-independent build scripts.

Syntax

emScript [options] file

Embedded Studio Reference Manual Utilities Reference

858

Command-line options
This section describes the command-line options accepted by emScript.

Embedded Studio Reference Manual Utilities Reference

859

-define (Define global variable)

Syntax

-define variable=value

Description

Embedded Studio Reference Manual Utilities Reference

860

-help (Show usage)

Syntax

-help

Description

Display usage information and command line options.

Embedded Studio Reference Manual Utilities Reference

861

-load (Load script file)

Syntax

-load path

Description

Loads the script file path.

Embedded Studio Reference Manual Utilities Reference

862

-define (Verbose output)

Syntax

-verbose

Description

Produces verbose output.

Embedded Studio Reference Manual Utilities Reference

863

emScript classes
emScript provides the following predefined classes:

BinaryFile

CWSys

ElfFile

WScript

Embedded Studio Reference Manual Utilities Reference

864

Example uses
The following example demonstrates using emScript to increment a build number:

First, add a JavaScript file to your project called incbuild.js containing the following code:

function incbuild()
{
 var file = "buildnum.h"
 var text = "#define BUILDNUMBER "
 var s = CWSys.readStringFromFile(file);
 var n;
 if (s == undefined)
 n = 1;
 else
 n = eval(s.substring(text.length)) + 1;
 CWSys.writeStringToFile(file, text + n);
}

// Executed when script loaded.
incbuild();

Add a file called getbuildnum.h to your project containing the following code:

#ifndef GETBUILDNUM_H
#define GETBUILDNUM_H

unsigned getBuildNumber();

#endif

Add a file called getbuildnum.c to your project containing the following code:

#include "getbuildnum.h"
#include "buildnum.h"

unsigned getBuildNumber()
{
 return BUILDNUMBER;
}

Now, to combine these:

Set the Build Options > Always Rebuild project property of getbuildnum.c to Yes.

Set the User Build Step Options > Pre-Compile Command project property of getbuildnum.c to

"$(StudioDir)/bin/emScript" -load "$(ProjectDir)/incbuild.js".

Embedded Studio Reference Manual Utilities Reference

865

Embed
Embed is a program that converts a binary file into a C/C++ array definition.

The primary purpose of the Embed tool is to provide a simple method of embedding files into an application.

This may be useful if you want to include firmware images, bitmaps, etc. in your application without having to

read them first from an external source.

Syntax

embed variable_name input_file output_file

variable_name is the name of the C/C++ array to be initialised with the binary data.

input_file is the path to the binary input file.

output_file is the path to the C/C++ source file to generate.

Example

To convert a binary file image.bin to a C/C++ file called image.h:

embed img image.bin image.h

This will generate the following output in image.h:

static const unsigned char img[] = {
 0x5B, 0x95, 0xA4, 0x56, 0x16, 0x5F, 0x2D, 0x47,
 0xC5, 0x04, 0xD4, 0x8D, 0x73, 0x40, 0x31, 0x66,
 0x3E, 0x81, 0x90, 0x39, 0xA3, 0x8E, 0x22, 0x37,
 0x3C, 0x63, 0xC8, 0x30, 0x90, 0x0C, 0x54, 0xA4,
 0xA2, 0x74, 0xC2, 0x8C, 0x1D, 0x56, 0x57, 0x05,
 0x45, 0xCE, 0x3B, 0x92, 0xAD, 0x0B, 0x2C, 0x39,
 0x92, 0x59, 0xB9, 0x9D, 0x01, 0x30, 0x59, 0x9F,
 0xC5, 0xEA, 0xCE, 0x35, 0xF6, 0x4B, 0x05, 0xBF
};

Embedded Studio Reference Manual Utilities Reference

866

Header file generator
The command line program mkhdr generates a C or C++ header file from a SEGGER Embedded Studio memory

map file.

Embedded Studio Reference Manual Utilities Reference

867

Using the header generator
For each register definition in the memory map file a corresponding #define is generated in the header file. The

#define is named the same as the register name and is defined as a volatile pointer to the address.

The type of the pointer is derived from the size of the register. A four-byte register generates an unsigned long

pointer. A two-byte register generates an unsigned short pointer. A one-byte register will generates an unsigned

char pointer.

If a register definition in the memory map file has bitfields then preprocessor symbols are generated for each

bitfield. Each bitfield will have two preprocessor symbols generated, one representing the mask and one

defining the start bit position. The bitfield preprocessor symbol names are formed by prepending the register

name to the bitfield name. The mask definition has _MASK appended to it and the start definition has _BIT

appended to it.

For example consider the following definitions in the the file memorymap.xml.

<RegisterGroup start="0xFFFFF000" name="AIC">
 <Register start="+0x00" size="4" name="AIC_SMR0">
 <BitField size="3" name="PRIOR" start="0" />
 <BitField size="2" name="SRCTYPE" start="5" />
 </Register>
 ...

We can generate the header file associated with this file using:

mkhdr memorymap.xml memorymap.h

This generates the following definitions in the file memorymap.h.

#define AIC_SMR0 (*(volatile unsigned long *)0xFFFFF000)
#define AIC_SMR0_PRIOR_MASK 0x7
#define AIC_SMR0_PRIOR_BIT 0
#define AIC_SMR0_SRCTYPE_MASK 0x60
#define AIC_SMR0_SRCTYPE_BIT 5

These definitions can be used in the following way in a C/C++ program:

Reading a register

unsigned r = AIC_SMR0;

Writing a register

AIC_SMR0 = (priority << AIC_SMR0_PRIOR_BIT) | (srctype << AIC_SMR0_SRCTYPE_BIT);

Reading a bitfield

unsigned srctype = (AIC_SMR0 & AIC_SMR0_SRCTYPE_MASK) >> AIC_SMR0_SRCTYPE_BIT;

Writing a bitfield

AIC_SMR0 = (AIC_SMR0 & ~AIC_SMR0_SRCTYPE_MASK) | ((srctype & AIC_SMR0_SRCTYPE_MASK) << AIC_SMR0_SRCTYPE_BIT);

Embedded Studio Reference Manual Utilities Reference

868

Command line options
This section describes the command line options accepted by the header file generator.

Syntax

mkhdr inputfile outputfile targetname [option]

inputfile is the name of the source SEGGER Embedded Studio memory map file. outputfile is the the name of

the file to write.

Embedded Studio Reference Manual Utilities Reference

869

-regbaseoffsets (Use offsets from peripheral base)

Syntax

-regbaseoffsets

Description

Instructs the header generator to include offsets of registers from the peripheral base.

Embedded Studio Reference Manual Utilities Reference

870

-nobitfields (Inhibit bitfield macros)

Syntax

-nobitfields

Description

Instructs the header generator not to generate any definitions for bitfields.

Embedded Studio Reference Manual Utilities Reference

871

Linker script file generator
The command line program mkld generates a GNU ld linker script from a SEGGER Embedded Studio memory

map or section placement file.

Syntax

mkld -memory-map-file inputfile outputfile [options]

inputfile is the name of the SEGGER Embedded Studio memory map file to generate the ld script from.

outputfile is the the name of the ld script file to write.

Embedded Studio Reference Manual Utilities Reference

872

Command-line options
This section describes the command-line options accepted by mkld.

Embedded Studio Reference Manual Utilities Reference

873

-check-segment-overflow

Syntax

-check-segment-overflow

Description

Add checks for memory segment overflow to the linker script.

Embedded Studio Reference Manual Utilities Reference

874

-memory-map-file

Syntax

-memory-map-file filename

Description

Generate a GNU ld linker script from the SEGGER Embedded Studio memory map file filename.

Embedded Studio Reference Manual Utilities Reference

875

-memory-map-macros

Syntax

-memory-map-macros macro=value[;macro=value]

Description

Define SEGGER Embedded Studio macros to use when reading a memory map file.

Embedded Studio Reference Manual Utilities Reference

876

-section-placement-file

Syntax

-section-placement-file filename

Description

Generate a GNU ld linker script from the SEGGER Embedded Studio section placement file filename. If this option

is used, a memory map file should also be specified with the -memory-map-file option.

Embedded Studio Reference Manual Utilities Reference

877

-section-placement-macros

Syntax

-section-placement-macros macro=value[;macro=value]

Description

Define SEGGER Embedded Studio macros to use when reading a section placement file.

Embedded Studio Reference Manual Utilities Reference

878

-symbols

Syntax

-symbols symbol=value[;symbol=value]

Description

Add extra symbol definitions to the ld linker script.

Embedded Studio Reference Manual Utilities Reference

879

Package generator
To create a package the program mkpkg can be used. The set of files to put into the package should be

in the desired location in the $(PackagesDir) directory. The mkpkg command should be run with

$(PackagesDir) as the working directory and all files to go into the package must be referred to using

relative paths. A package must have a package description file that is placed in the $(PackagesDir)/

packages directory. The package description file name must end with _package.xml. If a package is to

create entries in the new project wizard then it must have a file name project_templates.xml.

For example, a package for the mythical FX150 processor would supply the following files:

A project template file called targets/FX150/project_templates.xml. The format of the

project templates file is described in Project Templates file format.

The $(PackagesDir)-relative files that define the functionality of the package.

A package description file called packages/FX150_package.xml. The format of the package

description file is described in Package Description file format.

The package file FX150.emPackage would be created using the following command line:

mkpkg -c packages/FX150.emPackage targets/FX150/project_templates.xml packages/
FX150_package.xml

You can list the contents of the package using the -t option:

mkpkg -t packages/FX150.emPackage

You can remove an entry from a package using the -d option:

mkpkg -d packages/FX150.emPackage -d fileName

You can add or replace a file into an existing package using the -r option:

mkpkg -r packages/FX150.emPackage -r fileName

You can extract files from an existing package using the -x option:

mkpkg -x packages/FX150.emPackage outputDirectory

You can automate the package creation process using a Combining project type.

Using the new project wizard create a combining project in the directory $(PackagesDir).

Set the Output File Path property to be $(PackagesDir)/packages/mypackage.emPackage.

Set the Combine command property to $(StudioDir)/bin/mkpkg -c $(CombiningOutputFilePath)

$(CombiningRelInputPaths).

Add the files you want to go into the package into the project using the Project Explorer.

Right-click the project node in the Project Explorer and choose Build.

When a package is installed, the files in the package are copied into the desired $(PackagesDir)-relative

locations. When a file is copied into the $(PackagesDir)/packages directory and its filename ends with

Embedded Studio Reference Manual Utilities Reference

880

_package.xml the file $(PackagesDir)/packages/installed_packages.xml is updated with an

entry:

<include filename="FX150_package.xml" />

During development of a package you can manually edit this file. The same applies to the file

$(PackagesDir)/targets/project_templates.xml which will contain a reference to your

project_templates.xml file.

Usage:

mkpkg [options] packageFileName file1 file2

Option Description

-c Create a new package.

-compress level Change compression level (0 for none, 9 for
maximum).

-d Remove files from a package.

-f Output files to stdout.

-r Replace files in a package.

-readonly Force all files to have read only attribute.

-t List the contents of a package.

-v Be chatty.

-V Show version information.

-x Extract files from a package.

Embedded Studio Reference Manual Appendices

881

Appendices

Embedded Studio Reference Manual Appendices

882

File formats
This section describes the file formats SEGGER Embedded Studio uses:

Memory Map file format
Describes the memory map file format that defines memory regions and registers in a microcontroller.

Section Placement file format
Describes the section placement file format that maps program sections to memory areas in the target

microcontroller.

Project file format
Describes the format of SEGGER Embedded Studio project files.

Project Templates file format
Describes the format of project template files used by the New Project wizard.

Property Groups file format
Describes the format of the property groups file you can use to define meta-properties.

Package Description file format
Describes the format of the package description files you use to create packages other users can install in

SEGGER Embedded Studio.

External Tools file format
Describes the format of external tool configuration files you use to extend SEGGER Embedded Studio.

Embedded Studio Reference Manual Appendices

883

Memory Map file format
SEGGER Embedded Studio memory-map files are structured using XML syntax for its simple construction and

parsing.

The first entry of the project file defines the XML document type used to validate the file format.

<!DOCTYPE Board_Memory_Definition_File>

The next entry is the Root element. There can only be one Root element in a memory map file:

<Root name="My Board">

A Root element has a name attribute every element in a memory map file has a name attribute. Names should

be unique within a hierarchy level. Within a Root element, there are MemorySegment elements that represent

regions within the memory map.

<Root name="My Board">
 <MemorySegment name="Flash" start="0x1000" size="0x200" access="ReadOnly">

MemorySegment elements have the following attributes:

start:The start address of the memory segment. A simple expression, usually a hexadecimal number with

a 0x prefix.

size:The size of the memory segment. A simple expression, usually a hexadecimal number with a 0x prefix.

access:The permissible access types of the memory segment. One of ReadOnly, Read/Write,

WriteOnly, or None.

address_symbol:A symbolic name for the start address of the memory segment.

size_symbol:A symbolic name for the size of the memory segment.

address_symbol:A symbolic name for the end address of the memory segment.

RegisterGroup elements are used to organize registers into groups. Register elements are used to define

peripheral registers:

 <Root name="My Board" >
 <MemorySegment name="System" start="0x2000" size="0x200" >
 <RegisterGroup name="Peripheral1" start="0x2100" size="0x10" >
 <Register name="Register1" start="+0x8" size="4" >

RegisterGroup elements have the same attributes as MemorySegment elements. Register elements

have the following attributes:

name:Register names should be valid C/C++ identifier names, i.e., alphanumeric characters and

underscores are allowed but names cannot start with a number.

start:The start address of the memory segment. Either a C-style hexadecimal number or, if given a + prefix,

an offset from the enclosing element's start address.

size:The size of the register in bytes, either 1, 2, or 4.

Embedded Studio Reference Manual Appendices

884

access:The same as the access attribute of the MemorySegment element.

address_symbol:The same as the address_symbol attribute of the MemorySegment element.

A Register element can contain BitField elements that represent the bits in a peripheral register:

 <Root name="My Board" >
 <MemorySegment name="System" start="0x2000" size="0x200" >
 <RegisterGroup name="Peripheral1" start="0x2100" size="0x10" >
 <Register name="Register1" start="+0x8" size="4" >
 <BitField name="Bits_0_to_3" start="0" size="4" />

BitField elements have the following attributes:

name:The same as the name attribute of the RegisterGroup element.

start:The starting bit position, 031.

size:The total number of bits, 132.

A Bitfield element can contain Enum elements:

<Root name="My Board" >
 <RegisterGroup name="Peripheral1" start="0x2100" size="0x10" >
 <Register name="Register1" start="+0x8" size="4" >
 <BitField name="Bits_0_to_3" start="0" size="4" />
 <Enum name="Enum3" start="3" />
 <Enum name="Enum5" start="5" />

You can import CMSIS SVD files (see http://www.onarm.com/) into a memory map using the ImportSVD

element:

<ImportSVD filename="$(TargetsDir)/targets/Manufacturer1/Processor1.svd.xml">

The filename attribute is an absolute filename which is macro-expanded using SEGGER Embedded Studio

system macros.

When a memory map file is loaded either for the memory map viewer or to be used for linking or debugging, it is

preprocessed using the (as yet undocumented) SEGGER Embedded Studio XML preprocessor.

http://www.onarm.com/

Embedded Studio Reference Manual Appendices

885

Section Placement file format
SEGGER Embedded Studio section-placement files are structured using XML syntax to enable simple

construction and parsing.

The first entry of the project file defines the XML document type used to validate the file format:

<!DOCTYPE Linker_Placement_File>

The next entry is the Root element. There can only be one Root element in a memory map file:

<Root name="Flash Placement">

A Root element has a name attribute. Every element in a section-placement file has a name attribute. Each

name should be unique within its hierarchy level. Within a Root element, there are MemorySegment elements.

These correspond to memory regions defined in a memory map file that will be used in conjunction with the

section-placement file when linking a program. For example:

 <Root name="Flash Placement">
 <MemorySegment name="FLASH">

A MemorySegment contains ProgramSection elements that represent program sections created by the C/

C++ compiler and assembler. The order of ProgramSection elements within a MemorySegment element

represents the order in which the sections will be placed when linking a program. The first ProgramSection

will be placed first and the last one will be placed last.

<Root name="My Board" >
 <MemorySegment name="FLASH">
 <ProgramSection name=".text">

ProgramSection elements have the following attributes:

address_symbol:A symbolic name for the start address of the section.

alignment:The required alignment of the program section; a decimal number specifying the byte

alignment.

end_symbol:A symbolic name for the end address of the section.

fill:The optional value used to fill unspecified regions of memory, a hexadecimal number with a 0x prefix.

inputsections:An expression describing the input sections to be placed in this section. If you omit this

(recommended) and the section name isn't one of .text, .dtors, .ctors, .data, .rodata, or .bss, then the

equivalent input section of *(.name .name.*) is supplied to the linker.

keep:If Yes, the section will be kept even if none of the symbols are referenced by the rest of the program.

load:If Yes, the section is loaded. If No, the section isn't loaded.

place_from_segment_end:If Yes, this section and following sections will be placed at the end of the

segment. Please note that this will only succeed if the section and all following sections have a fixed size

specified with the size attribute.

runin:This specifies the name of the section to copy this section to.

Embedded Studio Reference Manual Appendices

886

runoffset:This specifies an offset from the load address that the section will be run from.

size:The optional size of the program section in bytes, a hexadecimal number with a 0x prefix.

size_symbol:A symbolic name for the size of the section.

start:The optional start address of the program section, a hexadecimal number with a 0x prefix.

When a section placement file is used for linking it is preprocessed using the (as yet undocumented) SEGGER

Embedded Studio XML preprocessor.

Embedded Studio Reference Manual Appendices

887

Project file format
SEGGER Embedded Studio project files are held in text files with the .emProject extension. Because you may

want to edit project files, and perhaps generate them, they are structured using XML syntax to enable simple

construction and parsing.

The first entry of the project file defines the XML document type used to validate the file format:

<!DOCTYPE CrossStudio_Project_File>

The next entry is the solution element; there can only be one solution element in a project file. This

specifies the solution name displayed in the Project Explorer and has a version attribute that defines the file-

format version of the project file. Solutions can contain projects, projects can contain folders and files, and

folders can contain folders and files. This hierarchy is reflected in the XML nestingfor example:

<solution version="1" Name="solutionname">
 <project Name="projectname">
 <file Name="filename" />
 <folder Name="foldername">
 <file Name="filename2" />
 </folder>
 </project>
</solution>

Note that each entry has a Name attribute. Names of project elements must be unique to the solution, and

names of folder elements must be unique to the project, but names of files do not need to unique.

Each file element must have a file_name attribute that is unique to the project. Ideally, the file_name

is a file path relative to the project (or solution directory), but you can also specify a full file path, if you want to.

File paths are case-sensitive and use "/" as the directory separator. They may contain macro instantiations, so file

paths cannot contain the "$" character. For example

<file file_name="$(StudioDir)/source/crt0.s" Name="crt0.s" />

will be expanded using the value of $(StudioDir) when the file is referenced from SEGGER Embedded Studio.

Project properties are held in configuration elements with the Name attribute of the configuration element

corresponding to the configuration name, e.g., "Debug". At a given project level (i.e., solution, project, folder),

there can only be one named configuration elementi.e., all properties defined for a configuration are in single

configuration element.

<project Name="projectname">

 <configuration project_type="Library" Name="Common" />
 <configuration Name="Release" build_debug_information="No" />

</project>

You can use the import element to link projects:

<import file_name="target/libc.emProject" />

Embedded Studio Reference Manual Appendices

888

Project Templates file format
The SEGGER Embedded Studio New Project dialog works from a file called project_templates.xml in the

targets subdirectory of the SEGGER Embedded Studio installation directory. Because you may want to add

your own new project types, they are structured using XML syntax to enable simple construction and parsing.

The first entry of the project file defines the XML document type used to validate the file format:

<!DOCTYPE Project_Templates_File>

The next entry is the projects element, which is used to group a set of new project entries into an XML

hierarchy.

<projects>
 <project>
</projects>

Each entry has a project element that contains the class of the project (attribute caption), the name of the

project (attribute name), its type (attribute type) and a description (attribute description). For example:

<project caption="ARM Evaluator7T" name="Executable"
 description="An executable for an ARM Evaluator7T." type="Executable"/>

The project type can be one of these:

Executable: a fully linked executable.

Library: a static library.

Object file: an object file.

Staging: a staging project.

Combining: a combining project.

Externally Built Executable: an externally built executable.

The configurations to be created for the project are defined using the configuration element, which must

have a name attribute:

<configuration name="ARM RAM Release"/>

The property values to be created for the project are defined using the property element. If you have a

defined value, you can specify this using the value attribute and, optionally, set the property in a defined

configuration, such as:

<property name="target_reset_script" configuration="RAM"
 value="Evaluator7T_ResetWithRamAtZero()" />

Alternatively, you can include a property that will be shown to the user, prompting them to supply a value as

part of the new-project process.

<property name="linker_output_format"/>

Embedded Studio Reference Manual Appendices

889

The folders to be created are defined using the folder element. The folder element must have a name

attribute and can also have a filter attribute. For example:

<folder name="Source Files" filter="c;cpp;cxx;cc;h;s;asm;inc" />

The files to be in the project are specified using the file element. You can use build-system macros (see

Project macros) to specify files located in the SEGGER Embedded Studio installation directory. Files will be

copied to the project directory or just left as references, depending on the value of the expand attribute:

<file name="$(StudioDir)/source/crt0.s" expand="no"/>

You can define the set of configurations that can be referred to in the top-level configurations element:

<configurations>
 <configuration>
</configurations>

This contains the set of all configurations that can be created when a project is created. Each configuration is

defined using a configuration element, which can define the property values for that configuration. For

example:

<configuration name="Debug">
 <property name="build_debug_information" value="Yes">

Embedded Studio Reference Manual Appendices

890

Property Groups file format
The SEGGER Embedded Studio project system provides a means to create new properties that change a number

of project property settings and can also set C pre-processor definitions when selected. Such properties are

called property groups and are defined in a property-groups file. The property-group file to use for a project

is defined by the Property Groups File property. These files usually define target-specific properties and are

structured using XML syntax to enable simple construction and parsing.

The first entry of the property groups file defines the XML document type, which is used to validate the file

format:

<!DOCTYPE CrossStudio_Group_Values>

The next entry is the propertyGroups element, which is used to group a set of property groups entries into

an XML hierarchy:

<propertyGroups>
 <grouphdots

 <grouphdots
</propertyGroups>

Each group has the name of the group (attribute name), the name of the options category (attribute group),

short (attribute short) and long (attribute long) help descriptions, and a default value (attribute default).

For example:

<group short="Target Processor" group="Build Options" short="Target Processor"
 long="Select a set of target options" name="Target" default="STR912FW44" />

Each group has a number of groupEntry elements that define the enumerations of the group.

<group\>
 <groupEntry>

 <groupEntry>
</group>

Each groupEntry has the name of the entry (attribute name), e.g.:

<groupEntry name="STR910FW32">

A groupEntry has the property values and C pre-processor definitions that are set when the groupEntry is

selected; they are specified with property and cdefine elements. For example:

<groupEntry>
 <property>
 <cdefine>
 <property>
</groupEntry>

Embedded Studio Reference Manual Appendices

891

A property element has the property's name (attribute name), its value (attribute value), and an optional

configuration (attribute configuration):

<property name="linker_memory_map_file"
 value="$(StudioDir)/targets/ST_STR91x/ST_STR910FM32_MemoryMap.xml" />

A cdefine element has the C preprocessor name (attribute name) and its value (attribute value):

<cdefine value="STR910FM32" name="TARGET_PROCESSOR" />

Embedded Studio Reference Manual Appendices

892

Package Description file format
Package-description files are XML files used by SEGGER Embedded Studio to describe a support package, its

contents, and any dependencies it has on other packages.

Each package file must contain one package element that describes the package. Optionally, the package

element can contain a collection of file, history, and documentation elements to be used by SEGGER

Embedded Studio for documentation purposes.

The filename of the package-description file should match that of the package and end in "_package.xml".

Below is an example of two package-description files. The first is for a base chip-support package for the

LPC2000; the second is for a board-support package dependent on the first:

Philips_LPC2000_package.xml

<!DOCTYPE CrossStudio_Package_Description_File>
<package cpu_manufacturer="Philips" cpu_family="LPC2000" version="1.1" ses_versions="8:1-"
 author="SEGGER" >
 <file file_name="$(TargetsDir)/Philips_LPC210X/arm_target_Philips_LPC210X.htm"
 title="LPC2000 Support Package Documentation" />
 <file file_name="$(TargetsDir)/Philips_LPC210X/Loader.emProject" title="LPC2000 Loader
 Application Solution" />
 <group title="System Files">
 <file file_name="$(TargetsDir)/Philips_LPC210X/Philips_LPC210X_Startup.s" title="LPC2000
 Startup Code" />
 <file file_name="$(TargetsDir)/Philips_LPC210X/Philips_LPC210X_Target.js" title="LPC2000
 Target Script" />
 </group>
 <history>
 <version name="1.1" >
 <description>Corrected LPC21xx header files and memory maps to include GPIO ports 2
 and 3.</description>
 <description>Modified loader memory map so that .libmem sections will be placed
 correctly.</description>
 </version>
 <version name="1.0" >
 <description>Initial Release.</description>
 </version>
 </history>
 <documentation>
 <section name="Supported Targets">
 <p>This CPU support package supports the following LPC2000 targets:

 LPC2103
 LPC2104
 LPC2105
 LPC2106
 LPC2131
 LPC2132
 LPC2134
 LPC2136
 LPC2138

 </p>
 </section>

Embedded Studio Reference Manual Appendices

893

 </documentation>
</package>

CrossFire_LPC2138_package.xml

<!DOCTYPE CrossStudio_Package_Description_File>
<package cpu_manufacturer="Philips" cpu_family="LPC2000" cpu_name="LPC2138"
 board_manufacturer="Rowley Associates" board_name="CrossFire LPC2138"
 dependencies="Philips_LPC2000" version="1.0">
 <file file_name="$(SamplesDir)/CrossFire_LPC2138/CrossFire_LPC2138.emProject"
 title="CrossFire LPC2138 Samples Solution" />
 <file file_name="$(SamplesDir)/CrossFire_LPC2138/ctl/ctl.emProject" title="CrossFire
 LPC2138 CTL Samples Solution" />
</package>

Package elements

The package element describes the support package, its contents, and any dependencies it has on other

packages. Valid attributes for this element are:

Attribute Description

author The author of the package.

board_manufacturer The manufacturer of the board supported by the
package (if omitted, CPU manufacturer will be used).

board_name The name of the specific board supported by the
package (only required for board-support packages).

cpu_family The family name of the CPU supported by the package
(optional).

cpu_manufacturer The manufacturer of the CPU supported by the
package.

cpu_name The name of the specific CPU supported by the
package (may be omitted if the CPU family is specified).

ses_versions A string describing which version of SEGGER
Embedded Studio supports the package
(optional). The format of the string is target_id_number:version_range_string</
a>.

description A description of the package (optional).

dependencies A semicolon-separated list of packages the package
requires to be installed in order to work.

installation_directory The directory in which the package should be installed
(optional\--if undefined, defaults to "$(PackagesDir)").

title A short description of the package (optional).

Embedded Studio Reference Manual Appendices

894

version The package version number.

File elements

The file element is used by SEGGER Embedded Studio for documentation purposes by adding links to files of

interest within the package such as example project files and documentation.

Attribute Description

file_name The file path of the file.

title A description of the file.

Optionally, file elements can be grouped into categories using the group element.

Group elements

The group element is used for categorizing files described by file elements into a particular group.

Attribute Description

title Title of the group.

History elements

The history element is used to hold a description of the package's version history.

The history element should contain a collection of version elements.

Version element

The version element is used to hold the description of a particular version of the package.

Attribute Description

name The name of the version being described.

The version element should contain a collection of description elements.

Description elements

Each description element contains text that describes a feature of the package version.

Embedded Studio Reference Manual Appendices

895

Documentation elements

The documentation element is used to provide arbitrary documentation for the package.

The documentation element should contain a collection of one or more section elements.

Section elements

The section element contains package documentation in XHTML format.

Attribute Description

name The title of the documentation section.

target_id_number

The following table lists the possible target ID numbers:

Target ID

AVR 4

ARM 8

MSP430 9

MAXQ20 18

MAXQ30 19

version_range_string

The version_range_string can be any of the following:

version_number:The package will only work on version_number.

version_number-:The package will work on version_number or any future version.

-version_number:The package will work on version_number or any earlier version.

low_version_number-high_version_number:The package will work on low_version_number,

high_version_number or any version in between.

Embedded Studio Reference Manual Appendices

896

External Tools file format
SEGGER Embedded Studio external-tool configuration files are structured using XML syntax for its simple

construction and parsing.

Tool configuration files

The SEGGER Embedded Studio application will read the tool configuration file when it starts up. By default,

SEGGER Embedded Studio will read the file $(StudioUserDir)/tools.xml.

Structure

All tools are wrapped in a tools element:

<tools>

</tools>

Inside the tools element are item elements that define each tool:

<tools>
 <item name="logical name">

 </item>
</tools>

The item element requires an name attribute, which is an internal name for the tool, and has an optional wait

element. When SEGGER Embedded Studio invokes the tool on a file or project, it uses the wait element to

determine whether it should wait for the external tool to complete before continuing. If the wait attribute is not

provided or is set to yes, SEGGER Embedded Studio will wait for external tool to complete.

The way that the tool is presented in SEGGER Embedded Studio is configured by elements inside the

element.

menu

The menu element defines the wording used inside menus. You can place a shortcut to the menu using an

ampersand, which must be escaped using & in XML, before the shortcut letter. For instance:

<menu>&PC-lint (Unit Check)</menu>

text

The optional text element defines the wording used in contexts other than menus, for instance when the tool

appears as a tool button with a label. If text is not provided, the tool's textual appearance outside the menu is

taken from the menu element (and is presented without an shortcut underline). For instance:

Embedded Studio Reference Manual Appendices

897

<text>PC-lint (Unit Check)</text>

tip

The optional tip element defines the status tip, shown on the status line, when moving over the tool inside

SEGGER Embedded Studio:

<tip>Run a PC-lint unit checkout on the selected file or folder</tip>

key

The optional key element defines the accelerator key, or key chord, to use to invoke the tool using the keyboard.

You can construct the key sequence using modifiers Ctrl, Shift, and Alt, and can specify more than one key in a

sequence (note: Windows and Linux only; OS X does not provide key chords). For instance:

<key>Ctrl+L, Ctrl+I</key>

message

The optional message element defines the text shown in the tool log in SEGGER Embedded Studio when

running the tool. For example:

<message>Linting</message>

match

The optional match element defines which documents the tool will operator on. The match is performed using

the file extension of the document. If the file extension of the document matches one of the wildcards provided,

the tool will run on that document. If there is no match element, the tool will run on all documents. For instance:

<match>*.c;*.cpp</match>

commands

The commands element defines the command line to run to invoke the tool. The command line is expanded

using macros applicable to the file derived from the current build configuration and the project settings. Most

importantly, the standard $(InputPath) macro expands to a full pathname for the target file.

Additional macros constructed by SEGGER Embedded Studio are:

$(DEFINES) is the set of -D options applicable to the current file, derived from the current configuration

and project settings.

$(INCLUDES) is the set of -I options applicable to the current file, derived from the current configuration

and project settings.

For instance:

Embedded Studio Reference Manual Appendices

898

<commands>
 "$(LINTDIR)/lint-nt" -i$(LINTDIR)/lnt "$(LINTDIR)/lnt/co-gcc.lnt"
 $(DEFINES) $(INCLUDES) -D__GNUC__ -u -b +macros -w2 -e537 +fie +ffn -width(0,4) -hF1
 "-format=%f:%l:%C:s%t:s%m" "$(InputPath)"
</commands>

In this example we intend $(LINTDIR) to point to the directly where PC-lint is installed and for

$(LINTDIR) to be defined as a SEGGER Embedded Studio global macro. You can set global macros using

ide_environment_options_dialog.

Note that additional " entities are placed around pathnames in the commands sectionthis is to ensure

that paths that contain spaces are correctly interpreted when the command is executed by SEGGER Embedded

Studio.

Embedded Studio Reference Manual Appendices

899

Building Environment Options

Build

Property Description

Automatically Build Before Debug
Environment/Build/Build Before

DebugBoolean

Enables auto-building of a project before downloading
if it is out of date.

Build Macros
Environment/Macros/Global MacrosStringList

Build macros that are shared across all solutions and
projects e.g. paths to library files.

Confirm Debugger Stop
Environment/Build/Confirm Debugger

StopBoolean

Present a warning when you start to build that requires
the debugger to stop.

Display ETA
Environment/Build/Display ETABoolean

Selects whether to attempt to compute and display
the ETA on building.

Display Progress Bar
Environment/Build/Display Progress

BarBoolean

Selects whether to display progress bar on building.

Echo Build Command Lines
Environment/Build/Show Command

LinesBoolean

Selects whether build command lines are written to
the build log.

Echo Raw Error/Warning Output
Environment/Build/Show Unparsed Error

OutputBoolean

Selects whether the unprocessed error and warning
output from tools is displayed in the build log.

Find Error After Building
Environment/Build/Find Error After

BuildBoolean

Moves the cursor to the first diagnostic after a build
completes with errors.

Keep Going On Error
Environment/Build/Keep Going On

ErrorBoolean

Build doesn't stop on error.

Save Project File Before Building
Environment/Build/Save Project File On

BuildBoolean

Selects whether to save the project file prior to build.

Show Build Information
Environment/Build/Show Build

InformationBoolean

Show build information.

Toolchain Root Directory
Environment/Build/Tool Chain Root

DirectoryString

Specifies where to find the toolchain (compilers etc).

Embedded Studio Reference Manual Appendices

900

Build Acceleration

Property Description

Disable Unity Build
Environment/Build/Disable Unity

BuildBoolean

Ignore Unity Build project properties and always build
individual project components.

Parallel Building Threads
Environment/Build/Building

ThreadsIntegerRange

The number of threads to launch when building.

Compatibility

Property Description

Compiler Supports Section Renaming
ARM/Build/Compiler Can Rename

SectionsBoolean

Compiler supports the -mtext=t, -mdata=d, -mbss=b, -
mrodata=r section renaming options.

Default Assembler Variant
ARM/Build/Assembler Variant

DefaultEnumeration

Specifies the default assembler variant to use.

Default Compiler Variant
ARM/Build/Compiler Variant

DefaultEnumeration

Specifies the default linker variant to use.

Installation Directory
ARM/Build/StudioDir DirectoryDirPath

The installation directory to be used for building - the
value $(StudioDir) is set to.

Use External GCC
ARM/Build/Use External GCCBoolean

Use an external GCC toolchain for the build.

Window

Property Description

Show Build Log On Build
Environment/Show Transcript On

BuildBoolean

Show the build log when a build starts.

Embedded Studio Reference Manual Appendices

901

Debugging Environment Options

Breakpoint
Property Description

Clear Disassembly Breakpoints On Debug Stop
Environment/Debugger/Clear Disassembly

BreakpointBoolean

Clear Disassembly Breakpoints On Debug Stop

Display
Property Description

Close Disassembly On Mode Switch
Environment/Debugger/Close Disassembly On

Mode SwitchBoolean

Close Disassembly On Mode Switch

Data Tips Display a Maximum Of
Environment/Debugger/Maximum Array

Elements DisplayedIntegerRange

Selects the maximum number of array elements
displayed in a datatip.

Default Display Mode
Environment/Debugger/Default Variable

Display ModeEnumeration

Selects the format that data values are shown in.

Display Floating Point Number In
Environment/Debugger/Floating Point

Format DisplayCustom

The printf format directive used to display floating
point numbers.

Maximum Backtrace Calls
Environment/Debugger/Maximum Backtrace

CallsIntegerRange

Selects the maximum number of calls when
backtracing.

Prompt To Display If More Than
Environment/Debugger/Array Elements

Prompt SizeIntegerRange

The array size to display with prompt.

Show Data Tips In Text Editor
Environment/Debugger/Show Data TipsBoolean

Show Data Tips In Text Editor

Show Labels In Disassembly
Environment/Debugger/Disassembly Show

LabelsBoolean

Show Labels In Disassembly

Show Source In Disassembly
Environment/Debugger/Disassembly Show

SourceBoolean

Show Source In Disassembly

Show char * As Null Terminated String
Environment/Debugger/Display Char Ptr As

StringBoolean

Display char * as null terminated string.

Embedded Studio Reference Manual Appendices

902

Source Path
Environment/Debugger/Source PathStringList

Global search path to find source files.

Extended Data Tips

Property Description

ASCII
Environment/Debugger/Extended Tooltip

Display Mode/ASCIIBoolean

Selects ASCII extended datatips.

Binary
Environment/Debugger/Extended Tooltip

Display Mode/BinaryBoolean

Selects Binary extended datatips.

Decimal
Environment/Debugger/Extended Tooltip

Display Mode/DecimalBoolean

Selects Decimal extended datatips.

Hexadecimal
Environment/Debugger/Extended Tooltip

Display Mode/HexadecimalBoolean

Selects Hexadecimal extended datatips.

Octal
Environment/Debugger/Extended Tooltip

Display Mode/OctalBoolean

Selects Octal extended datatips.

Unsigned Decimal
Environment/Debugger/Extended Tooltip

Display Mode/Unsigned DecimalBoolean

Selects Unsigned Decimal extended datatips.

Window

Property Description

Clear Debug Terminal On Run
Environment/Clear Debug Terminal On

RunBoolean

Clear the debug terminal automatically when a
program is run.

Hide Output Window On Successful Load
Debugging/Hide Transcript On Successful

LoadBoolean

Hide the Output window when a load completes
without error.

Show Target Log On Load
Debugging/Show Transcript On LoadBoolean

Show the target log when a load starts.

Embedded Studio Reference Manual Appendices

903

IDE Environment Options

Browser

Property Description

Text Size
Environment/Browser/Text SizeEnumeration

Sets the text size of the integrated HTML and help
browser.

Underline Hyperlinks In Browser
Environment/Browser/Underline Web

LinksBoolean

Enables underlining of hypertext links in the
integrated HTML and help browser.

File Extension

Property Description

ELF Executable File Extensions
ElfDwarf/Environment/Executable File

ExtensionsStringList

The file extensions used for ELF executable files.

ELF Object File Extensions
ElfDwarf/Environment/Object File

ExtensionsStringList

The file extensions used for ELF object files.

File Search

Property Description

Files To Search
Find In Files/File TypeStringList

The wildcard used to match files in Find In Files
searches.

Find History
Find In Files/Find HistoryStringList

The list of strings recently used in searches.

Folder History
Find In Files/Folder HistoryStringList

The set of folders recently used in file searches.

Match Case
Find In Files/Match CaseBoolean

Whether the case of letters must match exactly when
searching.

Match Whole Word
Find In Files/Match Whole WordBoolean

Whether the whole word must match when searching.

Replace History
Find In Files/Replace HistoryStringList

The list of strings recently used in searches.

Embedded Studio Reference Manual Appendices

904

Search Dependencies
Find In Files/Search DependenciesBoolean

Controls searching of dependent files.

Search In
Find In Files/ContextEnumeration

Where to look to find files.

Use Regular Expressions
Find In Files/Use RegExpBoolean

Whether to use a regular expression or plain text
search.

Internet
Property Description

Automatically Check For Packages
Environment/Internet/Check PackagesBoolean

Specifies whether to enable downloading of the list of
available packages.

Automatically Check For Updates
Environment/Internet/Check UpdatesBoolean

Specifies whether to enable checking for software
updates.

Check For Latest News
Environment/Internet/RSS UpdateBoolean

Specifies whether to enable downloading of the Latest
News RSS feeds.

Enable Connection Debugging
Environment/Internet/Enable

DebuggingBoolean

Controls debugging traces of internet connections and
downloads.

External Web Browser
Environment/External Web BrowserFileName

The path to the external web browser to use when
accessing non-local files.

HTTP Proxy Host
Environment/Internet/HTTP Proxy

ServerString

Specifies the IP address or hostname of the HTTP proxy
server. If empty, no HTTP proxy server will be used.

HTTP Proxy Port
Environment/Internet/HTTP Proxy

PortIntegerRange

Specifies the HTTP proxy server's port number.

Maximum Download History Items
Environment/Internet/Max Download History

ItemsIntegerRange

The maximum amount of download history kept in the
downloads window.

Use Content Delivery Network
Environment/Package/Use Content Delivery

NetworkBoolean

Specifies whether to use content delivery network to
deliver packages.

Package Manager
Property Description

Check Solution Package Dependencies
Environment/Package/Check Solution

Package DependenciesBoolean

Specifies whether to check package dependencies
when a solution is loaded.

Embedded Studio Reference Manual Appendices

905

Package Directory
Environment/Package/Destination

DirectoryString

Specifies the directory packages are installed to.

Show Check For Packages Dialog
Environment/Package/Show Check For

Packages DialogBoolean

Specifies whether the package manager should
prompt for a package list refresh.

Show Logos
Environment/Package/Show LogosEnumeration

Specifies whether the package manager should display
company logos.

Print
Property Description

Bottom Margin
Environment/Printing/Bottom

MarginIntegerRange

The page's bottom margin in millimetres.

Left Margin
Environment/Printing/Left MarginIntegerRange

The page's left margin in millimetres.

Page Orientation
Environment/Printing/OrientationEnumeration

The page's orientation.

Page Size
Environment/Printing/Page SizeEnumeration

The page's size.

Right Margin
Environment/Printing/Right

MarginIntegerRange

The page's right margin in millimetres.

Top Margin
Environment/Printing/Top MarginIntegerRange

The page's top margin in millimetres.

Startup
Property Description

Allow Multiple SEGGER Embedded Studios
Environment/Permit Multiple Studio

InstancesBoolean

Allow more than one SEGGER Embedded Studio to run
at the same time.

Load Last Project On Startup
Environment/Load Last Project On

StartupBoolean

Specifies whether to load the last project the next time
SEGGER Embedded Studio runs.

New Project Directory
Environment/General/Solution

DirectoryString

The directory where projects are created.

Splash Screen
Environment/Splash ScreenEnumeration

How to display the splash screen on startup.

Embedded Studio Reference Manual Appendices

906

Status Bar

Property Description

(Visible)
Environment/Status BarBoolean

Show or hide the status bar.

Show Build Status Pane
Environment/General/Status Bar/Show Build

StatusBoolean

Show or hide the Build pane in the status bar.

Show Caret Position Pane
Environment/General/Status Bar/Show Caret

PosBoolean

Show or hide the Caret Position pane in the status bar.

Show Insert/Overwrite Status Pane
Environment/General/Status Bar/Show

Insert ModeBoolean

Show or hide the Insert/Overwrite pane in the status
bar.

Show Read-Only Status Pane
Environment/General/Status Bar/Show Read

OnlyBoolean

Show or hide the Read Only pane in the status bar.

Show Size Grip
Environment/General/Status Bar/Show Size

GripBoolean

Show or hide the status bar size grip.

Show Target Pane
Environment/General/Status Bar/Show

TargetBoolean

Show or hide the Target pane in the status bar.

Show Time Pane
Environment/General/Status Bar/Show

TimeBoolean

Show or hide the Time pane in the status bar.

User Interface

Property Description

Application Main Font
Environment/Application Main FontFont

The font to use for the user interface as a whole.

Application Monospace Font
Environment/Application Monospace

FontFixedPitchFont

The fixed-size font to use for the user interface as a
whole.

Error Display Timeout
Environment/Error Display

TimeoutIntegerRange

The minimum time, in seconds, that errors are shown
for in the status bar.

Errors Are Displayed
Environment/Error Display ModeEnumeration

How errors are reported in SEGGER Embedded Studio.

Embedded Studio Reference Manual Appendices

907

File Size Display Units
Environment/Size Display UnitEnumeration

How to display sizes of items in the user interface. SI
defines 1kB=1000 bytes, IEC defines 1kiB=1024 bytes,
Alternate SI defines 1kB=1024 bytes.

Number File Names in Menus
Environment/Number MenusBoolean

Number the first nine file names in menus for quick
keyboard access.

Show Large Icons In Toolbars
Environment/General/Large IconsBoolean

Show large or small icons on toolbars.

Show Ribbon
Environment/General/Ribbon/ShowBoolean

Show or hide the ribbon.

Show Window Selector On Ctrl+Tab
Environment/Show SelectorBoolean

Present the Window Selector on Next Window and
Previous Window commands activated from the
keyboard.

User Interface Theme
Environment/General/SkinEnumeration

The theme that SEGGER Embedded Studio uses.

Window Menu Contains At Most
Environment/Max Window Menu

ItemsIntegerRange

The maximum number of windows appearing in the
Windows menu.

Embedded Studio Reference Manual Appendices

908

Programming Language Environment Options

Assembly Language

Property Description

Column Guide Columns
Text Editor/Indent/Assembly Language/

Column GuidesString

The columns that guides are drawn for.

Indent Closing Brace
Text Editor/Indent/Assembly Language/

Close BraceBoolean

Indent the closing brace of compound statements.

Indent Context
Text Editor/Indent/Assembly Language/

Context LinesIntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/Assembly Language/

Indent ModeEnumeration

How to indent when a new line is inserted.

Indent Opening Brace
Text Editor/Indent/Assembly Language/Open

BraceBoolean

Indent the opening brace of compound statements.

Indent Size
Text Editor/Indent/Assembly Language/

SizeIntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/Assembly Language/Tab

SizeIntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/Assembly Language/Use

TabsBoolean

Insert tabs when indenting.

User-Defined Keywords
Text Editor/Indent/Assembly Language/

KeywordsStringList

Additional identifiers to highlight as keywords.

C and C++

Property Description

Column Guide Columns
Text Editor/Indent/C and C++/Column

GuidesString

The columns that guides are drawn for.

Embedded Studio Reference Manual Appendices

909

Indent Closing Brace
Text Editor/Indent/C and C++/Close

BraceBoolean

Indent the closing brace of compound statements.

Indent Context
Text Editor/Indent/C and C++/Context

LinesIntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/C and C++/Indent

ModeEnumeration

How to indent when a new line is inserted.

Indent Opening Brace
Text Editor/Indent/C and C++/Open

BraceBoolean

Indent the opening brace of compound statements.

Indent Size
Text Editor/Indent/C and C++/

SizeIntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/C and C++/Tab

SizeIntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/C and C++/Use

TabsBoolean

Insert tabs when indenting.

User-Defined Keywords
Text Editor/Indent/C and C++/

KeywordsStringList

Additional identifiers to highlight as keywords.

Default

Property Description

Column Guide Columns
Text Editor/Indent/Default/Column

GuidesString

The columns that guides are drawn for.

Indent Closing Brace
Text Editor/Indent/Default/Close

BraceBoolean

Indent the closing brace of compound statements.

Indent Context
Text Editor/Indent/Default/Context

LinesIntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/Default/Indent

ModeEnumeration

How to indent when a new line is inserted.

Embedded Studio Reference Manual Appendices

910

Indent Opening Brace
Text Editor/Indent/Default/Open

BraceBoolean

Indent the opening brace of compound statements.

Indent Size
Text Editor/Indent/Default/SizeIntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/Default/Tab

SizeIntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/Default/Use TabsBoolean

Insert tabs when indenting.

User-Defined Keywords
Text Editor/Indent/Default/

KeywordsStringList

Additional identifiers to highlight as keywords.

Java

Property Description

Column Guide Columns
Text Editor/Indent/Java/Column GuidesString

The columns that guides are drawn for.

Indent Closing Brace
Text Editor/Indent/Java/Close BraceBoolean

Indent the closing brace of compound statements.

Indent Context
Text Editor/Indent/Java/Context

LinesIntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/Java/Indent

ModeEnumeration

How to indent when a new line is inserted.

Indent Opening Brace
Text Editor/Indent/Java/Open BraceBoolean

Indent the opening brace of compound statements.

Indent Size
Text Editor/Indent/Java/SizeIntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/Java/Tab SizeIntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/Java/Use TabsBoolean

Insert tabs when indenting.

User-Defined Keywords
Text Editor/Indent/Java/KeywordsStringList

Additional identifiers to highlight as keywords.

Embedded Studio Reference Manual Appendices

911

Source Control Environment Options

External Tools

Property Description

Diff Command Line
Environment/Source Code Control/

DiffCommandStringList

The diff command line

Merge Command Line
Environment/Source Code Control/

MergeCommandStringList

The merge command line

Preference

Property Description

Add Immediately
Environment/Source Code Control/Immediate

AddBoolean

Bypasses the confirmation dialog and immediately
adds items to source control.

Commit Immediately
Environment/Source Code Control/Immediate

CommitBoolean

Bypasses the confirmation dialog and immediately
commits items.

Lock Immediately
Environment/Source Code Control/Immediate

LockBoolean

Bypasses the confirmation dialog and immediately
locks items.

Remove Immediately
Environment/Source Code Control/Immediate

RemoveBoolean

Bypasses the confirmation dialog and immediately
removes items source control.

Resolved Immediately
Environment/Source Code Control/Immediate

ResolvedBoolean

Bypasses the confirmation dialog and immediately
mark items resolved.

Revert Immediately
Environment/Source Code Control/Immediate

RevertBoolean

Bypasses the confirmation dialog and immediately
revert items.

Unlock Immediately
Environment/Source Code Control/Immediate

UnlockBoolean

Bypasses the confirmation dialog and immediately
unlocks items.

Update Immediately
Environment/Source Code Control/Immediate

UpdateBoolean

Bypasses the confirmation dialog and immediately
updates items.

Embedded Studio Reference Manual Appendices

912

Text Editor Environment Options

Auto Recovery
Property Description

Auto Recovery Backup Time
Text Editor/Auto Recovery Backup

TimeIntegerRange

The time in minutes between saving of auto recovery
backups files or 0 to disable generation of backup files.

Auto Recovery Keep Time
Text Editor/Auto Recovery Keep

TimeIntegerRange

The time in days to keep unrecovered backup files or 0
to disable deletion of unrecovered backup files.

Cursor Fence
Property Description

Bottom Margin
Text Editor/Margins/BottomIntegerRange

The number of lines in the bottom margin.

Keep Cursor Within Fence
Text Editor/Margins/EnabledBoolean

Enable margins to fence and scroll around the cursor.

Left Margin
Text Editor/Margins/LeftIntegerRange

The number of characters in the left margin.

Right Margin
Text Editor/Margins/RightIntegerRange

The number of characters in the right margin.

Top Margin
Text Editor/Margins/TopIntegerRange

The number of lines in the right margin.

Editing
Property Description

Allow Drag and Drop Editing
Text Editor/Drag Drop EditingBoolean

Enables dragging and dropping of selections in the
text editor.

Bold Popup Diagnostic Messages
Text Editor/Bold Popup DiagnosticsBoolean

Displays popup diagnostic messages in bold for easier
reading.

Column-mode Tab
Text Editor/Column Mode TabBoolean

Tab key moves to the next textual column using the
line above.

Confirm Modified File Reload
Text Editor/Confirm Modified File

ReloadBoolean

Display a confirmation prompt before reloading a file
that has been modified on disk.

Embedded Studio Reference Manual Appendices

913

Copy Action When Nothing Selected
Text Editor/Copy ActionEnumeration

What Copy copies when nothing is selected.

Cut Action When Nothing Selected
Text Editor/Cut ActionEnumeration

What Cut cuts when nothing is selected.

Cut Single Blank Line
Text Editor/Cut Blank LinesBoolean

Selects whether to place text on the clipboard when a
single blank line is cut. When set to

Diagnostic Cycle Mode
Text Editor/Diagnostic Cycle

ModeEnumeration

Iterates through diagnostics either from most severe
to least severe or in reported order.

Edit Read-Only Files
Text Editor/Edit Read OnlyBoolean

Allow editing of read-only files.

Enable Virtual Space
Text Editor/Enable Virtual SpaceBoolean

Permit the cursor to move into locations that do not
currently contain text.

Numeric Keypad Editing
Text Editor/Numeric Keypad EnabledBoolean

Selects whether the numeric keypad plus and minus
buttons copy and cut text.

Undo And Redo Behavior
Text Editor/Undo ModeEnumeration

How Undo and Redo group your typing when it is
undone and redone.

Find And Replace

Property Description

Case Sensitive Matching
Text Editor/Find/Match CaseBoolean

Enables or disables the case sensitivity of letters when
searching.

Find History
Text Editor/Find/HistoryStringList

The list of strings recently used in searches.

Regular Expression Matching
Text Editor/Find/Use RegExpBoolean

Enables regular expression matching rather than plain
text matching.

Replace History
Text Editor/Replace/HistoryStringList

The list of strings recently used in replaces.

Whole Word Matching
Text Editor/Find/Match Whole WordBoolean

Enables or disables whole word matching when
searching.

Formatting

Property Description

Access Modifier Offset
Text Editor/Formatting/

AccessModifierOffsetInteger

The extra indent or outdent of access modifiers, e.g.
public:.

Embedded Studio Reference Manual Appendices

914

Align After Open Bracket
Text Editor/Formatting/

AlignAfterOpenBracketBoolean

If enabled, horizontally aligns arguments after an open
bracket.

Align Escaped Newlines Left
Text Editor/Formatting/

AlignEscapedNewlinesLeftBoolean

If enabled, aligns escaped newlines as far left as
possible otherwise puts them into the right-most
column.

Align Operands
Text Editor/Formatting/

AlignOperandsBoolean

If enabled, horizontally align operands of binary and
ternary expressions.

Align Trailing Comments
Text Editor/Formatting/

AlignTrailingCommentsBoolean

If enabled, aligns trailing comments.

Allow All Parameters Of Declaration On Next Line
Text Editor/Formatting/

AllowAllParametersOfDeclarationOnNextLineBoolean

Allow putting all parameters of a function declaration
onto the next line even if Bin-pack Parameters is
disabled.

Allow Short 'if' Statements On A Single Line
Text Editor/Formatting/

AllowShortIfStatementsOnASingleLineBoolean

If enabled, short 'if' statements are put on a single line.

Allow Short Blocks On A Single Line
Text Editor/Formatting/

AllowShortBlocksOnASingleLineBoolean

If enabled, allows contracting simple braced
statements to a single line.

Allow Short Case Labels On A Single Line
Text Editor/Formatting/

AllowShortCaseLabelsOnASingleLineBoolean

If enabled, short case labels will be contracted to a
single line.

Allow Short Functions On A Single Line
Text Editor/Formatting/

AllowShortFunctionsOnASingleLineEnumeration

Optionally compress small functions to a single line.

Allow Short Loop Statements On A Single Line
Text Editor/Formatting/

AllowShortLoopsOnASingleLineBoolean

If enabled, short loop statements are put on a single
line.

Always Break Before Multiline Strings
Text Editor/Formatting/

AlwaysBreakAfterDefinitionReturnTypeBoolean

If enabled, always break after function definition return
types.

Always Break Before Multiline Strings
Text Editor/Formatting/

AlwaysBreakBeforeMultilineStringsBoolean

If enabled, always break before multiline strings.

Always Break Template Declarations
Text Editor/Formatting/

AlwaysBreakTemplateDeclarationsBoolean

If enabled, always break after the 'template<...>' of a
template declaration.

Bin-Pack Arguments
Text Editor/Formatting/

BinPackArgumentsBoolean

If disabled, a function call?s arguments will either be all
on the same line or will have one line each.

Embedded Studio Reference Manual Appendices

915

Bin-Pack Parameters
Text Editor/Formatting/

BinPackParametersBoolean

If disabled, a function call's or function definition's
parameters will either all be on the same line or will
have one line each.

Break Before Binary Operators
Text Editor/Formatting/

BreakBeforeBinaryOperatorsBoolean

The way to wrap binary operators.

Break Before Braces
Text Editor/Formatting/

BreakBeforeBracesEnumeration

The brace breaking style to use.

Break Before Ternary Operators
Text Editor/Formatting/

BreakBeforeTernaryOperatorsBoolean

If enabled, ternary operators will be placed after line
breaks.

Break Constructor Initializers Before Comma
Text Editor/Formatting/

BreakConstructorInitializersBeforeCommaBoolean

If enabled, always break constructor initializers before
commas and align the commas with the colon.

C++11 Braced List Style
Text Editor/Formatting/

Cpp11BracedListStyleBoolean

If enabled, format braced lists as best suited for C++11
braced lists.

Column Limit
Text Editor/Formatting/ColumnLimitInteger

The column limit which limits the width of formatted
lines.

Comment Pragmas
Text Editor/Formatting/CommentPragmasString

A regular expression that describes comments with
special meaning, which should not be split into lines or
otherwise changed.

Constructor Initializer All On One Line Or One Per Line
Text Editor/Formatting/

ConstructorInitializerAllOnOneLineOrOnePerLineBoolean

If enabled and the constructor initializers don't fit on a
line, put each initializer on its own line.

Constructor Initializer Indent Width
Text Editor/Formatting/

ConstructorInitializerIndentWidthInteger

The number of characters to use for indentation of
constructor initializer lists.

Continuation Indent Width
Text Editor/Formatting/

ContinuationIndentWidthInteger

Indent width for line continuations.

For-Each Macros
Text Editor/Formatting/

ForEachMacrosStringList

A list of macros that should be interpreted as foreach
loops rather than function calls.

Formatting Style
Text Editor/FormattingStyleEnumeration

Select a set formatting options based on a named
standard.

Indent Case Labels
Text Editor/Formatting/

IndentCaseLabelsBoolean

If enabled, indent case labels one level from the switch
statement.

Indent Width
Text Editor/Formatting/IndentWidthInteger

The number of columns to use for indentation.

Embedded Studio Reference Manual Appendices

916

Indent Wrappend Function Names
Text Editor/Formatting/

IndentWrappedFunctionNamesBoolean

If enabled, Indent if a function definition or declaration
is wrapped after the type.

Keep Empty Lines At The Start Of Blocks
Text Editor/Formatting/

KeepEmptyLinesAtTheStartOfBlocksBoolean

If enabled, empty lines at the start of blocks are kept.

Maximum Empty Lines To Keep
Text Editor/Formatting/

MaxEmptyLinesToKeepInteger

The maximum number of consecutive empty lines to
keep.

Namespace Indentation
Text Editor/Formatting/

NamespaceIndentationEnumeration

The indentation used for namespaces.

Penalty Break Before First Call Parameter
Text Editor/Formatting/

PenaltyBreakBeforeFirstCallParameterIntegerRange

The penalty for breaking a function call after 'call('.

Penalty Break Before First Less-Less
Text Editor/Formatting/

PenaltyBreakFirstLessLessIntegerRange

The penalty for breaking before the first less-less.

Penalty Break Comment
Text Editor/Formatting/

PenaltyBreakCommentIntegerRange

The penalty for each line break introduced inside a
comment.

Penalty Break String
Text Editor/Formatting/

PenaltyBreakStringIntegerRange

The penalty for each line break introduced inside a
string literal.

Penalty Excess Character
Text Editor/Formatting/

PenaltyExcessCharacterIntegerRange

The penalty for each character outside of the column
limit.

Penalty Return Type On Its Own Line
Text Editor/Formatting/

PenaltyReturnTypeOnItsOwnLineIntegerRange

Penalty for putting the return type of a function onto
its own line.

Pointer Alignment
Text Editor/Formatting/

PointerAlignmentEnumeration

Pointer and reference alignment style.

Space After C Style Cast
Text Editor/Formatting/

SpaceAfterCStyleCastBoolean

If enabled, a space may be inserted after C style casts.

Space Before Assignment Operators
Text Editor/Formatting/

SpaceBeforeAssignmentOperatorsBoolean

If disabled spaces will be removed before assignment
operators.

Space Before Parentheses
Text Editor/Formatting/

SpaceBeforeParensEnumeration

Defines in which cases to put a space before opening
parentheses.

Embedded Studio Reference Manual Appendices

917

Space In Empty Parentheses
Text Editor/Formatting/

SpaceInEmptyParenthesesBoolean

If enabled, spaces may be inserted into '()'.

Spaces Before Trailing Comments
Text Editor/Formatting/

SpacesBeforeTrailingCommentsIntegerRange

The number of spaces before trailing line comments.

Spaces In Angles
Text Editor/Formatting/

SpacesInAnglesBoolean

If enabled, spaces will be inserted around the angle
brackets in template argument lists.

Spaces In C-style Cast Parentheses
Text Editor/Formatting/

SpacesInCStyleCastParenthesesBoolean

If enabled, spaces may be inserted into C style casts.

Spaces In Container Literals
Text Editor/Formatting/

SpacesInContainerLiteralsBoolean

If enabled, spaces are inserted inside container literals.

Spaces In Parentheses
Text Editor/Formatting/

SpacesInParenthesesBoolean

If true, spaces will be inserted after '(' and before ')'.

Spaces In Square Brackets
Text Editor/Formatting/

SpacesInSquareBracketsBoolean

If true, spaces will be inserted after '[' and before ']'.

Standard
Text Editor/Formatting/StandardEnumeration

Format compatible with this standard

Tab Style
Text Editor/Formatting/UseTabEnumeration

The way to use hard tab characters in the resulting file.

Tab Width
Text Editor/Formatting/TabWidthIntegerRange

The number of columns used for tab stops.

International

Property Description

Default Text File Encoding
Text Editor/Default CodecEnumeration

The encoding to use if not overridden by a project
property or file is not in a known format.

Mouse

Property Description

Alt+Left Click Action
Environment/Project Explorer/Alt+Left

Click ActionEnumeration

The action the editor performs on Alt+Left Click

Embedded Studio Reference Manual Appendices

918

Alt+Middle Click Action
Environment/Project Explorer/Alt+Middle

Click ActionEnumeration

The action the editor performs on Alt+Middle Click

Alt+Right Click Action
Environment/Project Explorer/Alt+Right

Click ActionEnumeration

The action the editor performs on Alt+Right Click

Copy On Mouse Select
Text Editor/Copy On Mouse SelectBoolean

Automatically copy text to clipboard when marking a
selection with the mouse.

Ctrl+Left Click Action
Environment/Project Explorer/Ctrl+Left

Click ActionEnumeration

The action the editor performs on Ctrl+Left Click

Ctrl+Middle Click Action
Environment/Project Explorer/Ctrl+Middle

Click ActionEnumeration

The action the editor performs on Ctrl+Middle Click

Ctrl+Right Click Action
Environment/Project Explorer/Ctrl+Right

Click ActionEnumeration

The action the editor performs on Ctrl+Right Click

Middle Click Action
Environment/Project Explorer/Middle Click

ActionEnumeration

The action the editor performs on Middle Click

Mouse Wheel Adjusts Font Size
Text Editor/Mouse Wheel Adjusts Font

SizeBoolean

Enable or disable resizing of font by mouse wheel
when CTRL key pressed.

Shift+Middle Click Action
Environment/Project Explorer/Shift+Middle

Click ActionEnumeration

The action the editor performs on Shift+Middle Click

Shift+Right Click Action
Environment/Project Explorer/Shift+Right

Click ActionEnumeration

The action the editor performs on Shift+Right Click

Programmer Assistance

Property Description

ATTENTION Tag List
Text Editor/ATTENTION TagsStringList

Set the tags to display as ATTENTION comments.

Ask For Index
Text Editor/Ask For IndexBoolean

Ask to index the project if goto symbol fails in current
editor context.

Auto-Comment Text
Text Editor/Auto CommentBoolean

Enable or disable automatically swapping
commenting on source lines by typing '/' with an
active selection.

Embedded Studio Reference Manual Appendices

919

Auto-Surround Text
Text Editor/Auto SurroundBoolean

Enable or disable automatically surrounding selected
text when typing triangular brackets, quotation marks,
parentheses, brackets, or braces.

Check Spelling
Text Editor/Spell CheckingBoolean

Enable spell checking in comments.

Display Code Completion Suggestions While Typing
Text Editor/Suggest Completion While

TypingBoolean

Enable code completion as you type without needing
to use the show suggestions key (Ctrl+J).

Enable Popup Diagnostics
Text Editor/Enable Popup

DiagnosticsBoolean

Enables on-screen diagnostics in the text editor.

FIXME Tag List
Text Editor/FIXME TagsStringList

Set the tags to display as FIXME comments.

Include Preprocessor Definitions in Suggestions
Text Editor/Preprocessor Definition

SuggestionsBoolean

Include or exclude preprocessor definitions in code
completion suggestions.

Include Templates in Suggestions
Text Editor/Template SuggestionsBoolean

Include or exclude templates in code completion
suggestions.

Lint Tag List
Text Editor/LINT TagsStringList

Set the tags to display as Lint directives.

Template Characters To Match
Text Editor/Template Suggestions

CharactersIntegerRange

The number of characters to match before suggesting
a template.

Save
Property Description

Backup File History Depth
Text Editor/Backup File DepthIntegerRange

The number of backup files to keep when saving an
existing file.

Delete Trailing Space On Save
Text Editor/Delete Trailing Space On

SaveBoolean

Deletes trailing whitespace from each line when a file
is saved.

Tab Cleanup On Save
Text Editor/Cleanup Tabs On SaveEnumeration

Cleans up tabs when a file is saved.

Visual Appearance
Property Description

Font
Text Editor/FontFixedPitchFont

The font to use for text editors.

Embedded Studio Reference Manual Appendices

920

Font Smoothing Threshold
Text Editor/Antialias ThresholdIntegerRange

The minimum size for font smoothing: font sizes
smaller than this will have antialiasing turned off.

Hide Cursor When Typing
Text Editor/Hide Cursor When TypingBoolean

Hide or show the I-beam cursor when you start to type.

Highlight Cursor Line
Text Editor/Highlight Cursor LineBoolean

Enable or disable visually highlighting the cursor line.

Horizontal Scroll Bar
Text Editor/HScroll BarEnumeration

Show or hide the horizontal scroll bar.

Insert Caret Style
Text Editor/Insert Caret StyleEnumeration

How the caret is displayed with the editor in insert
mode.

Line Numbers
Text Editor/Line Number ModeEnumeration

How often line numbers are displayed in the margin.

Mate Matching Mode
Text Editor/Mate Matching ModeEnumeration

Controls when braces, brackets, and parentheses are
matched.

Overwrite Caret Style
Text Editor/Overwrite Caret

StyleEnumeration

How the caret is displayed with the editor in overwrite
mode.

Show Diagnostic Icons In Gutter
Text Editor/Diagnostic IconsBoolean

Enables display of diagnostic icons in the icon gutter.

Show Icon Gutter
Text Editor/Icon GutterBoolean

Show or hide the left-hand gutter containing
breakpoint, bookmark, and optional diagnostic icons.

Show Mini Toolbar
Text Editor/Mini ToolbarBoolean

Show the mini toolbar when selecting text with the
mouse.

Use I-beam Cursor
Text Editor/Ibeam cursorBoolean

Show an I-beam or arrow cursor in the text editor.

Vertical Scroll Bar
Text Editor/VScroll BarEnumeration

Show or hide the vertical scroll bar.

Embedded Studio Reference Manual Appendices

921

Windows Environment Options

Call Stack

Property Description

Execution Frame at Top
Environment/Call Stack/Most Recent At

TopBoolean

Controls whether the most recent call is at the top or
the bottom of the list.

Show Call Address
Environment/Call Stack/Show Call

AddressBoolean

Enables the display of the call address in the call stack.

Show Call Source Location
Environment/Call Stack/Show Call

LocationBoolean

Enables the display of the call source location in the
call stack.

Show Frame Size
Environment/Call Stack/Show Stack

UsageBoolean

Enables the display of the amount of stack used by the
call.

Show Frame Size In Bytes
Environment/Call Stack/Show Stack Usage

In BytesBoolean

Display the stack usage in bytes rather than words.

Show Parameter Names
Environment/Call Stack/Show Parameter

NamesBoolean

Enables the display of parameter names in the call
stack.

Show Parameter Types
Environment/Call Stack/Show Parameter

TypesBoolean

Enables the display of parameter types in the call stack.

Show Parameter Values
Environment/Call Stack/Show Parameter

ValuesBoolean

Enables the display of parameter values in the call
stack.

Show Stack Pointer
Environment/Call Stack/Show Stack

PointerBoolean

Enables the display of the stack pointer in the call
stack.

Show Stack Usage
Environment/Call Stack/Show Cumulative

Stack UsageBoolean

Enables the display of the amount of stack used.

Show Stack Usage In Bytes
Environment/Call Stack/Show Cumulative

Stack Usage In BytesBoolean

Display the stack usage in bytes rather than words.

Embedded Studio Reference Manual Appendices

922

Clipboard Ring
Property Description

Maximum Items Held In Ring
Environment/Clipboard Ring/Max

EntriesIntegerRange

The maximum number of items held on the clipboard
ring before they are recycled.

Preserve Contents Between Runs
Environment/Clipboard Ring/SaveBoolean

Save the clipboard ring across SEGGER Embedded
Studio runs.

Outline Window
Property Description

Group #define Directives
Windows/Outline/Group DefinesBoolean

Group consecutive #define and #undef preprocessor
directives.

Group #if Directives
Windows/Outline/Group IfsBoolean

Group lines contained betwen #if, #else, and #endif
preprocessor directives.

Group #include Directives
Windows/Outline/Group IncludesBoolean

Group consecutive #include preprocessor directives.

Group Top-Level Declarations
Windows/Outline/Group Top Level

ItemsBoolean

Group consecutive top-level variable and type
declarations.

Group Visibility
Windows/Outline/Group VisibilityBoolean

Group class members by public, protected, and private
visibility.

Hide #region Prefix
Windows/Outline/Hide Region PrefixBoolean

Hides the '#region' prefix from groups and shows only
the group name.

Refresh Outline and Preview
Windows/Outline/Preview Refresh

ModeEnumeration

How the Preview pane refreshes its contects.

Project Explorer
Property Description

Add Filename Replace Macros
Environment/Project Explorer/Filename

Replace MacrosStringList

Macros (system and global) used to replace the start of
a filename on project file addition.

Color Project Nodes
Environment/Project Explorer/Color

NodesBoolean

Show the project nodes colored for identification in
the Project Explorer.

Confirm Configuration Folder Delete
Project Explorer/Confirm Configuration

Folder DeleteBoolean

Display a confirmation prompt before deleting a
configuration folder cotaining properties.

Embedded Studio Reference Manual Appendices

923

Confirm Forget Modified Options
Project Explorer/Confirm Reject Property

ChangesBoolean

Display a confirmation prompt before forgetting
option modifications.

Context Menu Edit Options At Top
Environment/Project Explorer/Context Menu

Properties PositionBoolean

Controls where Edit Options are displayed by the
Project Explorer's context menu.

Context Menu Uses Common Folder
Environment/Project Explorer/Context Menu

Common FolderBoolean

Controls how common options are displayed by the
Project Explorer's context menu.

External Editor
Environment/Project Explorer/External

EditorFileName

The file name of the application to use as the external
text editor

Favorite Properties
Environment/Project Explorer/Favorite

PropertiesStringList

The favorite list of properties that are displayed starred
and before other properties in the Project Explorer.

Highlight Dynamic Items
Environment/Project Explorer/Show Dynamic

OverlayBoolean

Show an overlay on an item if it is populated from a
dynamic folder.

Highlight External Items
Environment/Project Explorer/Show Non-

Local OverlayBoolean

Show an overlay on an item if it is not held within the
project directory.

Output Files Folder
Environment/Project Explorer/Show Output

FilesBoolean

Show the build output files in an Output Files folder in
the project explorer.

Read-Only Data In Code
Environment/Project Explorer/Statistics

Read-Only Data HandlingBoolean

Configures whether read-only data contributes to the
Code or Data statistic.

Show Dependencies
Environment/Project Explorer/Dependencies

DisplayEnumeration

Controls how the dependencies are displayed.

Show Favorite Properties
Environment/Project Explorer/Context Menu

Show FavoritesBoolean

Controls if favorite properties are displayed by the
Project Explorer's context menu.

Show File Count on Folder
Environment/Project Explorer/Count

FilesBoolean

Show the number of files contained in a folder as a
badge in the Project Explorer.

Show Modified Options on Folder/File
Environment/Project Explorer/Show

Modified PropertiesBoolean

Show if a folder or file has modified options as a badge
in the Project Explorer.

Show Options
Environment/Project Explorer/Properties

DisplayEnumeration

Controls how the options are displayed.

Embedded Studio Reference Manual Appendices

924

Show Project Count on Solution
Environment/Project Explorer/Count

ProjectsBoolean

Show the number of projects contained in a solution
as a badge in the Project Explorer.

Show Source Control Annotation
Environment/Project Explorer/Show Source

Control AnnotationBoolean

Annotate items in the project explorer with their
source control status.

Show Statistics Rounded
Environment/Project Explorer/Statistics

FormatBoolean

Show exact or rounded sizes in the project explorer.

Source Control Status Column
Environment/Project Explorer/Show Source

Control ColumnBoolean

Show the source control status column in the project
explorer.

Starred Files Names
Environment/Project Explorer/Starred File

NamesStringList

The list of wildcard-matched file names that are
highligted with stars, to bring attention to themselves,
in the Project Explorer.

Statistics Column
Environment/Project Explorer/Statistics

DisplayBoolean

Show the code and data size columns in the Project
Explorer.

Synchronize Explorer With Editor
Environment/Project Explorer/Sync

EditorBoolean

Synchronizes the Project Explorer with the document
being edited.

Use Common Options Folder
Environment/Project Explorer/Common

Properties DisplayBoolean

Controls how common options are displayed.

Variable Window
Property Description

Show Variable Address Column
Environment/Variable Window/Show Address

ColumnBoolean

Controls whether the variable address column is
displayed.

Show Variable Size Column
Environment/Variable Window/Show Size

ColumnBoolean

Controls whether the variable size column is displayed.

Show Variable Type Column
Environment/Variable Window/Show Type

ColumnBoolean

Controls whether the variable type column is
displayed.

Windows Window
Property Description

Embedded Studio Reference Manual Appendices

925

Buffer Grouping
Environment/Windows/GroupingEnumeration

How the files are grouped or listed in the Windows
window.

Show File Path as Tooltip
Environment/Windows/Show Filename

TooltipsBoolean

Show the full file name as a tooltip when hovering
over files in the Windows window.

Show Line Count and File Size
Environment/Windows/Show SizesBoolean

Show the number of lines and size of each file in the
windows list.

Embedded Studio Reference Manual Appendices

926

General Build Options

Build

Property Description

Always Rebuild
build_always_rebuildBoolean

Specifies whether or not to always rebuild the project/
folder/file.

Batch Build Configurations
batch_build_configurationsStringList

The set of configurations to batch build.

Build Quietly
build_quietlyBoolean

Suppress the display of startup banners and
information messages.

Enable Unused Symbol Removal
build_remove_unused_symbolsBoolean

Enable the removal of unused symbols from the
executable.

Exclude From Build
build_exclude_from_buildBoolean

Specifies whether or not to exclude the project/folder/
file from the build.

Include Debug Information
build_debug_informationBoolean

Specifies whether symbolic debug information is
generated.

Intermediate Directory
build_intermediate_directoryDirPath

Specifies a relative path to the intermediate file
directory. This property will have macro expansion
applied to it. The macro $(IntDir) is set to this value.

Memory Map File
linker_memory_map_fileProjFileName

The name of the file containing the memory map
description.

Memory Map Macros
linker_memory_map_macrosStringList

Macro values to substitue in memory map nodes. Each
macro is defined as name=value and are seperated by
;.

Output Directory
build_output_directoryDirPath

Specifies a relative path to the output file directory.
This property will have macro expansion applied
to it. The macro $(OutDir) is set to this value. The
macro $(RootRelativeOutDir) is set relative to the Root
Output Directory if specified.

Project Can Build In Parallel
project_can_build_in_parallelEnumeration

Specifies that dependent projects can be built in
parallel. Default is No for Staging and Combining
project types, Yes for all other project types.

Project Dependencies
project_dependenciesStringList

Specifies the projects the current project depends
upon.

Project Directory
project_directoryString

Path of the project directory relative to the directory
containing the project file. The macro $(ProjectDir) is
set to the absolute path of this property.

Embedded Studio Reference Manual Appendices

927

Project Macros
macrosStringList

Specifies macro values which are expanded in
project properties and for file names in Common
configuration only. Each macro is defined as
name=value and are seperated by ;.

Project Type
project_typeEnumeration

Specifies the type of project to build. The options are
Executable, Library, Object file, Staging, Combining,
Externally Built Executable, Externally Built Library.

Property Groups File
property_groups_file_pathProjFileName

The file containing the property groups for this project.
This is applicable to Executable and Externally Built
Executable project types only.

Root Output Directory
build_root_output_directoryDirPath

Allows a common root output directory to be specified
that can be referenced using the $(RootOutDir) macro.

Suppress Warnings
build_suppress_warningsBoolean

Don't report warnings.

Tool Chain Directory
build_toolchain_directoryDirPath

Specify the root of the toolchain directory. This
property will have macro expansion applied to it. The
macro $(ToolChainDir) is set to this value.

Treat Warnings as Errors
build_treat_warnings_as_errorsBoolean

Treat all warnings as errors.

Combining

Property Description

Combine Command
combine_commandUnknown

The command to execute. This property will have
macro expansion applied to it with the macro
$(CombiningOutputFilePath) set to the output
filepath of the combine command and the macro
$(CombiningRelInputPaths) is set to the (project
relative) names of all of the files in the project.

Combine Command Working Directory
combine_command_wdString

The working directory in which the combine command
is run. This property will have macro expansion applied
to it.

Output File Path
combine_output_filepathString

The output file path the stage command will create.
This property will have macro expansion applied to it.

Set To Read-only
combine_set_readonlyEnumeration

Set the output file to read only or read/write.

External Build

Property Description

Embedded Studio Reference Manual Appendices

928

Archive Command
external_archive_commandUnknown

The command line to archive object files. This property
will have macro expansion applied to it with the
additional macros:

$(TargetPath) contains the full file name of the
Library File Name property
$(RelTargePath) contains the project directory
relative file name of the Object File Name
property.
$(Objects) a space seperated list of files to archive,
generated from the source files of the project OR.
$(ObjectsFilePath) contains the full file name of
the file containing the list of files to link

Assemble Command
external_assemble_commandUnknown

The command line to assemble an assembly source
file. This property will have macro expansion applied
to it with the additional macros:

$(TargetPath) contains the full file name of the
Object File Name property.
$(RelTargePath) contains the project directory
relative file name of the Object File Name
property.
$(AsmOptions) contains a space seperated list
of options as set in the Additional Assembler
Options property.
$(DependencyPath) contains the filename of
the .d file that is required to be output by the
compilation for dependency support.
$(Defines) contains a space seperated list
of preprocessor definitions as set in the
Preprocessor Definitions propety.
$(Includes) contains a space seperated list of
user include directories as set in the User Include
Directories property.

Build Command
external_build_commandUnknown

The command line to build the executable e.g. make.
This property will have macro expansion applied to it.

Embedded Studio Reference Manual Appendices

929

C Compile Command
external_c_compile_commandUnknown

The command line to compile a C source file. This
property will have macro expansion applied to it with
the additional macros:

$(TargetPath) contains the full file name of the
Object File Name property.
$(RelTargePath) contains the project directory
relative file name of the Object File Name
property.
$(COptions) contains a space seperated list of
options as set in the C Additional C/C++ Compiler
Options property.
$(COnlyOptions) contains a space seperated list
of options as set in the C Additional C Compiler
Only Options property.
$(DependencyPath) contains the filename of
the .d file that is required to be output by the
compilation for dependency support.
$(Defines) contains a space seperated list
of preprocessor definitions as set in the
Preprocessor Definitions propety.
$(Includes) contains a space seperated list of
user include directories as set in the User Include
Directories property.

C++ Compile Command
external_cpp_compile_commandUnknown

The command line to compile a C++ source file. This
property will have macro expansion applied to it with
the additional macros:

$(TargetPath) contains the full file name of the
Object File Name property.
$(RelTargePath) contains the project directory
relative file name of the Object File Name
property.
$(COptions) contains a space seperated list of
options as set in the C Additional C/C++ Compiler
Options property.
$(CppOnlyOptions) contains a space seperated
list of options as set in the C Additional C++
Compiler Only Options property.
$(DependencyPath) contains the filename of
the .d file that is required to be output by the
compilation for dependency support.
$(Defines) contains a space seperated list
of preprocessor definitions as set in the
Preprocessor Definitions propety
$(Includes) contains a space seperated list of
user include directories as set in the User Include
Directories property.

Embedded Studio Reference Manual Appendices

930

Clean Command
external_clean_commandUnknown

The command line to clean the executable e.g. make
clean. This property will have macro expansion applied
to it.

Link Command
external_link_commandUnknown

The command line to link an executable. This property
will have macro expansion applied to it with the
additional macros:

$(TargetPath) contains the full file name of the
Executable File Name property.
$(RelTargePath) contains the project directory
relative file name of the Executable File Name
property.
$(LinkOptions) contains a space seperated list of
options as set in the Additional Linker Options
property.
$(Objects) a space seperated list of files to link,
generated from the source files of the project and
the outputs of any dependent projects OR.
$(ObjectsFilePath) contains the full file name of
the file containing the list of files to link

Objects File
external_objects_file_nameUnknown

The name of the file containing the list of files to
archive or link, generated from the source files of
the project.This property will have macro expansion
applied to it. The macro $(ObjectsFilePath) is set to this
value.

File

Property Description

File Encoding
file_codecEnumeration

Specifies the encoding to use when reading and
writing the file.

File Name
file_nameString

The name of the file. This property will have global
macro expansion applied to it. The following macros
are set based on the value: $(InputDir) relative
directory of file, $(InputName) file name without
directory or extension, $(InputFileName) file name,
$(InputExt) file name extension, $(InputPath) absolute
path to the file name, $(RelInputPath) relative path
from project directory to the file name.

File Open Action
file_open_withEnumeration

Specifies how to open the file when it is double
clicked.

File Type
file_typeEnumeration

The type of file. Default setting uses the file extension
to determine file type.

Embedded Studio Reference Manual Appendices

931

Flag
file_flagEnumeration

Flag which you can use to draw attention to important
files in your project.

Folder
Property Description

Dynamic Folder Directory
pathDirPath

Dynamic folder directory specification.

Dynamic Folder Exclude
excludeStringList

Dynamic folder exclude specification - ; seperated
wildcards.

Dynamic Folder Filter
filterString

Dynamic folder filter specification - ; seperated
wildcards.

Dynamic Folder Recurse
recurseBoolean

Dynamic folder recurse into subdirectories.

Unity Build Exclude Filter
unity_build_exclude_filterString

The filter specification to exclude from the unity build
- ; seperated wildcards.

Unity Build File Name
unity_build_file_nameFileName

The file name created that #includes all files in the
folder for the unity build.

General
Property Description

Inherited Configurations
inherited_configurationsStringList

The list of configurations that are inherited by this
configuration.

Library
Property Description

Library File Name
build_output_file_nameFileName

Specifies a name to override the default library file
name.

Use Indirect File
arm_archiver_indirect_fileBoolean

Create indirect file for input files.

Package
Property Description

Package Dependencies
package_dependenciesStringList

Specifies the packages the current project depends
upon.

Embedded Studio Reference Manual Appendices

932

Project

Property Description

Flag
project_flagEnumeration

Flag which you can use to draw attention to important
projects in your solution.

Solution

Property Description

Flag
solution_flagEnumeration

Flag which you can use to draw attention to important
projects in your solution.

Source Code

Property Description

Inhibit Source Indexing
project_inhibit_indexingBoolean

Disable source indexing for projects that would
normally be indexed (executable and library projects).

Staging

Property Description

Output File Path
stage_output_filepathString

The output file path the stage command will create.
This property will have macro expansion applied to it.

Set To Read-only
stage_set_readonlyEnumeration

Set the output file permissions to read only or read/
write.

Stage Command
stage_commandUnknown

The command to execute. This property will have
macro expansion applied to it with the additional
$(StageOutputFilePath) macro set to the output
filepath of the stage command.

Stage Command Working Directory
stage_command_wdString

The working directory in which the stage command is
run. This property will have macro expansion applied
to it.

Stage Post-Build Command
stage_post_build_commandUnknown

The command to execute after staging commands
have executed. This property will have macro
expansion applied to it.

Stage Post-Build Command Working Directory
stage_post_build_command_wdString

The working directory where the post build command
runs. This property will have macro expansion applied
to it.

Embedded Studio Reference Manual Appendices

933

Compilation Options

Assembler

Property Description

Additional Assembler Options
asm_additional_optionsStringList

Enables additional options to be supplied to the
assembler. This property will have macro expansion
applied to it.

Additional Assembler Options From File
asm_additional_options_from_fileProjFileName

Enables additional options to be supplied to the
assembler from a file. This property will have macro
expansion applied to it.

Assembler
arm_assembler_variantEnumeration

Specifies which assembler to use.

Code Generation

Property Description

ARM Advanced SIMD Type
arm_advanced_SIMD_typeEnumeration

Specifies the Advanced SIMD type to generate code
for. The options are:

NEON - Cortex-A based processors

Embedded Studio Reference Manual Appendices

934

ARM Architecture
arm_architectureEnumeration

Specifies the version of the instruction set to generate
code for. The options are:

v4T - ARM7TDMI and ARM920T processors
v5TE - ARM9E, Feroceon and XScale processors
v6 - ARM11 processors
v6M - Cortex-M0 and Cortex-M1 processors
v7M - Cortex-M3 processors
v7EM - Cortex-M4 and Cortex-M7 processors
v7R - Cortex-R processors
v7A - Cortex-A processors
v8M_Baseline
v8M_Mainline

The corresponding preprocessor definitions:

__ARM_ARCH_4T__
__ARM_ARCH_5TE__
__ARM_ARCH_6__
__ARM_ARCH_6M__
__ARM_ARCH_7M__
__ARM_ARCH_7EM__
__ARM_ARCH_7R__
__ARM_ARCH_7A__
__ARM_ARCH_8M_BASELINE__
__ARM_ARCH_8M_MAINLINE__

are defined.

ARM Core Type
arm_core_typeEnumeration

Specifies the core to generate code for. The options
are:

ARM7TDMI, ARM7TDMI-S, ARM720T
ARM920T, ARM946E-S, ARM966E-S, ARM968E-S,
ARM926EJ-S
ARM1136J-S, ARM1136JF-S, ARM1176JZ-S,
ARM1176JZF-S
Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-
M3, Cortex-M4, Cortex-M7, v8M_Baseline,
v8M_Mainline
Cortex-R4, Cortex-R4F, Cortex-R5
Cortex-A5, Cortex-A7, Cortex-A8, Cortex-A9
XScale
None

If this property is set to None then the architecture
property is used

Embedded Studio Reference Manual Appendices

935

ARM FP ABI Type
arm_fp_abiEnumeration

Specifies the FP ABI type to generate code for. The
options are:

Soft generate calls to the C library to implement
floating point operations.
SoftFP generate VFP code to implement floating
point operations.
Hard generate VFP code to implement floating
point operations and use VFP registers to pass
floating point parameters on function calls.
None will not specify the FP ABI or the FPU.

ARM FPU Type
arm_fpu_typeEnumeration

Specifies the FPU type to generate code for. The
options are:

VFP - ARM9/ARM11 based processors
VFP9 - the same as VFP
VFPv3-D32 - Cortex-A/Cortex-R based processors
VFPv3-D16 - Cortex-A/Cortex-R based processors
VFPv4-D32 - Cortex-A/Cortex-R based processors
VFPv4-D16 - Cortex-A/Cortex-R based processors
FPv4-SP-D16 - Cortex-M4 processors
FPv5-SP-D16 - Cortex-M7 processors
FPv5-D16 - Cortex-M7 processors

The corresponding preprocessor definitions:

__ARM_ARCH_VFP__
__ARM_ARCH_VFP3_D32__
__ARM_ARCH_VFP3_D16__
__ARM_ARCH_VFP4_D32__
__ARM_ARCH_VFP4_D16__
__ARM_ARCH_FPV4_SP_D16__
__ARM_ARCH_FPV5_SP_D16__
__ARM_ARCH_FPV5_D16__

are defined.

ARM/Thumb Interworking
arm_interworkEnumeration

Specifies whether ARM/Thumb interworking code
should be generated. Setting this property to No
may result in smaller code sizes when compiling for
architecture v4T.

Byte Order
arm_endianEnumeration

Specify the byte order of the target processor.

CM0/CM0+/CM1 Has Small Multiplier
arm_cm0_has_small_multiplierBoolean

The CM0/CM0+/CM1 core has the small multiplier.

Debugging Level
gcc_debugging_levelEnumeration

Specifies the level of debugging information to
generate.

Dwarf Version
gcc_dwarf_versionEnumeration

Specifies the version of Dwarf debugging information
to generate.

Embedded Studio Reference Manual Appendices

936

Emit Assembler CFI
gcc_emit_assembler_cfiBoolean

Emit DWARF 2 unwind info using GAS .cfi_* directives
rather than a compiler generated .eh_frame section.

Enable All Warnings
gcc_enable_all_warningsBoolean

Enables all the warnings about constructions that
some users consider questionable, and that are easy
to avoid (or modify to prevent the warning), even in
conjunction with macros.

Enable Exception Support
cpp_enable_exceptionsBoolean

Specifies whether exception support is enabled for C+
+ programs.

Enable RTTI Support
cpp_enable_rttiBoolean

Specifies whether RTTI support is enabled for C++
programs.

Enumeration Size
gcc_short_enumEnumeration

Select between minimal container sized enumerations
and int sized enumerations.

Instruction Set
arm_instruction_setEnumeration

Specifies the instruction set to generate code for.

Instrument Functions
arm_instrument_functionsBoolean

Specifies whether instrumentation calls are generated
for function entry and exit.

Long Calls
arm_long_callsBoolean

Specifies whether function calls are made using
absolute addresses.

Merge Globals [clang]
clang_merge_globalsBoolean

Select whether global declarations are merged. This
may reduce code size and increase execution speed
for some applications. However, if functions are not
used in an application and are eliminated by the
linker, merged globals may increase the data size
requirement of an application.

No COMMON
gcc_no_commonBoolean

Don't put globals in the common section

Omit Frame Pointer
gcc_omit_frame_pointerBoolean

Specifies whether a frame pointer register is omitted if
not required.

Optimization Level
gcc_optimization_levelEnumeration

Specifies the optimization level to use.

Treat 'double' as 'float'
double_is_floatBoolean

Forces the compiler to make 'double' equivalent to
'float'.

Use Builtins
arm_use_builtinsBoolean

Use built-in library functions e.g. scanf

V7A/V7R Has Integer Divide Instructions
arm_v7_has_divide_instructionsBoolean

The V7A/V7R architecture has integer divide
instructions in both ARM and Thumb instruction sets.

Wide Character Size
gcc_wchar_sizeEnumeration

Select between standard 32-bit or shorter 16-bit size
for wide characters and wchar_t.

Embedded Studio Reference Manual Appendices

937

Compiler

Property Description

Additional C Compiler Only Options
c_only_additional_optionsStringList

Enables additional options to be supplied to the
C compiler only. This property will have macro
expansion applied to it.

Additional C Compiler Only Options From File
c_only_additional_options_from_fileProjFileName

Enables additional options to be supplied to the C
compiler only from a file. This property will have macro
expansion applied to it.

Additional C++ Compiler Only Options
cpp_only_additional_optionsStringList

Enables additional options to be supplied to the
C++ compiler only. This property will have macro
expansion applied to it.

Additional C++ Compiler Only Options From File
cpp_only_additional_options_from_fileProjFileName

Enables additional options to be supplied to the C++
compiler only from a file. This property will have macro
expansion applied to it.

Additional C/C++ Compiler Options
c_additional_optionsStringList

Enables additional options to be supplied to the C/C+
+ compiler. This property will have macro expansion
applied to it.

Additional C/C++ Compiler Options From File
c_additional_options_from_fileProjFileName

Enables additional options to be supplied to the C/C
++ compiler from a file. This property will have macro
expansion applied to it.

C Language Standard
gcc_c_language_standardEnumeration

Specifies the language standard to use when
compiling C files.

C++ Language Standard
gcc_cplusplus_language_standardEnumeration

Specifies the language standard to use when
compiling C files.

Compiler
arm_compiler_variantEnumeration

Specifies which compiler to use.

Enforce ANSI Checking
c_enforce_ansi_checkingBoolean

Perform additional checks for ensure strict
conformance to the selected ISO (ANSI) C or C++
standard.

Keep Assembly Source
arm_keep_assemblyBoolean

Specifies whether assembly code generated by the
compiler is kept.

Keep Preprocessor Output
arm_keep_preprocessor_outputBoolean

Specifies whether preprocessor output generated by
the compiler is kept.

Object File Name
build_object_file_nameFileName

Specifies a name to override the default object file
name.

Supply Absolute File Path
arm_supply_absolute_file_pathBoolean

Specifies whether absolute file paths are supplied to
the compiler.

Embedded Studio Reference Manual Appendices

938

Preprocessor

Property Description

Ignore Includes
c_ignore_includesBoolean

Ignore the include directories properties.

Preprocessor Definitions
c_preprocessor_definitionsStringList

Specifies one or more preprocessor definitions. This
property will have macro expansion applied to it.

Preprocessor Undefinitions
c_preprocessor_undefinitionsStringList

Specifies one or more preprocessor undefinitions. This
property will have macro expansion applied to it.

System Include Directories
c_system_include_directoriesStringList

Specifies the system include path. This property will
have macro expansion applied to it.

Undefine All Preprocessor Definitions
c_undefine_all_preprocessor_definitionsBoolean

Does not define any standard preprocessor definitions.

User Include Directories
c_user_include_directoriesStringList

Specifies the user include path. This property will have
macro expansion applied to it.

Section

Property Description

Code Section Name
default_code_sectionString

Specifies the default name to use for the program code
section.

Constant Section Name
default_const_sectionString

Specifies the default name to use for the read-only
constant section.

Data Section Name
default_data_sectionString

Specifies the default name to use for the initialized,
writable data section.

ISR Section Name
default_isr_sectionString

Specifies the default name to use for the ISR code.

Vector Section Name
default_vector_sectionString

Specifies the default name to use for the interrupt
vector section.

Zeroed Section Name
default_zeroed_sectionString

Specifies the default name to use for the zero-
initialized, writable data section.

User Build Step

Property Description

Post-Compile Command
compile_post_build_commandUnknown

A command to run after the compile command has
completed. This property will have macro expansion
applied to it with the additional $(TargetPath) macro
set to the output filepath of the compiler command.

Embedded Studio Reference Manual Appendices

939

Post-Compile Working Directory
compile_post_build_command_wdDirPath

The working directory where the post-compile
command is run. This property will have macro
expansion applied to it.

Pre-Compile Command
compile_pre_build_commandUnknown

A command to run before the compile command. This
property will have macro expansion applied to it.

Pre-Compile Command Output File Path
compile_pre_build_command_output_file_nameString

The pre-compile generated file name. This property
will have macro expansion applied to it.

Pre-Compile Working Directory
compile_pre_build_command_wdDirPath

The working directory where the pre-compile
command is run. This property will have macro
expansion applied to it.

Embedded Studio Reference Manual Appendices

940

Debugging Options

Debugger

Property Description

Command Arguments
debug_command_argumentsString

The command arguments passed to the executable.
This property will have macro expansion applied to it.

DABORT Handler Name
dabortHandler_nameString

The name of the dabort handler symbol. Used for
backtracing out of exception handlers.

Debug Dependent Projects
debug_dependent_projectsBoolean

Debugger will debug dependent projects.

Debug Symbols File
external_debug_symbols_file_nameProjFileName

The name of the debug symbols file. This property will
have macro expansion applied to it. If it is not defined
then the main load file is used.

Debug Symbols Load Address
external_debug_symbols_load_addressString

The (code) address to be added to the debug symbol
(code) addresses.

Default debugIO implementation
arm_debugIO_ImplementationEnumeration

The default debugIO implementation.

Entry Point Symbol
debug_entry_point_symbolString

Debugger will start execution at symbol if defined.

FIQ Handler Name
fiqHandler_nameString

The name of the fiq handler symbol. Used for
backtracing out of exception handlers.

IRQ Handler Name
irqHandler_nameString

The name of the irq handler symbol. Used for
backtracing out of exception handlers.

Ignore .debug_aranges Section
debug_ignore_debug_arangesBoolean

The debugger will not use the .debug_aranges section.

Ignore .debug_frame Section
debug_ignore_debug_frameBoolean

The debugger will not use the .debug_frame section.

Initial Breakpoint Is Set
debug_initial_breakpoint_set_optionEnumeration

Specify when the initial breakpoint should be set

Leave Target Running
debug_leave_target_runningBoolean

Debugger will leave the target running on debug stop.

Load Offset
debug_load_file_offsetString

The offset to add to the load address of the load
file.This offset is added to any absolute relocations
of symbols (whose address is less than Load Offset
Symbol Limit) if the load file contains relocation
sections.

Load Offset Symbol Limit
debug_load_file_limitString

If set apply the Load Offset logic to only those symbols
that have addresses less than the specified limit.

Embedded Studio Reference Manual Appendices

941

PABORT Handler Name
pabortHandler_nameString

The name of the pabort handler symbol. Used for
backtracing out of exception handlers.

Register Definition File
debug_register_definition_fileProjFileName

The name of the file containing register definitions.

Reserved Member Name
reservedMember_nameString

The struct reserved member name. Struct members
that contain the (case insensitive) string will not be
displayed.

Run To
debug_initial_breakpointString

An initial breakpoint to set if no other breakpoints exist

SWI Handler Name
swiHandler_nameString

The name of the swi handler symbol. Used for
backtracing out of exception handlers.

Start Address
external_start_addressString

The address to start the externally built executable
running from.

Start From Entry Point Symbol
debug_start_from_entry_point_symbolBoolean

If yes the debugger will start execution from the entry
point symbol.If no the debugger will start execution
from the core specific location.

Startup Completion Point
debug_startup_completion_pointString

Specifies the point in the program where startup is
complete. Software breakpoints and debugIO will be
enabled after this point has been reached.

Target Connection
debug_target_connectionEnumeration

Specifies the target to connect to for debugging
actions.

Thread Maximum
debug_threads_maxIntegerRange

The maximum number of threads to display.

Threads Script File
debug_threads_scriptProjFileName

The threads script used by the debugger.

Type Interpretation File
debug_type_fileFileName

Specifies the type interpretation file to use.

UNDEF handler name
undefHandler_nameString

The name of the undef handler symbol. Used for
backtracing out of exception handlers.

Working Directory
debug_working_directoryDirPath

The working directory for a debug session. This
property will have macro expansion applied to it.

J-Link

Property Description

Additional J-Link Options
JLinkExecuteCommandStringList

Specify additional J-Link options to allow enabling or
disabling advanced features and fine tuning.
For more information see J-Link Command Strings

Enable Adaptive Clocking
adaptiveEnumeration

Adaptive clocking is enabled.

https://wiki.segger.com/J-Link_Command_Strings

Embedded Studio Reference Manual Appendices

942

Exclude Flash Cache Range
JLinkExcludeFlashCacheRangeString

Define a memory range that should not be cached by
J-Link.
By default all areas that J-Link knows to be Flash
memory are cached.
This means that it is assumed that the contents of
these areas do not change during program execution.
If this assumption does not hold true, typically because
the target program modifies the flash content for data
storage, then the affected area should be excluded
from the cache.
This may slightly reduce the debugging speed.
Syntax: either 'start_address-end_address' or
'address,size'. For example: 0x08000000,0x1000.

Host Connection
ConnectionEnumeration

Defines how to connect the host to the J-Link:

"USB": Connect to J-Link via USB
"USB S/N": Connect to J-Link with specified serial
number via USB e.g. USB 174300001
"IP S/N": Connect to J-Link with specified serial
number via IP e.g. IP 174300001
"IP n.n.n.n": Connect to J-Link with specified IP
address e.g. IP 192.168.20.20

JTAG Instruction Register Size Before Target
arm_linker_jtag_pad_post_irIntegerRange

Specifies the number of bits in the instruction
register before the target (as seen from TDI), which
is the number of bits to pad the JTAG instruction
register with the BYPASS instruction after the target
instruction.

JTAG Number Of Devices Before Target
arm_linker_jtag_pad_post_drIntegerRange

Specifies the number of devices before the target (as
seen from TDI), which is the number of bits to pad the
JTAG data register.

Log File
JLinkLogFileNameFileName

The file to output the J-Link log to.

Script File
JLinkScriptFileNameFileName

The file path of the optional J-Link script file to use.

Show Log Messages In Output Window
showLogEnumeration

Display the J-Link log messages to the output window.

Speed
speedIntegerRange

The required JTAG/SWD clock frequency in kHz (0 to
auto-detect best possible).

Supply Power
supplyPowerEnumeration

The J-Link supplies power to the target.

Target Interface Type
arm_target_interface_typeEnumeration

Specifies the type of interface the target has. The
options are:

JTAG - Use JTAG interface
SWD - Use SWD interface

Embedded Studio Reference Manual Appendices

943

Loader

Property Description

Additional Load File Address[0]
debug_additional_load_file_addressString

The address to load the additional load file.

Additional Load File Address[1]
debug_additional_load_file_address1String

The address to load the additional load file.

Additional Load File Address[2]
debug_additional_load_file_address2String

The address to load the additional load file.

Additional Load File Address[3]
debug_additional_load_file_address3String

The address to load the additional load file.

Additional Load File Type[0]
debug_additional_load_file_typeEnumeration

The file type of the additional load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

Additional Load File Type[1]
debug_additional_load_file_type1Enumeration

The file type of the additional load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

Additional Load File Type[2]
debug_additional_load_file_type2Enumeration

The file type of the additional load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

Additional Load File Type[3]
debug_additional_load_file_type3Enumeration

The file type of the additional load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

Additional Load File[0]
debug_additional_load_fileProjFileName

Additional file to load on debug load. This property will
have macro expansion applied to it.

Additional Load File[1]
debug_additional_load_file1ProjFileName

Additional file to load on debug load. This property will
have macro expansion applied to it.

Additional Load File[2]
debug_additional_load_file2ProjFileName

Additional file to load on debug load. This property will
have macro expansion applied to it.

Additional Load File[3]
debug_additional_load_file3ProjFileName

Additional file to load on debug load. This property will
have macro expansion applied to it.

Load ELF Sections
debug_load_sectionsEnumeration

The debugger will load ELF sections rather than ELF
programs.

Load File
external_build_file_nameProjFileName

The name of the main load file. This property will have
macro expansion applied to it. If it is not defined then
the output filepath of the linker command is used.

Load File Address
external_load_addressString

The address to download the main load file to.

Load File Type
external_load_file_typeEnumeration

The file type of the main load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

No Load Sections
target_loader_no_load_sectionsStringList

Names of (loadable) sections not to load.

Embedded Studio Reference Manual Appendices

944

Simulator
Property Description

Memory Simulation Filename
arm_simulator_memory_simulation_filenameProjFileName

Specifies the dll that simulates the memory system.
This property will have macro expansion applied to it.

Memory Simulation Parameter
arm_simulator_memory_simulation_parameterString

Parameter passed to the memory simulation.The
format of this is specific to the memory simulation.
The default memory simulation takes a list of RX|RWX
'hex start address', 'hex size in bytes', 'default hex
word value' for example RX 00000000, 10000000,
FFFFFFFF;RWX 10000000, 10000000, CDCDCDCD

Memory Simulation Parameter Macros
arm_simulator_memory_simulation_parameter_macrosStringList

Macros to apply to the parameter passed to the
memory simulation on creation.

Stop On Memory Error
arm_simulator_stop_on_read_writeEnumeration

Specifies the simulator behaviour when a memory
error occurs.

Trace Buffer Size
arm_simulator_num_trace_entriesInteger

The number of trace entries to store.

Target Script
Property Description

Attach Script
target_attach_scriptJavaScript

The script that is executed when the target is attached
to.

Connect Script
target_connect_scriptJavaScript

The script that is executed when the target is
connected to.

Debug Begin Script
target_debug_begin_scriptJavaScript

The script that is executed when the debugger begins
a debug session.

Debug End Script
target_debug_end_scriptJavaScript

The script that is executed when the debugger ends a
debug session.

Disconnect Script
target_disconnect_scriptJavaScript

The script that is executed when the target is
disconnected from.

Reset Script
target_reset_scriptJavaScript

The script that is executed when the target is reset.

Target Script File
target_script_fileFileName

The target script file, the contents of this file are
prepended to script project properties before they are
executed.

Target Trace
Property Description

Embedded Studio Reference Manual Appendices

945

ITM Stimulus Ports Enable
arm_target_itm_stimulus_port_enableIntegerHex

Specifies the ITM Stimulus ports to enable.

ITM Stimulus Ports Privilege
arm_target_itm_stimulus_port_privilegeIntegerHex

Specifies the ITM Stimulus ports to enable.

ITM Timestamping
arm_target_itm_timestamping_enableEnumeration

Specifies ITM timestamping. The options are:

Disable - disable timestamping
Local - use the local timestamp clock
Global - use the global timestamp clock

ITM/DWT Data Trace PC
arm_target_dwt_data_trace_PCBoolean

Specifies whether to trace the PC on data trace.

ITM/DWT PC Sampling
arm_target_dwt_PC_sampling_enableEnumeration

Specifies the DWT PC sampling rate.

ITM/DWT Trace Exceptions
arm_target_dwt_trace_exceptionsBoolean

Specifies whether to trace exception entry and return.

MTB RAM Address
arm_target_mtb_ram_addressIntegerHex

Specifies the MTB RAM Address - note that this must
be aligned to the MTB RAM size.

MTB RAM Size
arm_target_mtb_ram_sizeEnumeration

Specifies the MTB RAM Size

SWO Baud Rate
arm_target_trace_SWO_speedIntegerRange

The baud rate of the SWO.

Trace Clock Speed
arm_target_trace_clock_speedIntegerRange

The speed of the trace clock. This is usually the same as
the CPU clock and is used to program the prescaler for
the SWO

Trace Initialize Script
target_trace_initialize_scriptJavaScript

The script that is executed to initialize the target
trace hardware. When executed this script has the
macro $(TraceInterfaceType) expanded with value
of the Trace Interface Type property, typically it is
EnableTrace("$(TraceInterfaceType)").

Trace Interface Type
arm_target_trace_interface_typeEnumeration

Specifies the type of trace interface the target has. The
options are:

SWO - Use asynchronous SWO trace interface.
TracePort - Use synchronous parallel trace
interface.
ETB - Use on-chip embedded trace buffer.
MTB - Use on-chip MTB - Cortex-M0+ only.
PC Sampling - sample the PC.
None

Embedded Studio Reference Manual Appendices

946

Trace Port Size
arm_target_trace_port_sizeEnumeration

Specifies the trace port size the target has. The options
are:

1-bit
2-bit
4-bit
8-bit
16-bit
24-bit
32-bit

Embedded Studio Reference Manual Appendices

947

Executable Project Options

Library

Property Description

Exclude Default Library Helper Functions
link_use_multi_threaded_librariesBoolean

Specifies whether to exclude default library helper
functions.

Include Standard Libraries
link_include_standard_librariesBoolean

Specifies whether the standard libraries should be
linked into your application.

Library Instruction Set
arm_library_instruction_setEnumeration

Specifies the instruction set variant of the libraries to
link with.

Library Optimization
arm_library_optimizationEnumeration

Specifies whether to link with libraries optimized for
speed or size.

Standard Libraries Directory
link_standard_libraries_directoryString

Specifies where to find the standard libraries

Use GCC Libraries
arm_use_gcc_librariesBoolean

Use GCC exception and RTTI libraries.

Linker

Property Description

Additional Input Files
linker_additional_filesStringList

Enables additional object and library files to be
supplied to the linker.

Additional Linker Options
linker_additional_optionsStringList

Enables additional options to be supplied to the linker.

Additional Linker Options From File
linker_additional_options_from_fileProjFileName

Enables additional options to be supplied to the linker
from a file.

Additional Output File Gap Fill Value
arm_linker_additional_output_file_gap_fillIntegerHex

The value to fill gaps between sections in additional
output file.

Additional Output Format
linker_output_formatEnumeration

The format used when creating an additional linked
output file.The options are:

None do not create an additional output file.
bin create a binary file.
srec create a Motorola S-Record file.
hex create an Intel Hex file.

Check For Memory Segment Overflow
arm_library_check_memory_segment_overflowBoolean

Specifies whether the linker should check whether
program sections fit in their memory segments.

Embedded Studio Reference Manual Appendices

948

DebugIO Implementation
arm_link_debugio_typeEnumeration

Specifies which DebugIO mechanism to link in.
Options are Breakpoint (hardware breakpoint
instruction and memory locations are used, not not
available on v4t architecture), DCC (ARM debug
communication channel is used), and Memory Poll
(memory locations are polled).

Default Fill Pattern
arm_linker_script_generator_default_fill_patternString

Specifies the default pattern used to fill unspecified
regions of memory in a generated linker script. This
pattern maybe overidden by the fill attribute of a
program section in the section placement file.

Emit Relocations
arm_linker_emit_relocationsBoolean

Output relocation information into the executable.

Entry Point
gcc_entry_pointString

Specifies the entry point of the program.

Generate Map File
linker_map_fileBoolean

Specifies whether to generate a linkage map file.

Keep Linker Script File
keep_linker_script_fileBoolean

Keep the generated linker script file.

Keep Symbols
linker_keep_symbolsStringList

Specifies the symbols that should be kept by the linker
even if they are not reachable.

Linker Script File
link_linker_script_fileProjFileName

The name of the manual linker script file.

Linker Symbol Definitions
link_symbol_definitionsStringList

Specifies one or more linker symbol definitions.

Section Placement File
linker_section_placement_fileProjFileName

The name of the file containing section placement
description.

Section Placement Macros
linker_section_placement_macrosStringList

Macro values to substitue in section placement nodes -
MACRO1=value1;MACRO2=value2.

Section Placement Segments
linker_section_placements_segmentsStringList

The start and size of named segments in the section
placement file, these are used when no memory
map file is available.Each segment is specified by
NAME RWX HEXSTART HEXSIZE for example FLASH RX
0x08000000 0x00010000

Strip Debug Information
linker_strip_debug_informationBoolean

Specifies whether debug information should be
stripped from the linked image.

Strip Symbols
gcc_strip_symbolsBoolean

Specifies whether symbols should be stripped.

Suppress Warning on Mismatch
arm_linker_no_warn_on_mismatchBoolean

No warning on mismatched object files/libraries.

Treat Linker Warnings as Errors
arm_linker_treat_warnings_as_errorsBoolean

Treat linker warnings as errors.

Embedded Studio Reference Manual Appendices

949

Use Indirect File
arm_linker_indirect_fileBoolean

Create indirect file for input files.

Use Manual Linker Script
link_use_linker_script_fileBoolean

Specifies whether to use a manual linker script.

Printf/Scanf

Property Description

Printf Floating Point Supported
linker_printf_fp_enabledBoolean

Are floating point numbers supported by the printf
function group.

Printf Integer Support
linker_printf_fmt_levelEnumeration

The largest integer type supported by the printf
function group.

Printf Width/Precision Supported
linker_printf_width_precision_supportedBoolean

Enables support for width and precision specification
in the printf function group.

Scanf Classes Supported
linker_scanf_character_group_matching_enabledBoolean

Enables support for %[...] and %[^...] character class
matching in the scanf functions.

Scanf Floating Point Supported
linker_scanf_fp_enabledBoolean

Are floating point numbers supported by the scanf
function group.

Scanf Integer Support
linker_scanf_fmt_levelEnumeration

The largest integer type supported by the scanf
function group.

Wide Characters Supported
linker_printf_wchar_enabledBoolean

Are wide characters supported by the printf function
group.

Runtime Memory Area

Property Description

Heap Size
arm_linker_heap_sizeIntegerRange

The size of the heap in bytes.

Main Stack Size
arm_linker_stack_sizeIntegerRange

The size of the main stack in bytes.

Process Stack Size
arm_linker_process_stack_sizeIntegerRange

The size of the process stack in bytes.

Stack Size (Abort Mode)
arm_linker_abt_stack_sizeIntegerRange

The size of the Abort mode stack in bytes.

Stack Size (FIQ Mode)
arm_linker_fiq_stack_sizeIntegerRange

The size of the FIQ mode stack in bytes.

Stack Size (IRQ Mode)
arm_linker_irq_stack_sizeIntegerRange

The size of the IRQ mode stack in bytes.

Embedded Studio Reference Manual Appendices

950

Stack Size (Supervisor Mode)
arm_linker_svc_stack_sizeIntegerRange

The size of the Supervisor mode stack in bytes.

Stack Size (Undefined Mode)
arm_linker_und_stack_sizeIntegerRange

The size of the Undefined mode stack in bytes.

User Build Step

Property Description

Link Patch Command
linker_patch_build_commandUnknown

A command to run after the link but prior to additional
binary file generation. This property will have
macro expansion applied to it with the additional
$(TargetPath) macro set to the output filepath of the
linker command.

Link Patch Working Directory
linker_patch_build_command_wdDirPath

The working directory where the link patch command
is run. This property will have macro expansion applied
to it.

Post-Link Command
linker_post_build_commandUnknown

A command to run after the link command has
completed.This property will have macro expansion
applied to it with the additional $(TargetPath) macro
set to the output filepath of the linker command and
$(PostLinkOutputFilePath) set to the value of the
output filepath of the post link command.

Post-Link Output File
linker_post_build_command_output_fileString

The name of the file created by the post-link
command. This property will have macro expansion
applied to it.

Post-Link Working Directory
linker_post_build_command_wdDirPath

The working directory where the post-link command is
run. This property will have macro expansion applied
to it.

Pre-Link Command
linker_pre_build_commandUnknown

A command to run before the link command. This
property will have macro expansion applied to it.

Pre-Link Working Directory
linker_pre_build_command_wdDirPath

The working directory where the pre-link command is
run. This property will have macro expansion applied
to it.

Embedded Studio Reference Manual Appendices

951

System Macros

System Macro Values
Property Description

$(Date)
$(Date)String

Day Month Year e.g. 21 June 2011.

$(DateDay)
$(DateDay)String

Year e.g. 2011.

$(DateMonth)
$(DateMonth)String

Month e.g. June.

$(DateYear)
$(DateYear)String

Day e.g. 21.

$(DesktopDir)
$(DesktopDir)String

Path to users desktop directory.

$(DocumentsDir)
$(DocumentsDir)String

Path to users documents directory.

$(HomeDir)
$(HomeDir)String

Path to users home directory.

$(HostArch)
$(HostArch)String

The CPU architecture that SEGGER Embedded Studio is
running on e.g. x86.

$(HostDLL)
$(HostDLL)String

The file extension for dynamic link libraries on the CPU
that SEGGER Embedded Studio is running on e.g. .dll.

$(HostDLLExt)
$(HostDLLExt)String

The file extension for dynamic link libraries used by the
operating system that SEGGER Embedded Studio is
running on e.g. .dll, .so, .dylib.

$(HostEXE)
$(HostEXE)String

The file extension for executables on the CPU that
SEGGER Embedded Studio is running on e.g. .exe.

$(HostOS)
$(HostOS)String

The name of the operating system that SEGGER
Embedded Studio is running on e.g. win.

$(Micro)
$(Micro)String

The SEGGER Embedded Studio target e.g. ARM.

$(PackagesDir)
$(PackagesDir)String

Path to the users packages directory.

$(Platform)
$(Platform)String

The target platform.

$(ProductNameShort)
$(ProductNameShort)String

The product name.

$(StudioArchiveFileExt)
$(StudioArchiveFileExt)String

The filename extension of a studio archive file.

Embedded Studio Reference Manual Appendices

952

$(StudioBuildToolExeName)
$(StudioBuildToolExeName)String

The filename of the build tool executable.

$(StudioBuildToolName)
$(StudioBuildToolName)String

The name of the build tool executable.

$(StudioDir)
$(StudioDir)String

The install directory of the product.

$(StudioExeName)
$(StudioExeName)String

The filename of the studio executable.

$(StudioMajorVersion)
$(StudioMajorVersion)String

The major release version of software.

$(StudioMinorVersion)
$(StudioMinorVersion)String

The minor release version of software.

$(StudioName)
$(StudioName)String

The full name of studio.

$(StudioNameShort)
$(StudioNameShort)String

The short name of studio.

$(StudioPackageFileExt)
$(StudioPackageFileExt)String

The filename extension of a studio package file.

$(StudioProjectFileExt)
$(StudioProjectFileExt)String

The filename extension of a studio project file.

$(StudioScriptToolExeName)
$(StudioScriptToolExeName)String

The filename of the script tool executable.

$(StudioScriptToolName)
$(StudioScriptToolName)String

The name of the script tool executable.

$(StudioSessionFileExt)
$(StudioSessionFileExt)String

The filename extension of a studio session file.

$(StudioUserDir)
$(StudioUserDir)String

The directory containing the user data.

$(TargetID)
$(TargetID)String

ID number representing the SEGGER Embedded Studio
target.

$(Time)
$(Time)String

Hour:Minutes:Seconds e.g. 15:34:03.

$(TimeHour)
$(TimeHour)String

Hour e.g. 15.

$(TimeMinute)
$(TimeMinute)String

Hour e.g. 34.

$(TimeSecond)
$(TimeSecond)String

Hour e.g. 03.

Embedded Studio Reference Manual Appendices

953

Build Macros

(Build Macro Values)

Property Description

$(Arch)
$(Arch)String

The lower case value of the ARM Architecture project
property.

$(AsmOptions)
$(AsmOptions)String

A space seperated list of assembler options for the
external assemble command.

$(COnlyOptions)
$(COnlyOptions)String

A space seperated list of compiler options for the
external c compile command.

$(COptions)
$(COptions)String

A space seperated list of compiler options for the
external c and c++ compile commands.

$(CombiningOutputFilePath)
$(CombiningOutputFilePath)String

The full path of the output file of the combining
command.

$(CombiningRelInputPaths)
$(CombiningRelInputPaths)String

The relative inputs to the combining command.

$(Configuration)
$(Configuration)String

The build configuration e.g. ARM Flash Debug.

$(CoreType)
$(CoreType)String

The lower case value of the ARM Core Type project
property.

$(Defines)
$(Defines)String

The preprocessor defines property value for the
external compile command.

$(DependencyPath)
$(DependencyPath)String

The path of the dependency file for the external
compile command.

$(EXE)
$(EXE)String

The default file extension for an executable file
including the dot e.g. .elf.

$(Endian)
$(Endian)String

The lower case value of the Byte Order project
property.

$(FPU)
$(FPU)String

The lower case value of the ARM FPU Type project
property.

$(FPU2)
$(FPU2)String

Alternative value of the ARM FPU Type project
property.

$(FPU3)
$(FPU3)String

Alternative value of the ARM FPU Type project
property.

$(FolderName)
$(FolderName)String

The folder name of the containing folder.

$(GCCTarget)
$(GCCTarget)String

The value of the GCC Target project property.

Embedded Studio Reference Manual Appendices

954

$(Includes)
$(Includes)String

The user includes property value for the external
compile command.

$(InputDir)
$(InputDir)String

The absolute directory of the input file.

$(InputExt)
$(InputExt)String

The extension of an input file not including the dot e.g
cpp.

$(InputFileName)
$(InputFileName)String

The name of an input file relative to the project
directory.

$(InputName)
$(InputName)String

The name of an input file relative to the project
directory without the extension.

$(InputPath)
$(InputPath)String

The absolute name of an input file including the
extension.

$(IntDir)
$(IntDir)String

The macro-expanded value of the Intermediate
Directory project property.

$(LIB)
$(LIB)String

The default file extension for a library file including the
dot e.g. .lib.

$(LibExt)
$(LibExt)String

The architecture and build specific library extension.

$(LinkOptions)
$(LinkOptions)String

A space seperated list of compiler options for the
external link command.

$(LinkerScriptPath)
$(LinkerScriptPath)String

The full path of the linker script file for the link
command.

$(MapPath)
$(MapPath)String

The full path of the map file of the external link
command.

$(OBJ)
$(OBJ)String

The default file extension for an object file including
the dot e.g. .o.

$(Objects)
$(Objects)String

A space seperated list of files for the external archive or
link command.

$(ObjectsFilePath)
$(ObjectsFilePath)String

The filename containing the files for the external
archive or link command.

$(OutDir)
$(OutDir)String

The macro-expanded value of the Output Directory
project property.

$(PackageExt)
$(PackageExt)String

The file extension of a package file e.g. emPackage.

$(PostLinkOutputFilePath)
$(PostLinkOutputFilePath)String

The full path of the output file of the post link
command.

$(ProjectDir)
$(ProjectDir)String

The absolute value of the Project Directory project
property of the current project. If this isn't set then the
directory containing the solution file.

$(ProjectName)
$(ProjectName)String

The project name of the current project.

Embedded Studio Reference Manual Appendices

955

$(ProjectNodeName)
$(ProjectNodeName)String

The name of the selected project node.

$(RelInputPath)
$(RelInputPath)String

The relative path of the input file to the project
directory.

$(RelTargetPath)
$(RelTargetPath)String

The project directory relative path of the output file of
the link or compile command.

$(RootOutDir)
$(RootOutDir)String

The macro-expanded value of the Root Output
Directory project property.

$(RootRelativeOutDir)
$(RootRelativeOutDir)String

The relative path to get from the path specified by
the Output Directory project property to the path
specified by the Root Output Directory project
property.

$(SolutionDir)
$(SolutionDir)String

The absolute path of the directory containing the
solution file.

$(SolutionExt)
$(SolutionExt)String

The extension of the solution file without the dot.

$(SolutionFileName)
$(SolutionFileName)String

The filename of the solution file.

$(SolutionName)
$(SolutionName)String

The basename of the solution file.

$(SolutionPath)
$(SolutionPath)String

The absolute path of the solution file.

$(StageOutputFilePath)
$(StageOutputFilePath)String

The full path of the output file of the stage command.

$(TargetPath)
$(TargetPath)String

The full path of the output file of the link or compile
command.

$(ToolChainDir)
$(ToolChainDir)String

The macro-expanded value of the Tool Chain
Directory project property.

Embedded Studio Reference Manual Appendices

956

BinaryFile
The following table lists the BinaryFile object's member functions.

BinaryFile.crc32(offset, length) returns the CRC-32 checksum of an address range length bytes long, starting
at offset. This function computes a CRC-32 checksum on a block of data using the standard CRC-32 polynomial
(0x04C11DB7) with an initial value of 0xFFFFFFFF. Note that this implementation doesn't reflect the input or the
output and the result is inverted.

BinaryFile.length() returns the length of the binary file in bytes.

BinaryFile.load(path) loads binary file from path.

BinaryFile.peekBytes(offset, length) returns byte array containing length bytes peeked from offset.

BinaryFile.peekUint32(offset, littleEndian) returns a 32-bit word peeked from offset. The littleEndian argument
specifies the endianness of the access, if true or undefined it will be little endian, otherwise it will be big endian.

BinaryFile.pokeBytes(offset, byteArray) poke byte array byteArray to offset.

BinaryFile.pokeUint32(offset, value, littleEndian) poke a value to 32-bit word located at offset. The littleEndian
argument specifies the endianness of the access, if true or undefined it will be little endian, otherwise it will be
big endian.

BinaryFile.resize(length, fill) resizes the binary image to length bytes. If the operation extends the size, the
binary image will be padded with bytes of value fill.

BinaryFile.save(path) saves binary file to path.

BinaryFile.saveRange(path, offset, length) saves part of the binary file to path. The offset argument specifies
the byte offset to start from. The length argument specifies the maximum number of bytes that should be
saved.

Embedded Studio Reference Manual Appendices

957

CWSys
The following table lists the CWSys object's member functions.

CWSys.appendStringToFile(path, string) appends string to the end of the file path.

CWSys.copyFile(srcPath, destPath) copies file srcPath to destPath.

CWSys.crc32(array) returns the CRC-32 checksum of the byte array array. This function computes a CRC-32
checksum on a block of data using the standard CRC-32 polynomial (0x04C11DB7) with an initial value of
0xFFFFFFFF. Note that this implementation doesn't reflect the input or the output and the result is inverted.

CWSys.fileExists(path) returns true if file path exists.

CWSys.fileSize(path) return the number of bytes in file path.

CWSys.getRunStderr() returns the stderr output from the last CWSys.run() call.

CWSys.getRunStdout() returns the stdout output from the last CWSys.run() call.

CWSys.makeDirectory(path) create the directory path.

CWSys.packU32(array, offset, number, le) packs number into the array at offset.

CWSys.popup(text) prompt the user with text and return true for yes and false for no.

CWSys.readByteArrayFromFile(path) returns the byte array contained in the file path.

CWSys.readStringFromFile(path) returns the string contained in the file path.

CWSys.removeDirectory(path) remove the directory path.

CWSys.removeFile(path) deletes file path.

CWSys.renameFile(oldPath, newPath) renames file oldPath to be newPath.

CWSys.run(cmd, wait) runs command line cmd optionally waits for it to complete if wait is true.

CWSys.unpackU32(array, offset, le) returns the number unpacked from the array at offset.

CWSys.writeByteArrayToFile(path, array) creates a file path containing the byte array array.

CWSys.writeStringToFile(path, string) creates a file path containing string.

Embedded Studio Reference Manual Appendices

958

Debug
The following table lists the Debug object's member functions.

Debug.breakexpr(expression, count, hardware) set a breakpoint on expression, with optional ignore count
and use hardware parameters. Return the, none zero, allocated breakpoint number.

Debug.breakline(filename, linenumber, temporary, count, hardware) set a breakpoint on filename and
linenumber, with optional temporary, ignore count and use hardware parameters. Return the, none zero,
allocated breakpoint number.

Debug.breaknow() break execution now.

Debug.deletebreak(number) delete the specified breakpoint or all breakpoints if zero is supplied.

Debug.disassembly(source, labels, before, after) set debugger mode to disassembly mode. Optionally specify
source and labels to be displayed and the number of bytes to disassemble before and after the located program
counter.

Debug.echo(s) display string.

Debug.enableexception(exception, enable) enable break on exception.

Debug.evaluate(expression) evaluates debug expression and returns it as a JavaScript value.

Debug.getfilename() return located filename.

Debug.getlineumber() return located linenumber.

Debug.go() continue execution.

Debug.locate(frame) locate the debugger to the optional frame context.

Debug.locatepc(pc) locate the debugger to the specified pc.

Debug.locateregisters(registers) locate the debugger to the specified register context.

Debug.print(expression, fmt) evaluate and display debugexpression using optional fmt. Supported formats are
b binary, c character, d decimal, e scientific float, f decimal float, g scientific or decimal float, i signed decimal, o
octal, p pointer value, s null terminated string, u unsigned decimal, x hexadecimal.

Debug.printglobals() display global variables.

Debug.printlocals() display local variables.

Debug.quit() stop debugging.

Debug.setprintarray(elements) set the maximum number of array elements for printing variables.

Debug.setprintradix(radix) set the default radix for printing variables.

Debug.setprintstring(c) set the default to print character pointers as strings.

Debug.showbreak(number) show information on the specified breakpoint or all breakpoints if zero is
supplied.

Debug.showexceptions() show the exceptions.

Debug.source(before, after) set debugger mode to source mode. Optionally specify the number of source
lines to display before and after the location.

Debug.stepinto() step an instruction or a statement.

Embedded Studio Reference Manual Appendices

959

Debug.stepout() continue execution and break on return from current function.

Debug.stepover() step an instruction or a statement stepping over function calls.

Debug.stopped() return stopped state.

Debug.wait(ms) wait ms millseconds for a breakpoint and return the number of the breakpoint that hit.

Debug.where() display call stack.

Embedded Studio Reference Manual Appendices

960

ElfFile
The following table lists the ElfFile object's member functions.

ElfFile.crc32(address, length, virtualNotPhysical, padding) returns the CRC-32 checksum of an address range
length bytes long, located at address. If virtualNotPhysical is true or undefined, address is a virtual address
otherwise it is a physical address. If padding is defined, it specifies the byte value used to fill gaps in the
program. This function computes a CRC-32 checksum on a block of data using the standard CRC-32 polynomial
(0x04C11DB7) with an initial value of 0xFFFFFFFF. Note that this implementation doesn't reflect the input or the
output and the result is inverted.

ElfFile.findProgram(address) returns an object with start, the data and the size to allocate of the Elf program
that contains address.

ElfFile.getEntryPoint() returns the entry point in the ELF file.

ElfFile.getSection(name) returns an object with start and the data of the Elf section corresponding to the
name.

ElfFile.isLittleEndian() returns true if the Elf file has numbers encoded as little endian.

ElfFile.load(path) loads Elf file from path.

ElfFile.peekBytes(address, length, virtualNotPhysical, padding) returns byte array containing length bytes
peeked from address. If virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a
physical address. If padding is defined, it specifies the byte value used to fill gaps in the program.

ElfFile.peekUint32(address, virtualNotPhysical) returns a 32-bit word peeked from address. If
virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a physical address.

ElfFile.pokeBytes(address, byteArray, virtualNotPhysical) poke byte array byteArray to address. If
virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a physical address.

ElfFile.pokeUint32(address, value, virtualNotPhysical) poke a value to 32-bit word located at address. If
virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a physical address.

ElfFile.save(path) saves Elf file to path.

ElfFile.symbolValue(symbol) returns the value of symbol in Elf file.

Embedded Studio Reference Manual Appendices

961

TargetInterface
The following table lists the TargetInterface object's member functions.

TargetInterface.beginDebugAccess() puts the target into debug state if it is not already in order to
carry out a number of debug operations. The idea behind beginDebugAccess and endDebugAccess is
to minimize the number of times the target enters and exits debug state when carrying out a number of
debug operations. Target interface functions that require the target to be in debug state (such as peek and
poke) also use beginDebugAccess and endDebugAccess to get the target into the correct state. A nesting
count is maintained, incremented by beginDebugAccess and decremented by endDebugAccess. The initial
processor state is recorded on the first nested call to beginDebugAccess and this state is restored when the
final endDebugAccess is called causing the count to return to it initial state.

TargetInterface.commReadWord() returns a word from the ARM7/ARM9 debug comms channel.

TargetInterface.commWriteWord(word) writes a word to the ARM7/ARM9 debug comms channel.

TargetInterface.crc32(address, length) reads a block of bytes from target memory starting at address for
length bytes, generates a crc32 on the block of bytes and returns it.

TargetInterface.cycleTCK(n) provide n TCK clock cycles.

TargetInterface.delay(ms) waits for ms milliseconds

TargetInterface.downloadDebugHandler() downloads the debug handler as specified by the Debug Handler
File Path/Load Address project properties and uses the debug handler for the target connection.

TargetInterface.endDebugAccess(alwaysRun) restores the target run state recorded at the first nested call to
beginDebugAccess. See beginDebugAccess for more information. If alwaysRun is non-zero the processor will
exit debug state on the last nested call to endDebugAccess.

TargetInterface.eraseBytes(address,length) erases a length block of target memory starting at address.

TargetInterface.error(message) terminates execution of the script and outputs a target interface error
message to the target log.

TargetInterface.executeFunction(address, parameter, timeout) calls a function at address with the parameter
and returns the function result. The timeout is in milliseconds.

TargetInterface.executeMCR(opcode) interprets/executes the opcode assuming it to be an MRC instruction
and returns the value of the specified coprocessor register.

TargetInterface.executeMCR(opcode, value) interprets/executes the opcode assuming it to be an MCR
instruction that writes value to the specified coprocessor register.

TargetInterface.expandMacro(string) returns the string with macros expanded.

TargetInterface.fillScanChain(bool, lsb, msb) sets bits from lsb (least significant bit) to msb (most significant
bit) in internal buffer to bool value.

TargetInterface.getDebugRegister(address) returns the value of the ADIv5 debug register denoted by
address. Address has the nibble sized access point number starting at bit 24 and the register number in the
bottom byte.

TargetInterface.getICEBreakerRegister(r) returns the value of the ARM7/ARM9/ARM11/CortexA/CortexR
debug register r.

TargetInterface.getProjectProperty(savename) returns the value of the savename project property.

Embedded Studio Reference Manual Appendices

962

TargetInterface.getRegister(registername) returns the value of the register, register is a string specifying the
register to get and must be one of r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, sp, lr, pc, cpsr, r8_fiq,
r9_fiq, r10_fiq, r11_fiq, r12_fiq, r13_fiq, r14_fiq, spsr_fiq, r13_svc, r14_svc, spsr_svc, r13_abt, r14_abt, spsr_abt,
r13_irq, r14_irq, spsr_irq, r13_und, r14_und, spsr_und.

TargetInterface.getTDO() return the TDO signal.

TargetInterface.getTargetProperty(savename) returns the value of the savename target property.

TargetInterface.go() allows the target to run.

TargetInterface.idcode() returns the JTAG idcode of the target.

TargetInterface.implementation() returns a string defining the target interface implementation.

TargetInterface.isStopped() returns true if the target is stopped.

TargetInterface.message(message) outputs a target interface message to the target log.

TargetInterface.packScanChain(data, lsb, msb) packs data from lsb (least significant bit) to msb (most
significant bit) into internal buffer.

TargetInterface.peekBinary(address, length, filename) reads a block of bytes from target memory starting at
address for length bytes and writes them to filename.

TargetInterface.peekByte(address) reads a byte of target memory from address and returns it.

TargetInterface.peekBytes(address, length) reads a block of bytes from target memory starting at address for
length bytes and returns the result as an array containing the bytes read.

TargetInterface.peekMultUint16(address, length) reads length unsigned 16-bit integers from target memory
starting at address and returns them as an array.

TargetInterface.peekMultUint32(address, length) reads length unsigned 32-bit integers from target memory
starting at address and returns them as an array.

TargetInterface.peekUint16(address) reads a 16-bit unsigned integer from target memory from address and
returns it.

TargetInterface.peekUint32(address) reads a 32-bit unsigned integer from target memory from address and
returns it.

TargetInterface.peekWord(address) reads a word as an unsigned integer from target memory from address
and returns it.

TargetInterface.pokeBinary(address, filename) reads a block of bytes from filename and writes them to target
memory starting at address.

TargetInterface.pokeByte(address, data) writes the byte data to address in target memory.

TargetInterface.pokeBytes(address, data) writes the array data containing 8-bit data to target memory at
address.

TargetInterface.pokeMultUint16(address, data) writes the array data containing 16-bit data to target memory
at address.

TargetInterface.pokeMultUint32(address, data) writes the array data containing 32-bit data to target memory
at address.

TargetInterface.pokeUint16(address, data) writes data as a 16-bit value to address in target memory.

TargetInterface.pokeUint32(address, data) writes data as a 32-bit value to address in target memory.

Embedded Studio Reference Manual Appendices

963

TargetInterface.pokeWord(address, data) writes data as a word value to address in target memory.

TargetInterface.readBinary(filename) reads a block of bytes from filename and returns them in an array.

TargetInterface.reset() resets the target, optionally executes the reset script and lets the target run.

TargetInterface.resetAndStop(delay) resets the target by cycling nSRST and then stops the target. delay is the
number of milliseconds to hold the target in reset.

TargetInterface.resetAndStopAtZero(delay) sets a breakpoint on the instruction at address zero execution,
resets the target by cycling nSRST and waits for the breakpoint to be hit. delay is the number of milliseconds to
hold the target in reset.

TargetInterface.resetDebugInterface() resets the target interface (not the target).

TargetInterface.runFromAddress(address, timeout) start the target executing at address and waits for a
breakpoint to be hit. The timeout is in milliseconds.

TargetInterface.runFromToAddress(from, to, timeout) start the target executing at address from and waits for
the breakpoint to be hit. The timeout is in milliseconds.

TargetInterface.runTestIdle() moves the target JTAG state machine into Run-Test/Idle state

TargetInterface.runToAddress(address, timeout) sets a breakpoint at address, starts the target executing and
waits for the breakpoint to be hit. The timeout is in milliseconds.

TargetInterface.scanDR(length, count) scans length bits from the internal buffer into the data register and
puts the result into the internal buffer (count specifies the number of times the function is done).

TargetInterface.scanIR(length, count) scans length bits from the internal buffer into the instruction register
and puts the result into the internal buffer (count specifies the number of times the function is done).

TargetInterface.selectDevice(irPre, irPost, drPre, drPost) sets the instruction and data register (number of
devices) pre and post bits.

TargetInterface.setDBGRQ(v) sets/clears the DBGRQ bit of the ARM7/ARM9 debug control register.

Embedded Studio Reference Manual Appendices

964

TargetInterface.setDebugInterfaceProperty("reset_debug_interface_enabled", bool) turn on/off the reset of
the debug interface.
TargetInterface.setDebugInterfaceProperty("has_etm", bool) set the ARM7/ARM9 property to enable use of
the ETM.
TargetInterface.setDebugInterfaceProperty("reset_delay", N) set the XScale reset delay property to N.
TargetInterface.setDebugInterfaceProperty("post_reset_delay", N) set the XScale post reset delay property to
N.
TargetInterface.setDebugInterfaceProperty("post_reset_cycles", N) set the XScale post reset cycles property
to N.
TargetInterface.setDebugInterfaceProperty("post_ldic_cycles", N) set the XScale ldic cycles property to N.
TargetInterface.setDebugInterfaceProperty("sync_exception_vectors", bool) turn on/off the XScale sync
exception vectors property.
TargetInterface.setDebugInterfaceProperty("peek_flash_workaround", bool) turn on/off the ARMv6M/
ARMv7M peek flash memory workaround debug property.
TargetInterface.setDebugInterfaceProperty("adiv5_fast_delay_cycles", N) set the ADIv5 fast delay cycles
property to N (FTDI2232 target interfaces only).
TargetInterface.setDebugInterfaceProperty("use_adiv5_AHB", N, [start, size]) set the ARMv7A/ARMv7R debug
property list to turn on/off usage of the ADIv5 AHB MEM-AP for 1+2+4 data sized accesses on the optional
address range specified by start and size.
TargetInterface.setDebugInterfaceProperty("set_adiv5_AHB_ap_num", N) specify the ARMv6M/ARMv7A/
ARMv7M/ARMv7R AHB AP number to use.
TargetInterface.setDebugInterfaceProperty("set_adiv5_APB_ap_num", N) specify the ARMv7A/ARMv7R APB
AP number to use.
TargetInterface.setDebugInterfaceProperty("max_ap_num", N) set the ADIv5 debug property to limit the
number of AP's to detect to N.
TargetInterface.setDebugInterfaceProperty("component_base", N) set the ADIv5 debug property that
specifies the base address N of the CoreSight debug component.

TargetInterface.setDebugRegister(address, value) set the value of the ADIv5 debug register denoted by
address. Address has the nibble sized access point number starting at bit 24 and the register number in the
bottom byte.

TargetInterface.setDeviceTypeProperty(type) sets the target interface's Device Type property string to type.
This would typically be used by a Connect Script to override the default Device Type property and provide a
custom description of the connected target.

TargetInterface.setICEBreakerBreakpoint(n, address, addressMask, data, dataMask, control, controlMask)
sets the ARM7/ARM9 watchpoint n registers.

TargetInterface.setICEBreakerRegister(r, value) set the value of the ARM7/ARM9/ARM11/CortexA/CortexR
debug register r.

TargetInterface.setMaximumJTAGFrequency(hz) allows the maximum TCK frequency of the currently
connected JTAG interface to be set dynamically. The speed setting will only apply for the current connection
session, if you reconnect the setting will revert to the speed specfied by the target interface properties. Calls to
this function will be ignored if adaptive clocking is being used.

TargetInterface.setNSRST(v) sets/clears the NSRST signal.

TargetInterface.setNTRST(v) sets/clears the NTRST signal.

Embedded Studio Reference Manual Appendices

965

TargetInterface.setRegister(registername, value) sets the register to the value, register is a string specifying
the register to get and must be one of r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, sp, lr, pc, cpsr,
r8_fiq, r9_fiq, r10_fiq, r11_fiq, r12_fiq, r13_fiq, r14_fiq, spsr_fiq, r13_svc, r14_svc, spsr_svc, r13_abt, r14_abt,
spsr_abt, r13_irq, r14_irq, spsr_irq, r13_und, r14_und, spsr_und.

TargetInterface.setTDI(v) clear/set TDI signal.

TargetInterface.setTMS(v) clear/set TMS signal.

TargetInterface.setTargetProperty(savename) set the value of the savename target property.

TargetInterface.stop() stops the target.

TargetInterface.stopAndReset(delay) sets a breakpoint on any instruction execution, resets the target by
cycling nSRST and waits for the breakpoint to be hit. delay is the number of milliseconds to hold the device in
reset.

TargetInterface.trst() resets the target interface (not the target).

TargetInterface.type() returns a string defining the target interface type.

TargetInterface.unpackScanChain(lsb, msb) unpacks data from lsb (least significant bit) to msb (most
significant bit) from internal buffer and returns the result.

TargetInterface.waitForDebugState(timeout) waits for the target to stop or the timeout in milliseconds.

TargetInterface.writeBinary(array, filename) write the bytes in array to filename.

Embedded Studio Reference Manual Appendices

966

WScript
The following table lists the WScript object's member functions.

WScript.Echo(s) echos string s to the output terminal.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Segger Microcontroller:

 15.00.23 15.00.00 20.50.23

http://www.mouser.com/segger
http://www.mouser.com/access/?pn=15.00.23
http://www.mouser.com/access/?pn=15.00.00
http://www.mouser.com/access/?pn=20.50.23

	Contents
	Introduction
	What is SEGGER Embedded Studio?
	What we don't tell you
	Getting Started
	Text conventions
	Release notes

	SEGGER Embedded Studio User Guide
	SEGGER Embedded Studio standard layout
	Menu bar
	Title bar
	Status bar
	Editing workspace
	Docking windows
	Dashboard

	SEGGER Embedded Studio help and assistance
	Creating and managing projects
	Solutions and projects
	Creating a project
	Adding existing files to a project
	Adding new files to a project
	Removing a file, folder, project, or project link

	Building your application
	Creating variants using configurations
	Project options
	Configurations and project options
	Project macros
	Dependencies and build order
	Linking and section placement

	Using source control
	Source control capabilities
	Configuring source-control providers
	Connecting to the source-control system
	File source-control status
	Source-control operations
	Adding files to source control
	Updating files
	Committing files
	Reverting files
	Locking files
	Unlocking files
	Removing files from source control
	Showing differences between files
	Source-control properties
	Subversion provider
	CVS provider

	Package management
	Exploring your application
	Project explorer
	Source navigator window
	References window
	Symbol browser window
	Memory usage window
	Bookmarks window

	Editing your code
	Basic editing
	Moving the insertion point
	Adding text
	Deleting text
	Using the clipboard
	Undo and redo
	Drag and drop
	Searching

	Advanced editing
	Indenting source code
	Commenting out sections of code
	Adjusting letter case

	Using bookmarks
	Find and Replace window
	Clipboard Ring window
	Mouse-click accelerators
	Regular expressions

	Debugging windows
	Locals window
	Globals window
	Watch window
	Register window
	Memory window
	Breakpoints window
	Call Stack window
	Threads window
	Execution Profile window
	Execution Trace window
	Debug file search editor

	Breakpoint expressions
	Debug expressions

	Command-line options
	-D (Define macro)
	-noclang (Disable Clang support)
	-packagesdir (Specify packages directory)
	-permit-multiple-studio-instances (Permit multiple studio instances)
	-rootuserdir (Set the root user data directory)
	-save-settings-off (Disable saving of environment settings)
	-set-setting (Set environment setting)
	-templatesfile (Set project templates path)

	Uninstalling SEGGER Embedded Studio
	ARM target support
	Target startup code
	Startup code
	Section Placement

	C Library User Guide
	Floating point
	Single and double precision

	Multithreading
	Thread safety in the SEGGER Embedded Studio library
	Implementing mutual exclusion in the C library

	Input and output
	Customizing putchar

	Locales
	Unicode, ISO 10646, and wide characters
	Multi-byte characters
	The standard C and POSIX locales
	Additional locales in source form
	Installing a locale
	Setting a locale directly

	Complete API reference
	<assert.h>
	__assert
	assert

	<complex.h>
	cabs
	cabsf
	cacos
	cacosf
	cacosh
	cacoshf
	carg
	cargf
	casin
	casinf
	casinh
	casinhf
	catan
	catanf
	catanh
	catanhf
	ccos
	ccosf
	ccosh
	ccoshf
	cexp
	cexpf
	cimag
	cimagf
	clog
	clogf
	conj
	conjf
	cpow
	cpowf
	cproj
	cprojf
	creal
	crealf
	csin
	csinf
	csinh
	csinhf
	csqrt
	csqrtf
	ctan
	ctanf
	ctanh
	ctanhf

	<ctype.h>
	isalnum
	isalnum_l
	isalpha
	isalpha_l
	isblank
	isblank_l
	iscntrl
	iscntrl_l
	isdigit
	isdigit_l
	isgraph
	isgraph_l
	islower
	islower_l
	isprint
	isprint_l
	ispunct
	ispunct_l
	isspace
	isspace_l
	isupper
	isupper_l
	isxdigit
	isxdigit_l
	tolower
	tolower_l
	toupper
	toupper_l

	<debugio.h>
	debug_abort
	debug_break
	debug_clearerr
	debug_enabled
	debug_exit
	debug_fclose
	debug_feof
	debug_ferror
	debug_fflush
	debug_fgetc
	debug_fgetpos
	debug_fgets
	debug_filesize
	debug_fopen
	debug_fprintf
	debug_fprintf_c
	debug_fputc
	debug_fputs
	debug_fread
	debug_freopen
	debug_fscanf
	debug_fscanf_c
	debug_fseek
	debug_fsetpos
	debug_ftell
	debug_fwrite
	debug_getargs
	debug_getch
	debug_getchar
	debug_getd
	debug_getenv
	debug_getf
	debug_geti
	debug_getl
	debug_getll
	debug_gets
	debug_getu
	debug_getul
	debug_getull
	debug_kbhit
	debug_loadsymbols
	debug_perror
	debug_printf
	debug_printf_c
	debug_putchar
	debug_puts
	debug_remove
	debug_rename
	debug_rewind
	debug_runtime_error
	debug_scanf
	debug_scanf_c
	debug_system
	debug_time
	debug_tmpfile
	debug_tmpnam
	debug_ungetc
	debug_unloadsymbols
	debug_vfprintf
	debug_vfscanf
	debug_vprintf
	debug_vscanf

	<errno.h>
	EDOM
	EILSEQ
	EINVAL
	ENOMEM
	ERANGE
	errno

	<float.h>
	DBL_DIG
	DBL_EPSILON
	DBL_MANT_DIG
	DBL_MAX
	DBL_MAX_10_EXP
	DBL_MAX_EXP
	DBL_MIN
	DBL_MIN_10_EXP
	DBL_MIN_EXP
	DECIMAL_DIG
	FLT_DIG
	FLT_EPSILON
	FLT_EVAL_METHOD
	FLT_MANT_DIG
	FLT_MAX
	FLT_MAX_10_EXP
	FLT_MAX_EXP
	FLT_MIN
	FLT_MIN_10_EXP
	FLT_MIN_EXP
	FLT_RADIX
	FLT_ROUNDS

	<iso646.h>
	and
	and_eq
	bitand
	bitor
	compl
	not
	not_eq
	or
	or_eq
	xor
	xor_eq

	<limits.h>
	CHAR_BIT
	CHAR_MAX
	CHAR_MIN
	INT_MAX
	INT_MIN
	LLONG_MAX
	LLONG_MIN
	LONG_MAX
	LONG_MIN
	MB_LEN_MAX
	SCHAR_MAX
	SCHAR_MIN
	SHRT_MAX
	SHRT_MIN
	UCHAR_MAX
	UINT_MAX
	ULLONG_MAX
	ULONG_MAX
	USHRT_MAX

	<locale.h>
	lconv
	localeconv
	setlocale

	<math.h>
	acos
	acosf
	acosh
	acoshf
	asin
	asinf
	asinh
	asinhf
	atan
	atan2
	atan2f
	atanf
	atanh
	atanhf
	cbrt
	cbrtf
	ceil
	ceilf
	copysign
	copysignf
	cos
	cosf
	cosh
	coshf
	erf
	erfc
	erfcf
	erff
	exp
	exp2
	exp2f
	expf
	expm1
	expm1f
	fabs
	fabsf
	fdim
	fdimf
	floor
	floorf
	fma
	fmaf
	fmax
	fmaxf
	fmin
	fminf
	fmod
	fmodf
	fpclassify
	frexp
	frexpf
	hypot
	hypotf
	ilogb
	ilogbf
	isfinite
	isgreater
	isgreaterequal
	isinf
	isless
	islessequal
	islessgreater
	isnan
	isnormal
	isunordered
	ldexp
	ldexpf
	lgamma
	lgammaf
	llrint
	llrintf
	llround
	llroundf
	log
	log10
	log10f
	log1p
	log1pf
	log2
	log2f
	logb
	logbf
	logf
	lrint
	lrintf
	lround
	lroundf
	modf
	modff
	nearbyint
	nearbyintf
	nextafter
	nextafterf
	pow
	powf
	remainder
	remainderf
	remquo
	remquof
	rint
	rintf
	round
	roundf
	scalbln
	scalblnf
	scalbn
	scalbnf
	signbit
	sin
	sinf
	sinh
	sinhf
	sqrt
	sqrtf
	tan
	tanf
	tanh
	tanhf
	tgamma
	tgammaf
	trunc
	truncf

	<setjmp.h>
	longjmp
	setjmp

	<stdarg.h>
	va_arg
	va_copy
	va_end
	va_start

	<stddef.h>
	NULL
	offsetof
	ptrdiff_t
	size_t

	<stdio.h>
	getchar
	gets
	printf
	putchar
	puts
	scanf
	snprintf
	sprintf
	sscanf
	vprintf
	vscanf
	vsnprintf
	vsprintf
	vsscanf

	<stdlib.h>
	EXIT_FAILURE
	EXIT_SUCCESS
	MB_CUR_MAX
	RAND_MAX
	abs
	atexit
	atof
	atoi
	atol
	atoll
	bsearch
	calloc
	div
	div_t
	exit
	free
	itoa
	labs
	ldiv
	ldiv_t
	llabs
	lldiv
	lldiv_t
	lltoa
	ltoa
	malloc
	mblen
	mblen_l
	mbstowcs
	mbstowcs_l
	mbtowc
	mbtowc_l
	qsort
	rand
	realloc
	srand
	strtod
	strtof
	strtol
	strtoll
	strtoul
	strtoull
	ulltoa
	ultoa
	utoa

	<string.h>
	memccpy
	memchr
	memcmp
	memcpy
	memcpy_fast
	memmove
	mempcpy
	memset
	strcasecmp
	strcasestr
	strcat
	strchr
	strcmp
	strcpy
	strcspn
	strdup
	strerror
	strlcat
	strlcpy
	strlen
	strncasecmp
	strncasestr
	strncat
	strnchr
	strncmp
	strncpy
	strndup
	strnlen
	strnstr
	strpbrk
	strrchr
	strsep
	strspn
	strstr
	strtok
	strtok_r

	<time.h>
	asctime
	asctime_r
	clock_t
	ctime
	ctime_r
	difftime
	gmtime
	gmtime_r
	localtime
	localtime_r
	mktime
	strftime
	time_t
	tm

	<wchar.h>
	WCHAR_MAX
	WCHAR_MIN
	WEOF
	btowc
	btowc_l
	mbrlen
	mbrlen_l
	mbrtowc
	mbrtowc_l
	mbsrtowcs
	mbsrtowcs_l
	msbinit
	wchar_t
	wcrtomb
	wcrtomb_l
	wcscat
	wcschr
	wcscmp
	wcscpy
	wcscspn
	wcsdup
	wcslen
	wcsncat
	wcsnchr
	wcsncmp
	wcsncpy
	wcsnlen
	wcsnstr
	wcspbrk
	wcsrchr
	wcsspn
	wcsstr
	wcstok
	wcstok_r
	wctob
	wctob_l
	wint_t
	wmemccpy
	wmemchr
	wmemcmp
	wmemcpy
	wmemmove
	wmempcpy
	wmemset
	wstrsep

	<wctype.h>
	iswalnum
	iswalnum_l
	iswalpha
	iswalpha_l
	iswblank
	iswblank_l
	iswcntrl
	iswcntrl_l
	iswctype
	iswctype_l
	iswdigit
	iswdigit_l
	iswgraph
	iswgraph_l
	iswlower
	iswlower_l
	iswprint
	iswprint_l
	iswpunct
	iswpunct_l
	iswspace
	iswspace_l
	iswupper
	iswupper_l
	iswxdigit
	iswxdigit_l
	towctrans
	towctrans_l
	towlower
	towlower_l
	towupper
	towupper_l
	wctrans
	wctrans_l
	wctype

	<xlocale.h>
	duplocale
	freelocale
	localeconv_l
	newlocale

	C++ Library User Guide
	Standard template library
	Subset API reference
	<new> - memory allocation
	operator delete
	operator new
	set_new_handler

	Utilities Reference
	Compiler driver
	File naming conventions
	Command-line options
	-ansi (Warn about potential ANSI problems)
	-ar (Archive output)
	-arch (Set ARM architecture)
	-be (Big Endian)
	-c (Compile to object code, do not link)
	-d (Define linker symbol)
	-D (Define macro symbol)
	-e (Set entry point symbol)
	-E (Preprocess)
	-exceptions (Enable C++ Exception Support)
	-fabi (Floating Point Code Generation)
	-fpu (Set ARM FPU)
	-F (Set output format)
	-g (Generate debugging information)
	-g1 (Generate minimal debugging information)
	-help (Display help information)
	-io (Select I/O library implementation)
	-I (Define user include directories)
	-I- (Exclude standard include directories)
	-J (Define system include directories)
	-K (Keep linker symbol)
	-L (Set library directory path)
	-l- (Do not link standard libraries)
	-make (Make-style build)
	-M (Display linkage map)
	-n (Dry run, no execution)
	-nostderr (No stderr output)
	-o (Set output file name)
	-oabi (Use oabi compiler)
	-O (Optimize output)
	-printf (Select printf capability)
	-rtti (Enable C++ RTTI Support)
	-R (Set section name)
	-scanf (Select scanf capability)
	-sd (Treat double as float)
	-Thumb (Generate Thumb code)
	-v (Verbose execution)
	-w (Suppress warnings)
	-we (Treat warnings as errors)
	-Wa (Pass option to tool)
	-x (Specify file types)
	-y (Use project template)
	-z (Set project property)

	Command-Line Project Builder
	Building with a SEGGER Embedded Studio project file
	Building without a SEGGER Embedded Studio project file
	Command-line options
	-batch (Batch build)
	-config (Select build configuration)
	-clean (Remove output files)
	-D (Define macro)
	-echo (Show command lines)
	-file (Build a named file)
	-packagesdir (Specify packages directory)
	-project (Specify project to build)
	-property (Set project property)
	-rebuild (Always rebuild)
	-show (Dry run, don't execute)
	-solution (Specify solution to build)
	-studiodir (Specify SEGGER Embedded Studio directory)
	-template (Specify project template)
	-time (Time the build)
	-threadnum (Specify number of build threads)
	-type (Specify project type)
	-verbose (Show build information)

	Command-Line Scripting
	Command-line options
	-define (Define global variable)
	-help (Show usage)
	-load (Load script file)
	-define (Verbose output)

	emScript classes
	Example uses

	Embed
	Header file generator
	Using the header generator
	Command line options
	-regbaseoffsets (Use offsets from peripheral base)
	-nobitfields (Inhibit bitfield macros)

	Linker script file generator
	Command-line options
	-check-segment-overflow
	-memory-map-file
	-memory-map-macros
	-section-placement-file
	-section-placement-macros
	-symbols

	Package generator

	Appendices
	Technical
	File formats
	Memory Map file format
	Section Placement file format
	Project file format
	Project Templates file format
	Property Groups file format
	Package Description file format
	External Tools file format

	Environment Options
	Building Environment Options
	Debugging Environment Options
	IDE Environment Options
	Programming Language Environment Options
	Source Control Environment Options
	Text Editor Environment Options
	Windows Environment Options

	Project Options
	General Build Options
	Compilation Options
	Debugging Options
	Executable Project Options

	Macros
	System Macros
	Build Macros

	Script classes
	BinaryFile
	CWSys
	Debug
	ElfFile
	TargetInterface
	WScript

