Embedded
Studio

Embedded Studio Reference Manual

Version: 3.10i

Copyright 2014-2016 SEGGER Microcontroller GmbH & Co. KG
Copyright 1997-2016 Rowley Associates Ltd.

Embedded Studio Reference Manual

Embedded Studio Reference Manual

Contents

Contents

Introduction 23
What is SEGGER Embedded Studio? 24
What we don't tell you 26
Getting Started 27
Text conventions 28
Release notes 30

SEGGER Embedded Studio User Guide 37
SEGGER Embedded Studio standard layout 38

Menu bar 39
Title bar 40
Status bar 41
Editing workspace 43
Docking windows 44
Dashboard 45
SEGGER Embedded Studio help and assistance 46
Creating and managing projects 48
Solutions and projects 49
Creating a project 52
Adding existing files to a project 53
Adding new files to a project 54
Removing a file, folder, project, or project link 55
Building your application 56
Creating variants using configurations 58

Embedded Studio Reference Manual Contents

Project options 60
Configurations and project options 62
Project macros 64
Dependencies and build order 66
Linking and section placement 67
Using source control 70
Source control capabilities 71
Configuring source-control providers 72
Connecting to the source-control system 73
File source-control status 74
Source-control operations 75
Adding files to source control 76
Updating files 77
Committing files 78
Reverting files 79
Locking files 80
Unlocking files 81
Removing files from source control 82
Showing differences between files 83
Source-control properties 84
Subversion provider 85
CVS provider 87
Package management 89
Exploring your application 93
Project explorer 94
Source navigator window 99
References window 101
Symbol browser window 102
Memory usage window 107
Bookmarks window 110
Editing your code 111
Basic editing 112
Moving the insertion point 113
Adding text 115
Deleting text 116

Using the clipboard 117

Undo and redo 118

Drag and drop 119
Searching 120
Advanced editing 121
Indenting source code 122

Embedded Studio Reference Manual

Debugging windows

Locals window

Globals window

Watch window

Register window

Memory window

Threads window

Breakpoint expressions

Debug expressions

Command-line options

-D (Define macro)

-noclang (Disable Clang support)

Uninstalling SEGGER Embedded Studio

ARM target support

Target startup code

Startup code

Section Placement

C Library User Guide

Floating point

Multithreading

Contents

Commenting out sections of code 124

Adjusting letter case 125

Using bookmarks 126

Find and Replace window 128
Clipboard Ring window 130
Mouse-click accelerators 132
Regular expressions 134

136

136

138

140

143

146

Breakpoints window 150

Call Stack window 154

157

Execution Profile window 161
Execution Trace window 162
Debug file search editor 163

165

166

167

168

169

-packagesdir (Specify packages directory) 170
-permit-multiple-studio-instances (Permit multiple studio instances) 171
-rootuserdir (Set the root user data directory) 172
-save-settings-off (Disable saving of environment settings) 173
-set-setting (Set environment setting) 174
-templatesfile (Set project templates path) 175
177

181

183

185

188

191

192

Single and double precision 193

195

Thread safety in the SEGGER Embedded Studio library 196
Implementing mutual exclusion in the C library 197

Embedded Studio Reference Manual Contents

Input and output 198
Customizing putchar 199
Locales 203
Unicode, ISO 10646, and wide characters 204
Multi-byte characters 205
The standard C and POSIX locales 206
Additional locales in source form 207
Installing a locale 208
Setting a locale directly 210
Complete API reference 211
<assert.h> 212
__assert 213

assert 214
<complex.h> 215
cabs 217

cabsf 218

cacos 219
cacosf 220
cacosh 221
cacoshf 222

carg 223

cargf 224

casin 225

casinf 226
casinh 227
casinhf 228

catan 229
catanf 230
catanh 231
catanhf 232

ccos 233

ccosf 234

ccosh 235
ccoshf 236

cexp 237

cexpf 238

cimag 239
cimagf 240

clog 241

clogf 242

conj 243

Embedded Studio Reference Manual Contents

conjf 244
cpow 245
cpowf 246
cproj 247
cprojf 248
creal 249
crealf 250
csin 251
csinf 252
csinh 253
csinhf 254
csqrt 255
csqrtf 256
ctan 257
ctanf 258
ctanh 259
ctanhf 260
<ctype.h> 261
isalnum 263
isalnum_| 264
isalpha 265
isalpha_l 266
isblank 267
isblank_I 268
iscntrl 269
iscntrl_| 270
isdigit 271
isdigit_| 272
isgraph 273
isgraph_l| 274
islower 275
islower_| 276
isprint 277
isprint_| 278
ispunct 279
ispunct_| 280
isspace 281
isspace_| 282
isupper 283
isupper_| 284
isxdigit 285

Embedded Studio Reference Manual Contents

isxdigit_| 286
tolower 287
tolower_| 288
toupper 289
toupper_| 290
<debugio.h> 291
debug_abort 294
debug_break 295
debug_clearerr 296
debug_enabled 297
debug_exit 298
debug_fclose 299
debug_feof 300
debug_ferror 301
debug_fflush 302
debug_fgetc 303
debug_fgetpos 304
debug_fgets 305
debug_filesize 306
debug_fopen 307
debug_fprintf 308
debug_fprintf_c 309
debug_fputc 310
debug_fputs 311
debug_fread 312
debug_freopen 313
debug_fscanf 314
debug_fscanf ¢ 315
debug_fseek 316
debug_fsetpos 317
debug_ftell 318
debug_fwrite 319
debug_getargs 320
debug_getch 321
debug_getchar 322
debug_getd 323
debug_getenv 324
debug_getf 325
debug_geti 326
debug_getl 327
debug_getll 328

Embedded Studio Reference Manual Contents

debug_gets 329
debug_getu 330
debug_getul 331
debug_getull 332
debug_kbhit 333
debug_loadsymbols 334
debug_perror 335
debug_printf 336
debug_printf_c 337
debug_putchar 338
debug_puts 339
debug_remove 340
debug_rename 341
debug_rewind 342
debug_runtime_error 343
debug_scanf 344
debug_scanf ¢ 345
debug_system 346
debug_time 347
debug_tmpfile 348
debug_tmpnam 349
debug_ungetc 350
debug_unloadsymbols 351
debug_vfprintf 352
debug_vfscanf 353
debug_vprintf 354
debug_vscanf 355
<errno.h> 356
EDOM 357
EILSEQ 358
EINVAL 359
ENOMEM 360
ERANGE 361
errno 362
<float.h> 363
DBL_DIG 364
DBL_EPSILON 365
DBL_MANT_DIG 366
DBL_MAX 367
DBL_MAX_10_EXP 368
DBL_MAX_EXP 369

Embedded Studio Reference Manual Contents

DBL_MIN 370
DBL_MIN_10_EXP 371
DBL_MIN_EXP 372
DECIMAL_DIG 373
FLT_DIG 374
FLT_EPSILON 375
FLT_EVAL_METHOD 376
FLT_MANT_DIG 377
FLT_MAX 378
FLT_MAX_10_EXP 379
FLT_MAX_EXP 380
FLT_MIN 381
FLT_MIN_10_EXP 382
FLT_MIN_EXP 383
FLT_RADIX 384
FLT_ROUNDS 385
<is0646.h> 386
and 387
and_eq 388
bitand 389
bitor 390
compl 391
not 392
not_eq 393
or 394
or_eq 395
xor 396
Xor_eq 397
<limits.h> 398
CHAR_BIT 399
CHAR_MAX 400
CHAR_MIN 401
INT_MAX 402
INT_MIN 403
LLONG_MAX 404
LLONG_MIN 405
LONG_MAX 406
LONG_MIN 407
MB_LEN_MAX 408
SCHAR_MAX 409
SCHAR_MIN 410

10

Embedded Studio Reference Manual Contents

SHRT_MAX 411
SHRT_MIN 412
UCHAR_MAX 413
UINT_MAX 414
ULLONG_MAX 415
ULONG_MAX 416
USHRT_MAX 417
<locale.h> 418
Iconv 419
localeconv 421
setlocale 422
<math.h> 423
acos 427
acosf 428
acosh 429
acoshf 430
asin 431
asinf 432
asinh 433
asinhf 434
atan 435
atan2 436
atan2f 437
atanf 438
atanh 439
atanhf 440
cbrt 441
cbrtf 442
ceil 443
ceilf 444
copysign 445
copysignf 446
cos 447
cosf 448
cosh 449
coshf 450
erf 451
erfc 452
erfcf 453
erff 454

exp 455

11

Embedded Studio Reference Manual Contents

exp2 456
exp2f 457
expf 458
expm1 459
expmif 460
fabs 461
fabsf 462
fdim 463
fdimf 464
floor 465
floorf 466
fma 467
fmaf 468
fmax 469
fmaxf 470
fmin 471
fminf 472
fmod 473
fmodf 474
fpclassify 475
frexp 476
frexpf 477
hypot 478
hypotf 479
ilogb 480
ilogbf 481
isfinite 482
isgreater 483
isgreaterequal 484
isinf 485
isless 486
islessequal 487
islessgreater 488
isnan 489
isnormal 490
isunordered 491
Idexp 492
Idexpf 493
Igamma 494
Igammaf 495
llrint 496

12

Embedded Studio Reference Manual Contents

llrintf 497
llround 498
llroundf 499
log 500
log10 501
log10f 502
log1p 503
log1pf 504
log2 505
log2f 506
logb 507
logbf 508
logf 509
Irint 510
Irintf 511
Iround 512
Iroundf 513
modf 514
modff 515
nearbyint 516
nearbyintf 517
nextafter 518
nextafterf 519
pow 520
powf 521
remainder 522
remainderf 523
remquo 524
remquof 525
rint 526
rintf 527
round 528
roundf 529
scalbin 530
scalbinf 531
scalbn 532
scalbnf 533
signbit 534
sin 535
sinf 536
sinh 537

13

Embedded Studio Reference Manual Contents

sinhf 538
sqrt 539
sqrtf 540
tan 541
tanf 542
tanh 543
tanhf 544
tgamma 545
tgammaf 546
trunc 547
truncf 548
<setjmp.h> 549
longjmp 550
setjmp 551
<stdarg.h> 552
va_arg 553
va_copy 554
va_end 555
va_start 556
<stddef.h> 557
NULL 558
offsetof 559
ptrdiff_t 560
size_t 561
<stdio.h> 562
getchar 563
gets 564
printf 565
putchar 570
puts 571
scanf 572
snprintf 576
sprintf 577
sscanf 578
vprintf 579
vscanf 580
vsnprintf 581
vsprintf 582
vsscanf 583
<stdlib.h> 584
EXIT_FAILURE 586

14

Embedded Studio Reference Manual Contents

EXIT_SUCCESS 587
MB_CUR_MAX 588
RAND_MAX 589
abs 590
atexit 591
atof 592
atoi 593
atol 594
atoll 595
bsearch 596
calloc 597
div 598
div_t 599
exit 600
free 601
itoa 602
labs 603
Idiv 604
Idiv_t 605
llabs 606
lidiv 607
lidiv_t 608
litoa 609
Itoa 610
malloc 611
mblen 612
mblen_| 613
mbstowcs 614
mbstowcs_| 615
mbtowc 616
mbtowc_| 617
qsort 618
rand 619
realloc 620
srand 621
strtod 622
strtof 623
strtol 624
strtoll 626
strtoul 628
strtoull 630

15

Embedded Studio Reference Manual Contents

ulltoa 632
ultoa 633
utoa 634
<string.h> 635
memccpy 637
memchr 638
memcmp 639
memcpy 640
memcpy_fast 641
memmove 642
mempcpy 643
memset 644
strcasecmp 645
strcasestr 646
strcat 647
strchr 648
strcmp 649
strcpy 650
strcspn 651
strdup 652
strerror 653
strlcat 654
stricpy 655
strlen 656
strncasecmp 657
strncasestr 658
strncat 659
strnchr 660
strncmp 661
strncpy 662
strndup 663
strnlen 664
strnstr 665
strpbrk 666
strrchr 667
strsep 668
strspn 669
strstr 670
strtok 671
strtok_r 672
<time.h> 673

16

Embedded Studio Reference Manual Contents

asctime 674
asctime_r 675
clock_t 676
ctime 677
ctime_r 678
difftime 679
gmtime 680
gmtime_r 681
localtime 682
localtime_r 683
mktime 684
strftime 685
time_t 687
tm 688
<wchar.h> 689
WCHAR_MAX 691
WCHAR_MIN 692
WEOF 693
btowc 694
btowc_| 695
mbrlen 696
mbrlen_| 697
mbrtowc 698
mbrtowc_| 699
mbsrtowcs 700
mbsrtowcs_| 701
msbinit 702
wchar_t 703
wcrtomb 704
wcrtomb_| 705
wcscat 706
wceschr 707
wcesemp 708
wcscpy 709
wcesespn 710
wcsdup 711
wcslen 712
wcsncat 713
wcesnchr 714
wesnemp 715
wcesncpy 716

17

Embedded Studio Reference Manual Contents

wcsnlen 717
wcsnstr 718
wcspbrk 719
wcsrchr 720
wcesspn 721
wcsstr 722
wcstok 723
wcstok_r 724
wctob 725
wctob | 726
wint_t 727
wmemccpy 728
wmemchr 729
wmemcmp 730
wmemcpy 731
wmemmove 732
wmempcpy 733
wmemset 734
wstrsep 735
<wctype.h> 736
iswalnum 738
iswalnum_| 739
iswalpha 740
iswalpha_|l 741
iswblank 742
iswblank_| 743
iswentrl 744
iswentrl_| 745
iswctype 746
iswctype_| 747
iswdigit 748
iswdigit_lI 749
iswgraph 750
iswgraph_lI 751
iswlower 752
iswlower_| 753
iswprint 754
iswprint_lI 755
iswpunct 756
iswpunct_| 757
iswspace 758

18

Embedded Studio Reference Manual Contents
iswspace_| 759

iswupper 760

iswupper_| 761

iswxdigit 762

iswxdigit_| 763

towctrans 764

towctrans_| 765

towlower 766

towlower_| 767

towupper 768

towupper_| 769

wctrans 770

wctrans_| 771

wctype 772

<xlocale.h> 773
duplocale 774

freelocale 775

localeconv_| 776

newlocale 777

C++ Library User Guide 779
Standard template library 781
Subset API reference 782
<new> - memory allocation 783
operator delete 784
operator new 785
set_new_handler 786
Utilities Reference 787
Compiler driver 788
File naming conventions 789
Command-line options 790

-ansi (Warn about potential ANSI problems) 791

-ar (Archive output) 792

-arch (Set ARM architecture) 793

-be (Big Endian) 794

-c (Compile to object code, do not link) 795

-d (Define linker symbol) 796

-D (Define macro symbol) 797

-e (Set entry point symbol) 798

-E (Preprocess) 799

-exceptions (Enable C++ Exception Support) 800

-fabi (Floating Point Code Generation) 801

19

Embedded Studio Reference Manual Contents

-fpu (Set ARM FPU) 802
-F (Set output format) 803
-g (Generate debugging information) 804
-g1 (Generate minimal debugging information) 805
-help (Display help information) 806
-io (Select 1/0 library implementation) 807
-1 (Define user include directories) 808
-I- (Exclude standard include directories) 809
-J (Define system include directories) 810
-K (Keep linker symbol) 811
-L (Set library directory path) 812
-I- (Do not link standard libraries) 813
-make (Make-style build) 814
-M (Display linkage map) 815
-n (Dry run, no execution) 816
-nostderr (No stderr output) 817
-0 (Set output file name) 818
-oabi (Use oabi compiler) 819
-O (Optimize output) 820
-printf (Select printf capability) 821
-rtti (Enable C++ RTTI Support) 822
-R (Set section name) 823
-scanf (Select scanf capability) 824
-sd (Treat double as float) 825
-Thumb (Generate Thumb code) 826
-v (Verbose execution) 827
-w (Suppress warnings) 828
-we (Treat warnings as errors) 829
-Wa (Pass option to tool) 830
-x (Specify file types) 831
-y (Use project template) 832
-z (Set project property) 833
Command-Line Project Builder 834
Building with a SEGGER Embedded Studio project file 835
Building without a SEGGER Embedded Studio project file 837
Command-line options 838
-batch (Batch build) 839
-config (Select build configuration) 840
-clean (Remove output files) 841
-D (Define macro) 842
-echo (Show command lines) 843

20

Embedded Studio Reference Manual Contents

-file (Build a named file) 844

-packagesdir (Specify packages directory) 845

-project (Specify project to build) 846

-property (Set project property) 847

-rebuild (Always rebuild) 848

-show (Dry run, don't execute) 849

-solution (Specify solution to build) 850

-studiodir (Specify SEGGER Embedded Studio directory) 851

-template (Specify project template) 852

-time (Time the build) 853

-threadnum (Specify number of build threads) 854

-type (Specify project type) 855

-verbose (Show build information) 856
Command-Line Scripting 857
Command-line options 858
-define (Define global variable) 859

-help (Show usage) 860

-load (Load script file) 861

-define (Verbose output) 862

emScript classes 863
Example uses 864
Embed 865
Header file generator 866
Using the header generator 867
Command line options 868
-regbaseoffsets (Use offsets from peripheral base) 869

-nobitfields (Inhibit bitfield macros) 870

Linker script file generator 871
Command-line options 872
-check-segment-overflow 873
-memory-map-file 874
-memory-map-macros 875
-section-placement-file 876
-section-placement-macros 877

-symbols 878

Package generator 879
Appendices 881
Technical 882
File formats 882
Memory Map file format 883

Section Placement file format 885

21

Embedded Studio Reference Manual Contents

Project file format 887
Project Templates file format 888
Property Groups file format 890
Package Description file format 892
External Tools file format 896
Environment Options 899
Building Environment Options 899
Debugging Environment Options 901
IDE Environment Options 903
Programming Language Environment Options 908
Source Control Environment Options 911
Text Editor Environment Options 912
Windows Environment Options 921
Project Options 926
General Build Options 926
Compilation Options 933
Debugging Options 940
Executable Project Options 947
Macros 951
System Macros 951
Build Macros 953
Script classes 956
BinaryFile 956
CWSys 957
Debug 958
ElfFile 960
Targetinterface 961
WScript 966

22

Embedded Studio Reference Manual Introduction

Introduction

This guide is divided into a number of sections:

Introduction
Covers installing SEGGER Embedded Studio on your machine and verifying that it operates correctly,
followed by a brief guide to the operation of the SEGGER Embedded Studio integrated development
environment, debugger, and other software supplied in the product.

SEGGER Embedded Studio User Guide
Contains information on how to use the SEGGER Embedded Studio development environment to manage
your projects, build, and debug your applications.

C Library User Guide
Contains documentation for the functions in the standard C library supplied in SEGGER Embedded Studio.

ARM target support
Contains a description of system files used for startup and debugging of ARM applications.

ide_target_interfaces
Contains a description of the support for programming ARM microcontrollers.

23

Embedded Studio Reference Manual Introduction

What is SEGGER Embedded Studio?

SEGGER Embedded Studio is a complete C/C++ development system for ARM and Cortex, microcontrollers and
microprocessors that runs on Windows, Mac OS and Linux.

C/C++ Compiler

SEGGER Embedded Studio comes with pre-built versions of both GCC and Clang/LLVM C and C++ compilers
and assemblers. The GNU linker and librarian are also supplied to enable you to immediately begin developing
applications for ARM.

SEGGER Embedded Studio C Library

SEGGER Embedded Studio has its own royalty-free ANSI and ISO C compliant C library that has been specifically
designed for use within embedded systems.

SEGGER Embedded Studio C++ Library

SEGGER Embedded Studio supplies a C++ library that implements STL containers, exceptions and RTTI.

SEGGER Embedded Studio IDE

SEGGER Embedded Studio is a streamlined integrated development environment for building, testing, and

deploying your applications. SEGGER Embedded Studio provides:

Source Code Editor:A powerful source code editor with multi-level undo and redo, makes editing your
code a breeze.

Project System:A complete project system organizes your source code and build rules.

Build System:With a single key press you can build all your applications in a solution, ready for them to be
loaded onto a target microcontroller.

Debugger and Flash Programming:You can download your programs directly into Flash and debug them
seamlessly from within the IDE using a wide range of target interfaces.

Help system:The built-in help system provides context-sensitive help and a complete reference to the
SEGGER Embedded Studio IDE and tools.

Core Simulator:As well as providing cross-compilation technology, SEGGER Embedded Studio provides
a PC-based fully functional simulation of the target microcontroller core so you can debug parts of your

application without waiting for hardware.

24

Embedded Studio Reference Manual Introduction

SEGGER Embedded Studio Tools

SEGGER Embedded Studio supplies command line tools that enable you to build your application on the
command line using the same project file that the IDE uses.

25

Embedded Studio Reference Manual Introduction

What we don't tell you

This documentation does not attempt to teach the C or assembly language programming; rather, you should
seek out one of the many introductory texts available. And similarly the documentation doesn't cover the ARM

architecture or microcontroller application development in any great depth.

We also assume that you're fairly familiar with the operating system of the host computer being used.

C programming guides
These are must-have books for any C programmer:

Kernighan, B.W. and Ritchie, D.M., The C Programming Language (2nd edition, 1988). Prentice-Hall,
Englewood Cliffs, NJ, USA. ISBN 0-13-110362-8.

The original C bible, updated to cover the essentials of ANSI C (1990 version).

Harbison, S.P. and Steele, G.L., C: A Reference Manual (second edition, 1987). Prentice-Hall, Englewood
Cliffs, NJ, USA. ISBN 0-13-109802-0.

A nice reference guide to C, including a useful amount of information on ANSI C. Co-authored by Guy

Steele, a noted language expert.

ANSI C reference

If you're serious about C programming, you may want to have the ISO standard on hand:

ISO/IEC 9899:1990, C Standard and ISO/IEC 9899:1999, C Standard. The standard is available from your
national standards body or directly from ISO at http://www.iso.ch/.

ARM microcontrollers

For ARM technical reference manuals, specifications, user guides and white papers, go to:

http://www.arm.com/Documentation.

GNU compiler collection

For the latest GCC documentation go to:

http://gcc.gnu.org/.

LLVM/Clang

For the latest LLVM/Clang documentation to to:

http://www.llvm.org

26

http://www.iso.ch/
http://www.arm.com/Documentation
http://gcc.gnu.org/
http://www.llvm.org

Embedded Studio Reference Manual Introduction

Getting Started

You will need to install a CPU support package:

Choose Tools > Package Manager

Choose the CPU support packages you wish to install and complete the dialog.
You will need to create a project:

Choose File > New Project
Select the appropriate Executable project type
Specify a location for the project

Complete the dialog selecting the appropriate Target Processor value
You will need to build the project:

Choose Build | Build 'Project’
To debug on the simulator

Choose Project | Edit Options to show the project options dialog
In the Search Options type in Simulator

Choose Simulator for the Target Connection option
To debug on hardware

Choose Project | Edit Options to show the project options dialog
In the Search Options type in J-Link

Choose J-Link for the Target Connection option
To start debugging
Choose Debug | Go

The debugger will stop the program at the main, you can now debug the application.

27

Embedded Studio Reference Manual Introduction

Text conventions

Menus and user interface elements

When this document refers to any user interface element, it will do so in bold font. For instance, you will often
see reference to the Project Explorer, which is taken to mean the project explorer window. Similarly, you'll see
references to the Standard toolbar which is positioned at the top of the SEGGER Embedded Studio window, just

below the menu bar on Windows and Linux.

When you are directed to select an item from a menu in SEGGER Embedded Studio, we use the form menu-
name > item-name. For instance, File > Save means that you need to click the File menu in the menu bar and
then select the Save item. This form extends to items in sub-menus, so File > Open With Binary Editor has the

obvious meaning.

Keyboard accelerators

Frequently-used commands are assigned keyboard accelerators to speed up common tasks. SEGGER Embedded

Studio uses standard Windows and Mac OS keyboard accelerators wherever possible.

Windows and Linux have three key modifiers which are Ctrl, Alt, and Shift. For instance, Ctrl+Alt+P means that
you should hold down the Ctrl and Alt buttons whilst pressing the P key; and Shift+F5 means that you should
hold down the Shift key whilst pressing F5.

Mac OS has four key modifiers which are (command), (option), (control), and (shift). Generally there is a one-
to-one correspondence between the Windows modifiers and the Mac OS modifiers: Ctrl is , Alt is , and Shift
is . SEGGER Embedded Studio on Mac OS has its own set of unique key sequences using (control) that have no

direct Windows equivalent.

SEGGER Embedded Studio on Windows and Linux also uses key chords to expand the set of accelerators. Key
chords are key sequences composed of two or more key presses. For instance, the key chord Ctrl+T, D means
that you should type Ctrl+T followed by D; and Ctrl+K, Ctrl+Z means that you should type Ctrl+T followed by
Ctrl+Z. Mac OS does not support accelerator key chords.

Code examples and human interaction

Throughout the documentation, text printed in this typeface represents verbatim communication with the
computer: for example, pieces of C text, commands to the operating system, or responses from the computer.
In examples, text printed in this typeface is not to be used verbatim: it represents a class of items, one of which
should be used. For example, this is the format of one kind of compilation command:

hcl source-file
This means that the command consists of:

The word hdl, typed exactly like that.

A source-file: not the text source-file, but an item of the source-file class, for example myprog.c.

28

Embedded Studio Reference Manual Introduction

Whenever commands to and responses from the computer are mixed in the same example, the commands
(i.e. the items which you enter) will be presentedi n t hi s t ypef ace.For example, here is a dialog with the

computer using the format of the compilation command given above:
c:\ code\ exanpl es>hcl -v nyprog.c

The user types the text hcl -v myprog.c and then presses the enter key (which is assumed and is not shown); the

computer responds with the rest.

29

Embedded Studio Reference Manual Introduction

Release notes

Version 3.10i

Build

Fixed C++ signbit implementation.

Fixed build not building newly imported files.
Debug

Fixed misc bugs in watch window.

Fixed crash when setting register allocated variables that are less than 4 bytes in length.
Fixed Cortex-M simulator handling of word aligned stack pointers on exception return.
Fixed crash using debug stop during download.

Updated shipped J-Link software to V6.12a.

IDE

Fixed pasting of file into a project explorer folder that is already contained within that folder.

Fixed file overwrite warning dialog not giving the option to cancel.

Fixed crash when closing all editor windows, right clicking and then moving the mouse with the empty
dock window.

Fixed editor search not clearing highlights when search string is cleared.

Version 3.10h

Build

Removed broken linker variant project property.

Debug

Fixed watch window not storing the filename and linenumber context in which to evaluate the
expression.
Updated shipped J-Link software to V6.10n.

IDE

Fixed the window group context menu sometimes being displayed higher than the mouse pointer.

30

Embedded Studio Reference Manual Introduction

Search box now focused when package manager is opened.
Fixed project importer not loading shipped jlink.dll when no other is available.

Version 3.10g

Debug

Fixed SWO tracing.

Version 3.10f

Build

Fixed crash caused by clearing build log whilst building.
Fixed Id executable being loaded into an editor on memory segment overflow linker errors (Linux and
macOS only).

Fixed setting strict-aligned clang compiler option for v4t, v5te, vém and v8m.baseline architectures.

IDE

Fixed use of proportional fonts in code editor.
Fixed size of .emProject, .emPackage and .emArchive file icons (Linux only).

Added .svd file type detection to "Register Definition File" property.

Version 3.10e

IDE

Ctrl+C and Ctrl+A now work in project property dialog's description field.

Fixed drag not working in project explorer on new files or folders until project has been reloaded.

Version 3.10d

Debug

Fixed memory window starting in auto size mode when a fixed size is specified.

31

Embedded Studio Reference Manual Introduction

Fixed crash when opening memory window.

Version 3.10c

Debug

IDE

Fixed memory window always evaluating address expression when auto size is selected.

Fixed build summary not being fully visible when build log is larger than window.

Fixed directory chooser on IAR/Keil project import dialog.

Fixed crash when entering address in disassembly window that is not within the current visible address
range.

Fixed text editor slow down when rendering very long lines.

Find dialog auto complete is now case sensitive.

Enter key now behaves the same as return key in find dialog.

Fixed crash when dragging a project folder onto one of its own sub folders.

Register window bitfield entries now use monospace font.

Version 3.10b

Debug

IDE

Fixed crash using debug restart with the simulator target.

Updated shipped J-Link software to V6.00i.

Add "Ignore .debug_frame Section" debugging property.

Fixed crash if memory write fails during download on OS X.

Fixed crash when connecting to J-Link target interface when no J-Link is attached.
Fixed disassembly of Idr literal instructions.

Improved debug support of clang generated code.

Fixed goto definition and find references on files with paths containing UNICODE characters.
File and project history now shared between all major releases.

Fixed save prompt dialog not being displayed when modified file is closed.

Fixed close solution not stopping when the saving of a modified file has failed.

Improved appearance of debugger tooltips.

32

Embedded Studio Reference Manual Introduction

Version 3.10a

Debug

IDE

Added "Auto Refresh" to the context menu of the execution count window.
Fixed set breakpoint on variable from text editor.
Fixed modifying breakpoint properties.

Fixed crash when pressing page down on last page of the disassembly in the disassembly window.

Parallel building of files in projects now shows a progress bar and ETA, both of these can be disabled
using new environment options.

Fixed Microsoft IME support in code editor.

Removed project property "Build Dependents in Parallel”, replaced it with "Project Can Build In Parallel".
Fixed saving of files from code editor using Shift-JIS encoding.

Improved appearance of build log's memory usage summary when there are many memory segments.

Fixed code completion on files with paths containing UNICODE characters.

Version 3.10

Build

Added "Keep Linker Script File" project property.

Added "Tool Chain Directory" project property.

Added "Externally Built Library" to the "Project Type" enumeration.

Added "Section Placement Segments" project property.

Added "Post-Link Output File" project property.

Added "C Compile Command", "C++ Compile Command", "Assemble Command", "Link Command" and
"Archive Command" project properties to enable user defined build steps.

Added capability to build "Externally Built Executable" and "Externally Built Library" project types using
command lines in project properties.

Supplied ascii only version of ctype functions in ctype_no_wchar.c in the $(StudioDir)/source directory.
Supplied non threaded version errno in errno_no_thread.c in the $(StudioDir)/source directory.

Fixed 0.0 >= 0.0 and 0.0 <= 0.0 not returning true on some architectures.

Fixed crash when building libraries using indirect files with no files to archive.

Opening IAR EWARM/Keil MDK project files will now create internal and external build configurations.
The external build configuration will use the IAR/Keil tools. The internal build configuration will use the
internal tools.

Fixed setting errno to EDOM with invalid arguments to acos(f), asin(f) and fmod(f).

Fixed setting errno to ERANGE when overflow occurs with Idexp(f).

Updated the GCC/BINUTILS tools build to use GCC ARM Embedded 5-2016-g2-update source release.

33

Embedded Studio Reference Manual Introduction

Link will now fail with an error if a section has been placed at the end of a segment using the

place_from_segment_start attribute and the preceding section overlaps it.

Debug

IDE

Removed "J-Link DLL File" project property.

Added "Use Built-in RTT support” project property to enable RTT to be used on all devices.
Add "Ignore .debug_aranges Section" debugging property.

Fixed crash while using memory window when not connected to target.

Added "Load ELF Sections" loader project property.

Added "Stop On Memory Error" simulator project property.

Removed "Debugger Initial Breakpoint" environment options.

Can now optionally specify the main load file to download using the "Load File" project property.
Added "Go To Disassembly" to code editor context menu when debugging.

Added "Export As Text" to variable display windows.

Variable display windows now display char * as null terminated strings by default.
Variable display windows now carry out numerical sort when sorting on size.

Fixed watch window not moving blank entry to end when using add to watch from editor.
Adding simulator project property "Stop On Memory Error".

Enabling of exception breakpoints is preserved in session file.

Project properties dialog now defaults to the active build confguration when opened.

Fixed crash when dragging a project folder onto itself.

Fixed display of string properties that contain line feeds.

The "Project Type" property can now be set on a per configuration basis.

Fixed reload project not working correctly when the project has been opened from the Recent Projects
window.

Project properties editor dialog is now modal.

Memory window address field now expands to fill available space.

Fixed blank filenames in Open File From Solution dialog.

Fixed crash when right clicking in empty area of build configuration dialog.

Fixed crash when changing configuration with a property editor focused in properties dialog.
Changed the way modified and inherited properties are shown in the properties dialog/window.

Code editor no longer displays file modified warning if file has been externally deleted.

Properties dialog, removed "All" group, deselecting the group/page will show all properties.

Properties dialog, changed the graphic to indicate that a project property has been modified or is set in
another node or configuration.

Properties dialog, removed the build macros and added a means to display the set of macros on
individual property editors.

Project explorer, added "Exclude From Build" option to folders.

34

Embedded Studio Reference Manual Introduction

Add support for ARMv8-M Mainline and ARMv8-M Baseline architecture.

Properties dialog, added option to show modified properties only.

Fixed drag and drop in project explorer only working on a new folder after project has been reloaded.
Project explorer removed automatic usage of memory map, section placement and linker script files in
the build.

Added "Use This Memory Map", "Use This Section Placement" and "Use This Linker Script File" to the
appropriate files in the project explorer context menu.

Files of type Memory Map, Section Placement and Linker Script that are added to the project now prompt
to update the appropriate project property.

Added "Use Manual Linker Script" and "Linker Script File" project properties.

Removed Calcpad, Debug Immediate, Downloads, Properties, Script Console and Terminal Emulator
windows.

Reorganised menu entries, all window show actions are avaiable on the View menu.

File path property editor now applies change when enter key is pressed.

The Application Monospace Font property editor will now only allow monospace fonts to be selected.

35

Embedded Studio Reference Manual Introduction

36

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

SEGGER Embedded Studio User Guide

This is the user guide for the SEGGER Embedded Studio integrated development environment (IDE). The SEGGER
Embedded Studio IDE consists of:

a project system to organize your source files

a build system to build your applications

programmer aids to navigate and work effectively

a target programmer to download applications into RAM or flash
a debugger to pinpoint bugs

37

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

SEGGER Embedded Studio standard layout

SEGGER Embedded Studio's main window is divided into the following areas:

Title bar:Displays the name of the current solution.

Menu bar:Menus for editing, building, and debugging your program.

Toolbars:Frequently used actions are quickly accessible on toolbars below the menu bar.

Editing area:A tabbed view of any open editor windows and the HTML viewer.

Docked windows:SEGGER Embedded Studio has many windows that dock to the left, right, or below the
editing area. You can configure which windows will be visible, and their placement, when editing and
debugging.

Status bar At the bottom of the main window, the status bar contains useful information about the

current editor, build status, and debugging environment.

38

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Menu bar

The menu bar contains menus for editing, building, and debugging your program. You can navigate menus
using the keyboard or the mouse.

Navigating menus using the mouse

To navigate menus using the mouse:

1. Click a menu title in the menu bar to show the related menu.

2. Click the desired command in the menu to execute that command.
or

1. Click and hold the mouse on a menu title in the menu bar to show the related menu.
2. Drag the mouse to the desired command in the menu.

3. Release the mouse while it is over the command to execute that command.

Navigating menus with the keyboard

To navigate menus using the keyboard:

1. Tap the Alt key activate the menu bar.

Tap Return to display the menu.

Use the Left and Right keys to select the required menu.

Use the Up or Down key to select the required command or submenu.

Press Enter to execute the selected command.

SR T

Press Alt or Esc at any time to cancel menu selection.

After you press the Alt key once, each menu on the menu bar has one letter underlinedits shortcut key. So, to
activate a menu using the keyboard:

While holding down the Alt key, type the desired menu's shortcut key.
After the menu appears, you can navigate it using the cursor keys:

Use Up and Down to move up and down the list of menu items.
Use Esc to cancel a menu.

Use Right or Enter to open a submenu.

Use Left or Esc to close a submenu and return to the parent menu.

Type the underlined letter in a command's name to execute that command.

39

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Title bar

The first item shown in the title bar is SEGGER Embedded Studio's name. Because SEGGER Embedded Studio
can be used to target different processors, the name of the target processor family is also shown, to help you
distinguish between instances of SEGGER Embedded Studio when debugging multi-processor or multi-core
systems.

The filename of the active editor follows SEGGER Embedded Studio's name; you can configure the presentation
of this filename as described below.

After the filename, the title bar displays status information on SEGGER Embedded Studio's state:

[building] SEGGER Embedded Studio is building a solution, building a project, or compiling a file.
[run] An application is running under control of SEGGER Embedded Studio's debugger.
[break] The debugger is stopped at a breakpoint.

[autostep] The debugger is single stepping the application without user interaction (autostepping).

40

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Status bar

At the bottom of the window, the status bar contains useful information about the current editor, build status,
and debugging environment. The status bar is divided into two regions: one contains a set of fixed panels and

the other is used for messages.

The message area

The leftmost part of the status bar is a message area used for things such as status tips, progress information,

warnings, errors, and other notifications.

Status bar panels

You can show or hide the following panels on the status bar:

Panel Description

Displays the connected target interface. When
connected, this panel contains the selected target
interface's name and, if applicable, the processor to
which the target interface is connected. The LED icon
Target device status flashes green when a program is running, is solid red
when stopped at a breakpoint, and is yellow when
connected to a target but not running a program.
Double-clicking this panel displays the Targets pane,
and right-clicking it invokes the Target shortcut menu.

Cycle count panel Displays the number of processor cycles used by the
executing program. This panel is only visible if the
connected target supports performance counters
that can report the total number of cycles executed.
Double-clicking this panel resets the cycle counter to
zero, and right-clicking it brings up the Cycle Count
shortcut menu.

Insert/overwrite status Indicates whether the current editor is in insert or
overwrite mode. In overwrite mode, the panel displays
"OVR"; in insert mode, the panel displays "INS".

Read-only status Indicates whether the editor is in read-only mode. If
the editor is editing a read-only file or is in read-only
mode, the panel display "R/O"; if the editor is in read-
write mode, the panel displays "R/W".

Build status Indicates the success or failure of the last build. If
the last build completed without errors or warnings,
the build status pane contains Built OK; otherwise, it
contains the number of errors and warnings reported.
If there were errors, double-clicking this panel displays
the Build Log in the Output pane.

141

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Caret position Indicates the insertion position position in the editor
window. For text files, the caret position pane displays
the line number and column number of the insertion
point in the active window; when editing binary files, it
displays the address being edited.

Time panel Displays the current time.

Configuring the status bar panels

To configure which panels are shown on the status bar:

Choose View > Status Bar.
From the status bar menu, select the panels to display and deselect the ones you want hidden.

or
Right-click the status bar.
From the status bar menu, select the panels to display and deselect the ones you want to hide.
To show or hide the status bar:

Choose View > Status Bar.
From the status bar menu, select or deselect the Status Bar item.

You can choose to hide or display the size grip when SEGGER Embedded Studio's main window is not maximized.
(The size grip is never shown in full-screen mode or when maximized.)
To show or hide the size grip

Choose View > Status Bar.
From the status bar menu, select or deselect the Size Grip item.

42

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Editing workspace

The main area of SEGGER Embedded Studio is the editing workspace. It contains any files being edited, the on-
line help system's HTML browser, and the Dashboard.

43

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Docking windows

SEGGER Embedded Studio has a flexible docking system you can use to position windows as you like them. You
can dock windows in the SEGGER Embedded Studio window or in the four head-up display windows. SEGGER
Embedded Studio will remember the position of the windows when you leave the IDE and will restore them

when you return.

Window groups

You can organize SEGGER Embedded Studio windows into window groups. A window group has multiple
windows docked in it, only one of which is active at a time. The window group displays the active window's title

for each of the windows docked in the group.

Clicking on the window icons in the window group's header changes the active window. Hovering over a

docked window's icon in the header will display that window's title in a tooltip.

To dock a window to a different window group:

Press and hold the left mouse button over the title of the window you wish to move.
As you start dragging, all window groups, including hidden window groups, become visible.
Drag the window over the window group to dock in.

Release the mouse button.

Holding Ctrl when moving the window will prevent the window from being docked. If you do not dock a

window on a window group, the window will float in a new window group.

Perspectives

SEGGER Embedded Studio remembers the dock position and visibility of each window in each perspective. The
most common use for this is to lay your windows out in the Standard perspective, which is the perspective
used when you are editing and not debugging. When SEGGER Embedded Studio starts to debug a program,

it switches to the Debug perspective. You can now lay out your windows in this perspective and SEGGER
Embedded Studio will remember how you laid them them out. When you stop debugging, SEGGER Embedded
Studio will revert to the Standard perspective and that window layout for editing; when you return to Debug
perspective on the next debug session, the windows will be restored to how you laid them out in that for

debugging.

SEGGER Embedded Studio remembers the layout of windows, in all perspectives, such that they can be restored
when you run SEGGER Embedded Studio again. However, you may wish to revert back to the standard docking

positions; to do this:

44

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Dashboard

When SEGGER Embedded Studio starts, it presents the Dashboard, a collection of panels that provide useful
information, one-click loading of recent projects, and at-a-glance summaries of activity relevant to you.

Tasks

The Tasks panel indicates tasks you need to carry out before SEGGER Embedded Studio is fully functionalfor

instance, whether you need to activate SEGGER Embedded Studio, install packages, and so on.

Updates

The Updates panel indicates whether any packages you have installed are now out of date because a newer
version is available. You can install each new package individually by clicking the Install button under each
notification, or install all packages by clicking the Install all updates link at the bottom of the panel.

Projects

The Projects panel contains links to projects you have worked on recently. You can load a project by clicking the
appropriate link, or clear the project history by clicking the Clear List button. To manage the contents of the list,

click the Manage Projects link and edit the list of projects in the Recent Projects window.

News

The News panel summarizes the activity of any RSS and Atom feeds you have subscribed to. Clicking a link will
display the published article in an external web browser. You can manage your feed subscriptions to by clicking
the Manage Feed:s link at the end of the News panel and pinning the feeds in the Favorites windowyou are only

subscribed to the pinned feeds.

Links

The Links panel is a handy set of links to your favorite websites. If you pin a link in the Favorites window, it

appears in the Links panel.

45

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

SEGGER Embedded Studio help and assistance

SEGGER Embedded Studio provides context-sensitive help in increasing detail:

Tooltips
When you position the pointer over a button and keep it still, a small window displays a brief description of

the button and its keyboard shortcut, if it has one.

Status tips
In addition to tooltips, SEGGER Embedded Studio provides a longer description in the status bar when you

hover over a button or menu item.

Online manual
SEGGER Embedded Studio has links from all windows to the online help system.

The browser

Documentation pages are shown in the Browser.

Help using SEGGER Embedded Studio

SEGGER Embedded Studio provides an extensive, HTML-based help system that is available at all times.

To view the help text for a particular window or other user-interface element:

Click to select the item with which you want assistance.
Choose Help > Help or press F1.

Help within the text editor

The text editor is linked to the help system in a special way. If you place the insertion point within a word and
press F1, the help-system page most likely to be useful is displayed in the HTML browser. This a great way to
quickly find the help text for functions provided in the library.

Browsing the documentation

The Contents window lists all the topics in the SEGGER Embedded Studio documentation and gives a way to

search through them.

The highlighted entry indicates the current help topic. When you click a topic, the corresponding page appears

in the Browser window.

46

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

The Next Topic and Previous Topic items in the Help menu, or the buttons on the Contents window toolbar,

help navigate through topics.

To search the online documentation, type a search phrase into the Search box on the Contents window toolbar.

To search the online documentation:

Choose Help > Contents or press Ctrl+Alt+F1.
Enter your search phrase in the Search box and press Enter (or Return on Macs).

The search commences and the table of contents is replaced by links to pages matching your query, listed in
order of relevance. To clear the search and return to the table of contents, click the clear icon in the Search box.

47

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Creating and managing projects

A SEGGER Embedded Studio project is a container for everything required to build your applications. It contains
all the assorted resources and maintains the relationships between them.

A project is a convenient place to find every file and piece of information associated with your work. You place

projects into a solution, which can contain one or more projects.

This chapter introduces the various parts of a project, shows how to create projects, and describes how to
organize the contents of a project. It describes how to use the Project Explorer and Project Manager for project-

management tasks.

48

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Solutions and projects

To develop a product using SEGGER Embedded Studio, you must understand the concepts of projects and

solutions.
A project contains and organizes everything you need to create a single application or a library.
A solution is a collection of projects and configurations.

Organizing your projects into a solution allows you to build all the projects in a solution with a single keystroke,
and to load them onto the target ready for debugging.

In your SEGGER Embedded Studio project, you

organize build-system inputs for building a product.
add information about items in the project, and their relationships, to assist you in the development

process.

Projects in a solution can reside in the same or different directories. Project directories are always relative to the

directory of the solution file, which enables you to more-easily move or share project-file hierarchies.

The Project Explorer organizes your projects and files, and provides quick access to the commands that operate

on them. A toolbar at the top of the window offers quick access to commonly used commands.

Solutions

When you have created a solution, it is stored in a project file. Project files are text files, with the file extension
emProject, that contain an XML description of your project. See Project file format for a description of the

project-file format.

Projects

The projects you create within a solution have a project type SEGGER Embedded Studio uses to determine how
to build the project. The project type is selected when you use the New Project dialog. The available project
types depend on the SEGGER Embedded Studio variant you are using, but the following are present in most
SEGGER Embedded Studio variants:

Executable: a program that can be loaded and executed.

Externally Built Executable: an executable that is not built by the SEGGER Embedded Studio internal build
process.

Library: a group of object files collected into a single file (sometimes called an archive).

Externally Built Library: a library that is not built by the SEGGER Embedded Studio internal build process.

Object File: the result of a single compilation.

49

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Staging: a project that will apply a user-defined command to each file in a project.
Combining: a project that can be used to apply a user-defined command when any files in a project have
changed.

Project options and configurations

Project options are attached to project nodes. They are usually used in the build process, for example, to define
C preprocessor symbols. You can assign different values to the same project option, based on a configuration:
for example, you can assign one value to a C preprocessor symbol for release build and a different value for a
debug build.

Folders and Dynamic Folders

Projects can contain folders, which are used to group related files. Automated grouping uses the files' extensions
to, for example, put all .c files in one folder, etc. Grouping also can be done manually by explicitly creating a
file within a folder. Note that these project folders do not map onto directories in the file system, they are used

solely to structure the display of content shown in the Project Explorer.

Projects can also contain dynamic folders which will can show the directories and files contained in the file
system in the project explorer. You can specify if the dynamic folder is recursive and use wildcards to include and

exclude files.

Source files

Source files are all the files used to build a product. These include source code files and also section-placement
files, memory-map files, and script files. All the source files you use for a particular product, or for a suite of
related products, are managed in a SEGGER Embedded Studio project. A project can also contain files that
are not directly used by SEGGER Embedded Studio to build a product but contain information you use during
development, such as documentation. You edit source files during development using SEGGER Embedded
Studio's built-in text editor, and you organize files into a target (described next) to define the build-system

inputs for creating the product.

The source files of your project can be placed in folders or directly in the project. Ideally, the paths to files
placed in a project should be relative to the project directory, but at times you might want to refer to a file in an

absolute location and this is supported by the project system.

When you add a file to a project, the project system detects whether the file is in the project directory. If a

file is not in the project directory, the project system tries to make a relative path from the file to the project
directory. If the file isn't relative to the project directory, the project system detects whether the file is relative to
the $(StudioDir) directory; if so, the filename is defined using $(StudioDir). If a file is not relative to the project

directory or to $(StudioDir), the full, absolute pathname is used.

50

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

The project system will allow (with a warning) duplicate files to be put into a project.
The project system uses a file's extension to determine the appropriate build action to perform on the file:

A file with the extension .c will be compiled by a C compiler.

A file with the extension .cpp or .cxx will be compiled by a C++ compiler.

A file with the extension .s or .asm will be compiled by an assembler.

A file with the object-file extension .o will be linked.

A file with the library-file extension .a will be linked.

A file with the extension .xml will be opened and its file type determined by the XML document type.

Files with other file extensions will not be compiled or linked.

You can modify this behavior by setting a file's File Type project option with the Common configuration

selected, which enables files with non-standard extensions to be compiled by the project system.

Externally Built Executables

You can use an external build process for Externally Built Executable project types by setting the Build
Command project option, for example to make target. Alternatively you can set command lines for specific
build steps to compile/assemble and link. When you create an Externally Built Executable project type

configurations will be created that create command lines for a variety of external tool chains.

Solution links

You can create links to existing project files from a solution, which enables you to create hierarchical builds. For
example, you could have a solution that builds a library together with a stub test driver executable. You can
link to that solution from your current solution by right-clicking the solution node of the Project Explorer and

selecting Add Existing Project. Your current solution can then use the library built by the other project.

Session files

When you exit SEGGER Embedded Studio, details of your current session are stored in a session file. Session files
are text files, with the file extension emSession, that contain details such as which files you have opened in the

editor and what breakpoints you have set in the Breakpoint window.

51

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Creating a project
You can create a new solution for each project or place multiple projects in an existing solution.

To create a new project in an existing solution:

1. Choose Project > Add New Project.

2. Inthe New Project wizard, select the type of project you wish to create and specify where it will be
placed.

3. Ensure that Add the project to current solution is checked.

4. Click OK to go to next stage or Cancel to cancel the project's creation.

The project name must be unique to the solution and, ideally, the project directory should be relative to the
solution directory. The project system will use the project directory as the current directory when it builds your
project. Once complete, the Project Explorer displays the new solution, project, and files contained in the
project. To add another project to the solution, repeat the above steps.

To create a new project in a new solution:

1. Choose File > New Project or press Ctrl+Shift+N.

2. Select the type of project you wish to create and where it will be placed.
3. Click OK.

52

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Adding existing files to a project

You can add existing files to a project in a number of ways.

To add existing files to the active project:
Choose Project > Add Existing File or press Ctrl+P, A.

Using the Open File dialog, navigate to the directory containing the files and select the ones you wish to add to

the project.
Click OK.

The selected files are added to the folders whose filter matches the extension of each of the files. If no filter
matches a file's extension, the file is placed underneath the project node.
To add existing files to a specific project:

1. In the Project Explorer, right-click the project to which you wish to add a new file.

2. Choose Add Existing File.
To add existing files to a specific folder:

1. In the Project Explorer, right-click the folder to which you wish to add a new file.
2. Choose Add Existing File.

The files are added to the specified folder without using filter matching.

To create a dynamic folder:

1. In the Project Explore, right click on the project to which you wish to add a new folder.

2. Choose New Folder....

3. Using the New Folder dialog name the folder and then show the dynamic folder options.
4

. Specify the required Source Folder and the Filter Specification.

The files that match the filter specification in the source folder will appear in the newly created folder.

53

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Adding new files to a project

You can add new files to a project in a number of ways.

To add new files to the active project:

Choose Project > Add New File or press Ctrl+N.

To add a new file to a project:

1. In the Project Explorer, right-click the project to which you wish to add a new file.
2. Choose Add New File.

When adding a new file, SEGGER Embedded Studio displays the New File dialog, from which you can choose
the type of file to add, its filename, and where it will be stored. Once created, the new file is added to the folder
whose filter matches the extension of the newly added file. If no filter matches the newly added file extension,
the new file is placed underneath the project node.

To add new files to a folder:

1. In the Project Explorer, right-click the folder to which you wish to add a new file.
2. Choose Add New File.

The new file is added to the folder without using filter matching.

54

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Removing a file, folder, project, or project link

You can remove whole projects, folders, or files from a project, or you can remove a project from a solution,
using the Remove button on the Project Explorer toolbar. Note that removing a source file from a project does
not remove it from disk.

To remove an item from the solution:

1. In the Project Explorer, select the item to remove.
2. Choose Edit > Delete or press Del.

or

1. In the Project Explorer, right-click the item to remove.

2. Choose Remove.

55

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Building your application

SEGGER Embedded Studio builds your application using the resources and build rules it finds in your solution.

When SEGGER Embedded Studio builds your application, it tries to avoid building files that have not changed
since they were last built. It does this by comparing the modification dates of the generated files with the
modification dates of the dependent files together with the modification dates of the project options that
pertain to the build. But if you are copying files, sometimes the modification dates may not be updated when

the file is copiedin this instance, it is wise to use the Rebuild command rather than the Build command.

You can see the build rationale SEGGER Embedded Studio currently is using by setting the Environment
Options > Building > Show Build Information environment option. To see the build commands themselves, set

the Environment Options > Building > Echo Build Command environment option.

You may have a solution that contains several interdependent projects. Typically, you might have several
executable projects and some library projects. The Project Dependencies dialog specifies the dependencies
between projects and to see the effect of those dependencies on the solution build order. Note that
dependencies can be set on a per-configuration basis, but the default is for dependencies to be defined in the

Common configuration.

You will also notice that a new folder titled Dependencies has appeared in the Project Explorer. This folder
contains the list of newly generated files and the files from which they were generated. To see if one of files
can be decoded and displayed in the editor, right-click the file to see if the View command is available on the

shortcut menu.

If you have the Symbols window open, it will be updated with the symbol and section information of all

executable files built in the solution.

To generalize your builds, you can define macro values that are substituted when the project options are used.
These macro values can be defined globally at the solution and project level, and can be defined on a per-

configuration basis.

The combination of configurations, project options with inheritance, dependencies, and macros provides a
very powerful build-management system. However, such systems can become complicated. To understand the
implications of changing build settings, right-click a node in the Project Explorer and select Options to view a
dialog that shows which macros and project options apply to that project node.
To build all projects in the solution:

1. Choose Build > Build Solution or press Shift+F7.

or

1. Right-click the solution in the Project Explorer window.

2. Choose Build from the shortcut menu.

56

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

To build a single project:

1. Select the required project in the Project Explorer.
2. Choose Build > Build or press F7.

or
1. Right-click the project in the Project Explorer.
2. Choose Build.

To compile a single file:

1. In the Project Explorer, click to select the source file to compile.

2. Choose Build > Compile or press Ctrl+F7.
or

1. In the Project Explorer, right-click the source file to compile.

2. Choose Compile from the shortcut menu.

Correcting errors after building

The results of a build are recorded in a Build Log that is displayed in the Output window. Errors are highlighted
in red, warnings are highlighted in yellow. Double-clicking an error, warning, or note will move the insertion

point to the line of source code that triggered that log entry.
You can move forward and backward through errors using Search > Next Location and Search > Next Location.

When you build a single project in a single configuration, the Transcript will display the memory used by the

application and a summary for each memory area.

57

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Creating variants using configurations

SEGGER Embedded Studio provides a facility to build projects in various configurations. Project configurations

are used to create different software builds for your projects.

A configuration defines a set of project options. For example, the output of a compilation can be put into
different directories, dependent upon the configuration. When you create a solution, some default project
configurations are created.

Build configurations and their uses

Configurations are typically used to differentiate debug builds from release builds. For example, the compiler
options for debug builds will differ from those of a release build: a debug build will set options so the project can
be debugged easily, whereas a release build will enable optimization to reduce program size or to increase its
speed. Configurations have other uses; for example, you can use configurations to produce variants of software,

such as custom libraries for several different hardware variants.

Configurations inherit project options from other configurations. This provides a single point of change for
definitions common to several configurations. A particular project option can be overridden in a particular

configuration to provide configuration-specific settings.

When a solution is created, two configurations are generated Debug and Release and you can create additional
configurations by choosing Build > Build Configurations. Before you build, ensure that the appropriate
configuration is set using Build > Set Active Build Configuration or, alternatively, the Active Configuration
combo box in the Project Explorer.

Selecting a configuration

To set the configuration that affects your building and debugging, use the combo box in the Project Explorer or

select Build > Set Active Build Configuration

Creating a configuration

To create your own configurations, select Build > Build Configurations to invoke the Configurations dialog. The
New button will produce a dialog allowing you to name your configuration. You can now specify the existing

configurations from which your new configuration will inherit values.

Deleting a configuration

You can delete a configuration by selecting it and clicking the Remove button. This deletion cannot be undone

or canceled, so beware.

58

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide
Private configurations

Some configurations are defined purely for inheriting and, as such, should not appear in the Build combo box.

When you select a configuration in the Configuration dialog, you can choose to hide that configuration.

59

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Project options

For solutions, projects, folders, and files, project options can be defined that are used by the project system in
the build process. These project options can be viewed and modified by using the Options dialog in conjunction
with the Project Explorer.

Some project options are only applicable to a given item type. For example, linker project options are only
applicable to a project that builds an executable file. However, other project options can be applied either at
the file, project, or solution project node. For example, a compiler project option can be applied to a solution,
project, or individual file. By setting a project option at the solution level, you enable all files of the solution to

use that project option's value.

Unique project options

A unique project option has one value. When a build is done, the value of a unique project option is the first one
defined in the project hierarchy. For example, the Treat Warnings As Errors project option could be set to Yes
at the solution level, which would then be applicable to every file in the solution that is compiled, assembled,
and linked. You can then selectively define project options for other project items. For example, a particular
source file may have warnings you decide are allowable, so you set the Treat Warnings As Errors to No for that

particular file.

solution Treat Warnings As Errors = Yes
projectl Treat Warnings As Errors = Yes
filel Treat Warnings As Errors = Yes
file2 Treat Warnings As Errors = No
project2 Treat Warnings As Errors = No
filel Treat Warnings As Errors No
file2 Treat Warnings As Errors Yes

In the above example, the files will be compiled with these values for Treat Warnings As Errors:

project1/file1 Yes
project1/file2 No
project2/file1 No
project2/file2 Yes

Aggregate project options

An aggregating project option collects all the values defined for it in the project hierarchy. For example, when a
Cfile is compiled, the Preprocessor Definitions project option will take all the values defined at the file, project,

and solution levels.

solution Preprocessor Definitions = Sol utionDef

60

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

projectl Preprocessor Definitions =
filel Preprocessor Definitions
file2 Preprocessor Definitions Fi | e1lDef

project2 Preprocessor Definitions = Project Def
filel Preprocessor Definitions
file2 Preprocessor Definitions

Fi | e2Def

In the above example, the files will be compiled with these preprocessor definitions:

project1/filel SolutionDef

project1/file2 SolutionDef, File1Def
project2/file1 SolutionDef, ProjectDef
project2/file2 SolutionDef, ProjectDef, File2Def

61

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Configurations and project options

Project options are defined for a configuration so you can have different values for a project option for
different builds. A given configuration can inherit the project options of other configurations. When the project
system requires a project option value, it checks for the existence of the project option value in the current
configuration and then in the set of inherited configurations. You can specify the set of inherited configurations

using the Configurations dialog.

A special configuration named Common is always inherited by a configuration. The Common configuration
allows you to set project options that will apply to all configurations you create. If you are modifying a project
option of your project, you almost certainly want each configuration to inherit it, so ensure that the Common

configuration is selected.

If the project option is unique, the build system will use the one defined for the particular configuration. If
the project option isn't defined for this configuration, the build system uses an arbitrary one from the set of

inherited configurations.

If the option is still undefined, the build system uses the value for the Common configuration. If it is still
undefined, the build system tries to find the value in the next higher level of the project hierarchy.
sol ution [Common] Preprocessor Definitions = ConmbnSol uti onDef
sol ution [Debug] Preprocessor Definitions = DebugSol uti onDef
solution [Rel ease] Preprocessor Definitions = Rel easeSol uti onDef
projectl - Preprocessor Definitions =
filel - Preprocessor Definitions =
file2 [Commobn] Preprocessor Definitions = CommonFil elDef
file2 [Debug] Preprocessor Definitions = DebugFil elDef
project2 [Conmon] Preprocessor Definitions = ProjectDef
filel Preprocessor Definitions =
file2 [Common] - Preprocessor Definitions = Fil e2Def

In the above example, the files will be compiled with these preprocessor definitions when in Debug

configuration

File Setting
project1/filel CommonSolutionDef, DebugSolutionDef
project1/file2 CommonSolutionDef,

DebugSolutionDef,CommonFile1Def, DebugFile1Def

project2/filel CommonSolutionDef, DebugSolutionDef, ProjectDef

62

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

project2/file2 ComonSolutionDef, DebugSolutionDef, ProjectDef,
File2Def

and the files will be compiled with these Preprocessor Definitions when in Release configuration:

File Setting
project1/filel CommonSolutionDef, ReleaseSolutionDef
project1/file2 CommonSolutionDef, ReleaseSolutionDef,

CommonfFile1Def

project2/file1 CommonSolutionDef, ReleaseSolutionDef, ProjectDef
project2/file2 ComonSolutionDef, ReleaseSolutionDef, ProjectDef,
File2Def

63

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Project macros

You can use macros to modify the way the project system refers to files.
Macros are divided into four classes:

System macros defined by SEGGER Embedded Studio relay information about the environment, such as
paths to common directories.

Global macros are saved in the environment and are shared across all solutions and projects. Typically,
you would set up paths to libraries and any external items here.

Project macros are saved as project options in the project file and can define values specific to the solution
or project in which they are defined.

Build macros are generated by the project system when you build your project.

System macros

System macros are defined by SEGGER Embedded Studio itself and as such are read-only. System macros can be
used in project options, environment settings and to refer to files. See System macros list for the list of System

macros.

Global macros

Global macros are store in the environment option Build Macros.

To define a global macro:

1. Use Tools > Options to show the environment options dialog.

2. In the Environment Options dialog's Building group, select the Build Macros option.
3. Click the ellipsis button on the right.

4, Set the macro using the syntax name = replacement text.

Project macros

To define a project macro:
To set the project macros:

Select the appropriate solution/project in the Project Explorer.
Use Project > Options to show the project options dialog.
In the Project Options dialog's General Options group, select the Macros option.

Click the ellipsis button on the right.

vk W=

Set the macro using the syntax name = replacement text.

64

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Build macros

Build macros are defined by the project system for a build of a given project node. See Build macros list for the

list of build macros.

Using macros

You can use a macro for a project option or environment setting by using the $(macro) syntax. For example, the
Object File Name option has a default value of $(I nt Di r) / $(| nput Nane) $(OBJ).

You can also specify a default value for a macro if it is undefined using the $(macro:default) syntax. For example,
$(MyMacr 0: 0) would expand to 0 if the macro MyMacr o has not been defined.

65

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Dependencies and build order

You can set up dependency relationships between projects using the Project Dependencies dialog. Project
dependencies make it possible to build solutions in the correct order and, where the target permits, to load
and delete applications and libraries in the correct order. A typical usage of project dependencies is to make
an executable project dependent upon a library executable. When you elect to build the executable, the build
system will ensure that the library it depends upon is up to date. In the case of a dependent library, the output

file of the library build is supplied as an input to the executable build, so you don't have to worry about it.

Project dependencies are stored as project options and, as such, can be defined differently based upon the
selected configuration. You almost always want project dependencies to be independent of the configuration,

so the Project Dependencies dialog selects the Common configuration by default.

To make one project dependent upon another:

1. Choose Project > Project Dependencies.

2. From the Project dropdown, select the target project that depends upon other projects.

3. In the Depends Upon list box, select the projects the target project depends upon and deselect the
projects it does not depend upon.

Some items in the Depends Upon list box may be dimmed, indicating that a circular dependency would result
if any of those projects were selected. In this way, SEGGER Embedded Studio prevents you from constructing

circular dependencies using the Project Dependencies dialog.

If your target supports loading multiple projects, the Build Order also reflects the order in which projects are
loaded onto the target. Projects will load, in order, from top to bottom. Generally, libraries need to be loaded
before the applications that use them, and you can ensure this happens by making the application dependent

upon the library. With this dependency set, the library gets built and loaded before the application does.

Applications are deleted from a target in reverse of their build order; in this way, applications are removed

before the libraries on which they depend.

66

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Linking and section placement

Executable programs consist of a number of sections. Typically, there are program sections for code, initialized
data, and zeroed data. There is often more than one code section and they must be placed at specific addresses

in memory.

To describe how the program sections of your program are positioned in memory, the SEGGER Embedded
Studio project system uses memory-map files and section-placement files. These XML-formatted files are
described in Memory Map file format and Section Placement file format. They can be edited with the SEGGER
Embedded Studio text editor. The memory-map file specifies the start address and size of target memory
segments. The section-placement file specifies where to place program sections in the target's memory
segments. Separating the memory map from the section-placement scheme enables a single hardware
description to be shared across projects and also enables a project to be built for a variety of hardware

descriptions.

For example, a memory-map file representing a device with two memory segments called FLASH and SRAM

could look something like this in the memory-map editor.

< nane="Devi cel" >
< nanme="FLASH' start="0x10000000" size="0x10000" />
< nanme="SRAM' start="0x20000000" si ze="0x1000" />

A corresponding section-placement file will refer to the memory segments of the memory-map file and will
list the sections to be placed in those segments. This is done by using a memory-segment name in the section-

placement file that matches the corresponding memory-segment name in the memory-map file.

For example, a section-placement file that places a section called .stack in the SRAM segment and the .vectors

and .text sections in the FLASH segment would look like this:

< nane="Fl ash Section Pl acenent">
< name="FLASH' >
< nane=".vectors" | oad="Yes" />
< nane=".text" | oad="Yes" />
</ >
< nane="SRAM' >
< nane=".stack" | oad="No" />
</ >
</ >

Note that the order of section placement within a segment is top down; in this example .vectors is placed at
lower addresses than .text.

The memory-map file and section-placement file to use for linkage can be included as a part of the project or,
alternatively, they can be specified in the project's linker options.

You can create a new program section using either the assembler or the compiler. For the C/C++ compiler, this

can be achieved using __attribute__ on declarations. For example:

voi d foobar(void) __attribute__ ((section(".fo00")));

67

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

This will allocate foobar in the section called .foo. Alternatively, you can specify the names for the code,

constant, data, and zeroed-data sections of an entire compilation unit by using the Section Options options.

You can now place the section into the section placement file using the editor so that it will be located after the

vectors sections as follows:

< nane="Fl ash Section Pl acenent">
< name="FLASH' >
< nane=".vectors" | oad="Yes" />
< name=".foo" | oad="Yes" />
< nane=".text" | oad="Yes" />
</ >
< name=" SRAM' >
< nanme=".stack" | oad="No" />
</ >
</ >

If you are modifying a section-placement file that is supplied in the SEGGER Embedded Studio distribution, you
will need to import it into your project using the Project Explorer.

Sections containing code and constant data should have their load project option set to Yes. Some sections
don't require any loading, such as stack sections and zeroed-data sections; such sections should have their load
project option set to No.

Some sections that are loaded then need to be copied to sections that aren't yet loaded. This is required for
initialized data sections and to copy code from slow memory regions to faster ones. To do this, the runin

attribute should contain the name of a section in the section-placement file to which the section will be copied.

For example, initialized data is loaded into the .data_load section and then is copied into the .data_run section

using:
< nanme="Fl ash Section Pl acenent">
< name="FLASH' >
< nane=".vectors" | oad="Yes" />
< nane=".text" | oad="Yes" />
< name=". data_|l oad" | oad="Yes" runin="data_run" />
</ >
< nanme=" SRAM' >
< nane=".data_run" | oad="No" />
< nane=".stack" | oad="No" />
</ >
</ >

The startup code will need to copy the contents of the .data_load section to the .data_run section. To enable
this, symbols are generated marking the start and end addresses of each section. For each section, a start symbol
called __section-name_start__ and an end symbol called __section-name_end__ are generated. These symbols
can be used to copy the sections from their load positions to their run positions.

For example, the .data_load section can be copied to the data_run section using the following call to nentpy.

/* Section image |located in flash */
extern const unsigned char _ data_load_start__[];
extern const unsigned char __data_load _end_ [];

68

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

/* Where to locate the section inmage in RAM */
extern unsigned char _ _data_run_start_ [];
extern unsigned char _ data run_end_ [];

/* Copy inmage fromflash to RAM */
mencpy(__data_run_start__,

__data |load_start__,

__data load_end__ - _ data_load_start_);

69

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Using source control

Source control is an essential tool for individuals or development teams. SEGGER Embedded Studio integrates
with several popular source-control systems to provide this feature for files in your SEGGER Embedded Studio

projects.

Source-control capability is implemented by a number of third-party providers, but the set of functions provided
by SEGGER Embedded Studio aims to be provider independent.

70

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Source control capabilities

The source-control integration capability provides:

Connecting to the source-control repository and mapping files in the SEGGER Embedded Studio project to
those in source control.

Showing the source-control status of files in the project.

Adding files in the project to source control.

Fetching files in the project from source control.

Optionally locking and unlocking files in the project for editing.

Comparing a file in the project with the latest version in source control.

Updating a file in the project by merging changes from the latest version in source control.

Committing changes made to project files into source control.

71

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Configuring source-control providers

SEGGER Embedded Studio supports Subversion, Git, and Mercurial as source-control systems. To enable
SEGGER Embedded Studio to utilize source-control features, you need to install, on your operating system, the

appropriate command line client for the source-control systems that you will use.

Once you have installed the command line client, you must configure SEGGER Embedded Studio to use it.

To configure Subversion:

1. Choose Tools > Options or press Alt+,.

2. Select the Source Control category in the options dialog.

3. Set the Executable environment option of the Subversion Options group to point to Subversion svn
command. On Windows operating systems, the Subversion command is svn. exe.

To configure Git:

1. Choose Tools > Options or press Alt+,.
2. Select the Source Control category in the options dialog.
3. Set the Executable environment option of the Git Options group to point to Git gi t command. On

Windows operating systems, the Git commandisgi t . exe.

To configure Mercurial:

1. Choose Tools > Options or press Alt+,.
2. Select the Source Control category in the options dialog.
3. Set the Executable environment option of the Mercurial Options group to point to Git hg command. On

Windows operating systems, the Git command is hg. exe.

72

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Connecting to the source-control system

When SEGGER Embedded Studio loads a project, it examines the file system folder that contains the project to
determine the source-control system the project uses. If SEGGER Embedded Studio cannot determine, from the

file system, the source-control system in use, it disables source-control integration.

That s, if you have not set up the paths to the source-control command line clients, even if a working copy exists
and the appropriate command line client is installed, SEGGER Embedded Studio cannot establish source-control

integration for the project.

User credentials

You can set the credentials that the source-control system uses, for commands that require credentials, using
VCS > Options > Configure. From here you can set the user name and password. These details are saved to the
session file (the password is encrypted) so you won't need to specify this information each time the project is
loaded.

Note

SEGGER Embedded Studio has no facility to create repositories from scratch, nor to clone, pull, or checkout
repositories to a working copy: it is your responsibility to create a working copy outside of SEGGER Embedded

Studio using your selected command-line client or Windows Explorer extension.

The "Tortoise" products are a popular set of tools to provide source-control facilities in the Windows shell. Use

Google to find TortoiseSVN, TortoiseGit, and TortoiseHG and see if you like them.

73

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

File source-control status

Determining the source-control status of a file can be expensive for large repositories, so SEGGER Embedded

Studio updates the source-control status in the background. Priority is given to items that are displayed.
A file will be in one of the following states:

Clean:The file is in source control and matches the tip revision.

Not Controlled:The file is not in source control.

Conflicted:The file is in conflict with changes made to the repository.

Locked:The file is locked.

Update Available:The file is older than the most-recent version in source control.
Added:The file is scheduled to be added to the repository.

Removed:The file is scheduled to be removed from the repository.

If the file has been modified, its status is displayed in red in the Project Explorer. Note that if a file is not under

the local root, it will not have a source-control status.

You can reset any stored source-control file status by choosing VCS > Refresh.

74

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Source-control operations

Source-control operations can be performed on single files or recursively on multiple files in the Project
Explorer hierarchy. Single-file operations are available on the Source Control toolbar and on the text editor's
shortcut menu. All operations are available using the VCS menu. The operations are described in terms of the
Project Explorer shortcut menu.

75

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Adding files to source control

To add files to the source-control system:

1. In the Project Explorer, select the file to add. If you select a folder, project, or solution, any eligible child
items will also be added to source control.

choose Source Control > Add or press Ctrl+R, A.

The dialog will list the files that can be added.

In that dialog, you can deselect any files you don't want to add to source control.

Click Add.

vk N

Note

Files are scheduled to be added to source control and will only be committed to source control (and seen by

others) when you commit the file.

Enabling the VCS > Options > Add Immediately option will bypass the dialog and immediately add (but not

commit) the files.

76

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Updating files

To update files from source control:

1. In the Project Explorer, select the file to update. If you select a folder, project, or solution, any eligible
child items will also be updated from source control.

choose Source Control > Update or press Ctrl+R, U.

The dialog will list the files that can be updated.

In that dialog, you can deselect any files you don't want to update from source control.

Click Update.

vk N

Note

Enabling the VCS > Options > Update Immediately option will bypass the dialog and immediately update the

files.

77

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Committing files

To commit files:

1. In the Project Explorer, select the file to commit. If you select a folder, project, or solution, any eligible
child items will also be committed.

Choose Source Control > Commit or press Ctrl+R, C.

The dialog will list the files that can be committed.

In that dialog, you can deselect any files you don't want to commit and enter an optional comment.

Click Commit.

vk N

Note

Enabling the VCS > Options > Commit Immediately option will bypass the dialog and immediately commit the

files without a comment.

78

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Reverting files

To revert files:

1. In the Project Explorer, select the file to revert. If you select a folder, project, or solution, any eligible child
items will also be reverted.

Choose Source Control > Revert or press Ctrl+R, V.

The dialog will list the files that can be reverted.

In that dialog, you can deselect any files you don't want to revert.

Click Revert.

vk N

Note

Enabling the VCS > Options > Revert Imnmediately option will bypass the dialog and immediately revert files.

79

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Locking files

To lock files:

1. In the Project Explorer, select the file to lock. If you select a folder, project, or solution, any eligible child
items will also be locked.

Choose Source Control > Lock or press Ctrl+R, L.

The dialog will list the files that can be locked.

In that dialog, you can deselect any files you don't want to lock and enter an optional comment.

Click Lock.

vk N

Note

Enabling the VCS > Options > Lock Immediately option will bypass the dialog and immediately lock files

without a comment.

80

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Unlocking files

To unlock files:

1. In the Project Explorer, select the file to lock. If you select a folder, project, or solution, any eligible child
items will also be unlocked.

Choose Source Control > Unlock or press Ctrl+R, N.

The dialog will list the files that can be unlocked.

In that dialog, you can deselect any files you don't want to unlock.

Click Unlock.

vk N

Note

Enabling the VCS > Options > Unlock Immediately option will bypass the dialog and immediately unlock files.

81

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Removing files from source control

To remove files from source control:

1. In the Project Explorer, select the file to remove. If you select a folder, project, or solution, any eligible
child items will also be removed.

choose Source Control > Remove or press Ctrl+R, R.

The dialog will list the files that can be removed.

In that dialog, you can deselect any files you don't want to remove.

vk N

Click Remove.

Note

Files are scheduled to be removed from source control and will still be and seen by others, giving you the

opportunity to revert the removal. When you commit the file, the file is removed from source control.

Enabling the VCS > Options > Remove Immediately option will bypass the dialog and immediately remove (but

not commit) files.

82

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Showing differences between files

To show the differences between the file in the project and the version checked into source control, do the

following:

1. In the Project Explorer, right-click the file.
2. From the shortcut menu, choose Source Control > Show Differences.

You can use an external diff tool in preference to the built-in SEGGER Embedded Studio diff tool. To define
the diff command line SEGGER Embedded Studio generates, choose Tools > Options > Source Control > Diff
Command Line. The command line is defined as a list of strings to avoid problems with spaces in arguments.

The diff command line can contain the following macros:

S(localfile):The filename of the file in the project.
S(remotefile):The filename of the latest version of the file in source control.
S(localname):A display name for $(localfile).

S(remotename):A display name for $(remotefile).

83

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Source-control properties

When a file in the project is in source control, the Properties window shows the following properties in the
Source Control Options group:

Property Description

The source-control status of working copy as viewed

SEGGER Embedded Studio Status by SEGGER Embedded Studio,

last Author The author of the file's head revision.

Path: Relative The item's path relative to the repository root.

Path: Repository The pathname of the file in the source-control system,
typically a URL.

Path: Working Copy The pathname of the file in the working copy.

Provider The name of the source-control system managing this
file.

Provider Status The status of the file as reported by the source-control
provider.

Revision: Local The revision number/name of the local file.

Revision: Remote The revision number/name of the most-recent version

in source control.

Status: In Conflict? If Yes, updates merged into the file using Update
conflict with the changes you made locally; if No,
the file is not locked. When conflicted, must resolve
the conflicts and mark them Resol ved before
committing the file.

Status: Locked? If Yes, the file is lock by you; if No, the file is not locked.

Status: Modified? If Yes, the checked-out file differs from the version in
the source control system; if No, they are identical.

Status: Update Available? If Yes, the file in the project location is an old version
compared to the latest version in the source-control
systemuse Update to merge in the latest changes.

84

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Subversion provider

The Subversion source-control provider has been tested with SVN 1.4.3.

Provider-specific options

The following environment options are supported:

Property Description
Executable The path to the svn executable.
Lock Supported If Yes, check out and undo check out operations

are supported. Check out will issue the svn | ock
command; check in and undo check out will issue the
svn unl ock command.

Authentication Selects whether authentication (user name and
password) is sent with every command.

Show Updates Selects whether the update (- u flag) is sent with
status requests in order to show that new versions are
available in the repository. Note that this requires a
live connection to the repository: if you are working
without a network connection to your repository, you
can disable this switch and continue to enjoy source
control status information in the Project Explorer and
Pending Changes windows.

Connecting to the source-control system

When connecting to source control, the provider checks if the local root is in SVN control. If this is the case, the
local and remote root will be set accordingly. If the local root is not in SVN control after you have set the remote
root,asvn checkout - Ncommand will beissued to make the local root SVN controlled. This command will

also copy any files in the remote root to the local root.

The user name and password you enter will be supplied with each svn command the provider issues.

Source control operations

The SEGGER Embedded Studio source-control operations are implemented using Subversion commands.
Mapping SEGGER Embedded Studio source-control operations to Subversion source-control operations is

straightforward:

Operation Command
Commit svn conmi t for the file, with optional comment.
Update svn updat e for each file.

85

Embedded Studio Reference Manual

Revert
Resolved
Lock
Unlock
Add
Remove

Source Control Explorer

svn

svn

svn

svn

svn

svn

svn

SEGGER Embedded Studio User Guide

revert foreach file.

r esol ved for each file.

| ock for each file, with optional comment.
unl ock for each file.

add for each file.

r enove for each file.

| i st with aremote root.svn mnkdi r to create

directories in the repository.

86

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

CVS provider

The CVS source-control provider has been tested with CYSNT 2.5.03. The CVS source-control provider uses the
CVSr | s command to browse the repositorythis command is implemented in CVS 1.12 but usage of . as the root

of the module name is not supported.

Provider-specific options

The following environment options are supported:

Property Description
CVSROOT The CVSROOT value to access the repository.
Edit/Unedit Supported If Yes, Check Out and Undo Check Out commands

are supported. Any check-out operation will issue the
cvs edit command; any check-in or undo-check-

out operation will issue the cvs unedi t command;
the status operation will issue the cvs ss command.

Executable The path to the cvs executable.

Login/Logout Required If Yes, Connect will issue the cvs | ogi n command.

Connecting to the source-control system

When connecting to source control, the provider checks if the local root is in CVS control. If this is the case, the
local and remote root will be set accordingly. If the local root is not in CVS control after you have set the remote
root,acvs checkout -1 -dcommand will beissued to make the local root CVS controlled. This command

will also copy any files in the remote root to the local root.

Source-control operations

The SEGGER Embedded Studio source-control operations have been implemented using CVS commands. There

are no multiple-file operations, each operation is done on a single file and committed as part of the operation.

Operation Command

cvs st at us and optionalcvs edi t or s for local
Get Status directories in CVS control.cvs rl s - e for directories
in the repository.

Add To Source Control cvs add for each directory not in CVS control.
cvs add for the file.cvs commi t for the file and
directories.

Get Latest cvs update -I -d foreach directory notin CVS

control.cvs updat e to merge the local file. cvs
updat e - Cto overwrite the local file.

87

Embedded Studio Reference Manual

Check Out

Undo Check Out

Check In

Source Control Explorer

88

SEGGER Embedded Studio User Guide

Optional cvs updat e - Cto get the latest version.
cvs edit tolockthefile.

cvs unedit to unlock the file. Optional cvs
updat e to get the latest version.

cvs comm t forthefile.

cvs rls - e witharemote root starting with .. cvs
i mport to create directories in the repository.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Package management

Additional target-support functions can be added to, and removed from, SEGGER Embedded Studio with

packages.

A SEGGER Embedded Studio package is an archive file containing a collection of target-support files. Installing
a package involves copying the files it contains to an appropriate destination directory and registering the
package with SEGGER Embedded Studio's package system. Keeping target-support files separate from the
main SEGGER Embedded Studio installation allows us to support new hardware and issue bug fixes for existing
hardware-support files between SEGGER Embedded Studio releases, and it allows third parties to develop their

own support packages.

Installing packages

Use the Package Manager to automate the download, installation, upgrade and removal of packages.

To activate the Package Manager:
Choose Tools > Manage Packages.

In some situations, such as using SEGGER Embedded Studio on a computer without Internet access or when you
want to install packages that are not on the website, you cannot use the Package Manager to install packages
and it will be necessary to manually install them.

To manually install a package:

1. Choose Tools > Manually Install Packages.
2. Select one or more package files you want to install.
3. Click Open to install the packages.

Choose Tools > Show Installed Packages to see more information on the installed packages.

The Package Manager window will remove manually installed packages.

The package manager

The Package Manager manages the support packages installed on your system. It lists the available packages,

shows the installed packages, and allows you to install, update, reinstall, and remove them.

89

Embedded Studio Reference Manual

SEGGER Embedded Studio User Guide

. 3
¥ Package Manager @Iéj
Select Packages

Search Packages -
Title Type Status Action -
Analog Devices ADUCTO00 CPU Support Package CPU Support Package Mot Installed Mo Action
Analog Devices ADuCT020 Eval Board Support Package Board Support Package Mot Installed Mo Adion |=
Analog Devices ADuCT7024 Eval Board Support Package Board Support Package Mot Installed Mo Action
Analog Devices ADUCT026 Eval Board Support Package Board Support Package Mot Installed Mo Action
Analog Devices ADUCT128 Eval Board Support Package Board Support Package Mot Installed Mo Action
Anglia Calumbus STRY1x USE Evaluation Board Support Package Board Support Package Mot Installed Mo Action
ARM Evaluator-7T Board Support Package Board Support Package | Installed Mo Action
Atmel ATO1SAMT CPU Support Package CPU Support Package Update Available Update
Atmel ATOLSAMTAZ-EK Board Support Package Board Support Package Mot Installed Install
Atmel AT915AMYTL-5TK Board Support Package Board Support Package Mot Installed Mo Action
Atmel AT91SAM7TSE-EK Board Support Package Board Support Package Mot Installed Mo Action
Atmel AT915AM7S-EK Board Support Package Board Support Package Mot Installed Mo Action
Atmel AT9LSAMTX-EK Board Support Package Board Support Package Mot Installed Mo Action
Atmel ATO15AMO260-EK Board Support Package Board Support Package Installed Mo Action
Atmel AT915AM9261-EK Board Support Package Board Support Package Mot Installed Mo Action
Atmel AT915AMO263-EK Board Support Package Board Support Package | Installed Mo Action
Atmel EBO1 Board Support Package Board Support Package Mot Installed No Adtion
Atmal FRAAA Raard Sonnnart Darkana Rnard Soonnnart Darkana Mlnt Trctallad Mo Artinn

Package Information -

Description This package contains project templates and system files for the Atmel AT91SAMY.

Installed Version 17

Latest Version 15

Package Version History

13

Added support for AT915SAM7LG4 and AT91SAMTL125.
Loaders now set the boot from internal FLASH NVM bit by default.
1.7 -
Mext l [Cancel
-

To activate the Package Manager:

Choose Tools > Manage Packages.

Filtering the package list

By default, the Package Manager lists all available and installed packages. You can filter the displayed packages

in a number of ways.

To filter by package status:

Click on the disclosure icon near the top-right corner of the dialog.

Use the pop-up menu to choose how to filter the list of packages.

The list-filter choices are:

Display All Show all packages irrespective of their status.

Display Not Installed Show packages that are available but are not currently installed.

90

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Display Installed Only show packages that are installed.
Display Updates Only show packages that are installed but are not up-to-date because a newer version is
available.

You can also filter the list of packages by the text in the package's title and documentation.

To filter packages by keyword:

Type the keyword into the Search Packages box at the top-left corner of the dialog.

Installing a package

The package-installation operation downloads a package to $(PackagesDir)/downloads, if it has not been

downloaded already, and unpacks the files contained within the package to their destination directory.

To install a package:

Choose Tools > Package Manager and set the status filter to Display Not Installed.

Select the package or packages you wish to install.

Right-click the selected packages and choose Install Selected Packages from the shortcut menu.
Click Next; you will be see the actions the Package Manager is about to carry out.

Click Next and the Package Manager will install the selected packages.

IS L T o

When installation is complete, click Finish to close the Package Manager.

Updating a package

The package-update operation first removes existing package files, then it downloads the updated package to

$(PackagesDir)/downloads and unpacks the files contained within the package to their destination directory.

To update a package:

Choose Tools > Package Manager and set the status filter to Display Updates.

Select the package or packages you wish to update.

Right-click the selected packages and choose Update Selected Packages from the shortcut menu.
Click Next; you will see the actions the Package Manager is about to carry out.

Click Next and the Package Manager will update the package(s).

AL O o e

When the update is complete, click Finish to close the Package Manager.

Removing a package

The package-remove operation removes all the files that were extracted when the package was installed.

91

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

To remove a package:

IS e

Choose Tools > Package Manager and set the status filter to Display Installed.

Select the package or packages you wish to remove.

Right-click the selected packages and choose Remove Selected Packages from the shortcut menu.
Click Next; you will see the actions the Package Manager is about to carry out.

Click Next and the Package Manager will remove the package(s).

When the operation is complete, click Finish to close the Package Manager.

Reinstalling a package

The package-reinstall operation carries out a package-remove operation followed by a package-install

operation.

To reinstall a package:

1.

S T

Choose Tools > Package Manager and set the status filter to Display Installed.

Select the package or packages you wish to reinstall.

Right-click the packages to reinstall and choose Reinstall Selected Packages from the shortcut menu.
Click Next; you will see the actions the Package Manager is about to carry out.

Click Next and the Package Manager will reinstall the packages.

When the operation is complete, click Finish to close the Package Manager.

92

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Exploring your application

In this section, we discuss the SEGGER Embedded Studio tools that help you examine how your application is
built.

93

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Project explorer

The Project Explorer is the user interface of the SEGGER Embedded Studio project system. It organizes your
projects and files and provides access to the commands that operate on them. A toolbar at the top of the
window offers quick access to commonly used commands for the selected project node or the active project.
Right-click to reveal a shortcut menu with a larger set of commands that will work on the selected project node,

ignoring the active project.

The selected project node determines what operations you can perform. For example, the Compile operation
will compile a single file if a file project node is selected; if a folder project node is selected, each of the files in

the folder are compiled.

You can select project nodes by clicking them in the Project Explorer. Additionally, as you switch between files

in the editor, the selection in the Project Explorer changes to highlight the file you're editing.

To activate the Project Explorer:

Choose View > Project Explorer or press Ctrl+Alt+P.

Left-click operations
The following operations are available in the Project Explorer with a left-click of the mouse:

Action Description

Select the node. If the node is already selected and

Single click is a solution, project, or folder node, a rename editor
appears.
Double click Double-clicking a solution node or folder node will

reveal or hide the node's children. Double-clicking a
project node selects it as the active project. Double-
clicking a file opens the file with the default editor for
that file's type.

Toolbar commands

The following buttons are on the toolbar:

Button Description

_:iinl Add a new file to the active project using the New File
— dialog.

@ Add existing files to the active project.

94

Embedded Studio Reference Manual

iy &) gf

Shortcut menu commands

SEGGER Embedded Studio User Guide

Remove files, folders, projects, and links from the
project.

Create a new folder in the active project.
Menu of build operations.
Disassemble the active project.

Menu of Project Explorer options.

Display the properties dialog for the selected item.

The shortcut menu, displayed by right-clicking, contains the commands listed below.

For solutions:

Item
Build and Batch Build

Rebuild and Batch Rebuild

Clean and Batch Clean

Export Build and Batch Export Build

Add New Project
Add Existing Project
Paste

Remove

Rename

Source Control Operations

Edit Solution As Text

Save Solution As

Properties

Description

Build all projects under the solution in the current or
batch build configuration.

Rebuild all projects under the solution in the current or
batch build configuration.

Remove all output and intermediate build files for the
projects under the solution in the current or batch
build configuration.

Create an editor with the build commands for the
projects under the solution in the current or batch
build configuration.

Add a new project to the solution.

Create a link from an existing solution to this solution.
Paste a copied project into the solution.

Remove the link to another solution from the solution.
Rename the solution node.

Source-control operations on the project file and
recursive operations on all files in the solution.

Create an editor containing the project file.

Change the filename of the project filenote that the
saved project file is not reloaded.

Show the Properties dialog with the solution node
selected.

95

Embedded Studio Reference Manual

For projects:

Item
Build and Batch Build

Rebuild and Batch Rebuild
Clean and Batch Clean
Export Build and Batch Export Build

Link

Set As Active Project

Debugging Commands

Memory-Map Commands

Section-Placement Commands

Target Processor

Add New File
Add Existing File
New Folder

Cut

Copy

Paste

Remove

Rename

SEGGER Embedded Studio User Guide

Description

Build the project in the current or batch build
configuration.

Reuild the project in the current or batch build
configuration.

Remove all output and intermediate build files for the
project in the current or batch build configuration.

Create an editor with the build commands for the
project in the current or batch build configuration.

Perform the project node build operation: link for an
Executable project type, archive for a Library project
type, and the combine command for a Combining
project type.

Set the project to be the active project.

For Executable and Externally Built Executable project
types, the following debugging operations are
available on the project node: Start Debugging, Step
Into Debugging, Reset And Debug, Start Without
Debugging, Attach Debugger, and Verify.

For Executable project types that don't have memory-
map files in the project and have the memory-map file
project option set, there are commands to view the
memory-map file and to import it into the project.

For Executable project types that don't have section-
placement files in the project but have the section-
placement file project option set, there are commands
to view the section-placement file and to import it into
the project.

For Executable and Externally Built Executable project
types that have a Target Processor option group, the
selected target can be changed.

Add a new file to the project.

Add an existing file to the project.

Create a new folder in the project.

Cut the project from the solution.

Copy the project from the solution.

Paste a copied folder or file into the project.
Remove the project from the solution.

Rename the project.

96

Embedded Studio Reference Manual

Source Control Operations

Find in Project Files

Properties

For folders:
Item

Add New File
Add Existing File
New Folder

Cut

Copy

Paste
Remove
Rename

Source Control Operations

Compile

Properties

For files:
Item

Open
Open With

Select in File Explorer

Compile

Export Build

Exclude From Build

Disassemble

Preprocess

Cut

SEGGER Embedded Studio User Guide

Source-control, recursive operations on all files in the
project.

Run Find in Files in the project directory.

Show the Project Manager dialog and select the
project node.

Description

Add a new file to the folder.

Add an existing file to the folder.

Create a new folder in the folder.

Cut the folder from the project or folder.
Copy the folder from the project or folder.
Paste a copied folder or file into the folder.
Remove the folder from the project or folder.
Rename the folder.

Source-control recursive operations on all files in the
folder.

Compile each file in the folder.

Show the properties dialog with the folder node
selected.

Description
Edit the file with the default editor for the file's type.

Edit the file with a selected editor. You can choose
from the Binary Editor, Text Editor, and Web Browser.

Create a operating system file system window with the
file selected.

Compile the file.

Create an editor window containing the commands to
compile the file in the active build configuration.

Set the Exclude From Build option to Yes for this
project node in the active build configuration.

Disassemble the output file of the compile into an
editor window.

Run the C preprocessor on the file and show the
output in an editor window.

Cut the file from the project or folder.

97

Embedded Studio Reference Manual

Copy

Remove
Import
Source Control Operations

Properties

98

SEGGER Embedded Studio User Guide

Copy the file from the project or folder.
Remove the file from the project or folder.
Import the file into the project.
Source-control operations on the file.

Show the properties dialog with the file node selected.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Source navigator window

One of the best ways to find your way around your source code is using the Source Navigator. It parses the
active project's source code and organizes classes, functions, and variables in various ways.
To activate the Source Navigator:

Choose View > Source Navigator or press Ctrl+Alt+N.

The main part of the Source Navigator window provides an overview of your application's functions, classes,
and variables.

SEGGER Embedded Studio displays these icons to the left of each object:

Icon Description
{} A Cor C++ structure or a C++ namespace.
L+ 2N A C++ class.
£

A C++ member function declared pri vat e ora
function declared with st at i ¢ linkage.

e

‘E" A C++ member function declared pr ot ect ed.
& A C++ member function declared publ i c ora
function declared with ext er n linkage.
% A C++ member variable declared pri vat e ora
variable declared with st at i c linkage.
‘E’@ A C++ member variable declared pr ot ect ed.
++ member variable declared publ i ¢ or a variable
@ AC b iable declared publ i iabl

declared with ext er n linkage.

Re-parsing after editing

The Source Navigator does not update automatically, only when you ask it to. To parse source files manually,
click the Refresh button on the Source Navigator toolbar.

SEGGER Embedded Studio re-parses all files in the active project, and any dependent project, and updates the
Source Navigator with the changes. Parsing progress is shown as a progress bar in the in the Source Navigator
window. Errors and warnings detected during parsing are sent to the Source Navigator Log in the Output
windowyou can show the log quickly by clicking the Show Source Navigator Log tool button on the Source
Navigator toolbar.

99

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Setting indexing threads

You can configure how many threads SEGGER Embedded Studio launches to index your project.

To set the number of threads launched when indexing a project:

Choose View > Source Navigator or press Ctrl+Alt+N.
Click the Options dropdown button at the right of the toolbar.

Move the slider to select the number of threads to launch.

Increasing the number of threads will complete indexing faster, but may reduce the responsiveness of SEGGER
Embedded Studio when editing, for example. You should choose a setting that you are comfortable with
for your PC. By default, SEGGER Embedded Studio launches 16 threads to index the project and is a good

compromise for a desktop quad-core PC.

Sorting and grouping

You can group objects by their type; that is, whether they are classes, functions, namespaces, structures, or

variables. Each object is placed into a folder according to its type.

To group objects by type:

1. On the Source Navigator toolbar, click the arrow to the right of the Cycle Grouping button.
2. Choose Group By Type

100

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

References window

The References window shows the results of the last Find References operation. The Find References facility
is closely related to the Source Navigator in that it indexes your project and searches for references within the

active source code regions.

To activate the References window:
If you have hidden the References window and want to see it again:

Choose View > References or press Ctrl+Alt+R.

To find all references in a project:

1. Open a source file that is part of the active project, or one of its dependent projects.

2. In the editor, move the insertion point within the name of the function, variable, method, or macro to
find.

3. Choose Navigate > Find References or press Alt+R.

4. SEGGER Embedded Studio shows the References window, without moving focus, and searches your

project in the background.

You can also find references directly from the text editor's context menu: right-click the item to find and choose
Find References. As a convenience, SEGGER Embedded Studio is configured to also run Find References when

you Alt+Right-click in the text editorsee Mouse-click accelerators.

To search within the results:

Type the text to search for in the Reference window's search box. As you type, the search results are
narrowed.

Click the close button to clear the search text and show all references.

To set the number of threads launched when finding references:

Choose View > References or press Ctrl+Alt+R.
Click the Options dropdown button at the right of the toolbar.

Move the slider to select the number of threads to launch.

Increasing the number of threads will complete searches faster, but may reduce the responsiveness of SEGGER
Embedded Studio when editing, for example. You should choose a setting that you are comfortable with
for your PC. By default, SEGGER Embedded Studio launches 16 threads to search the project and is a good

compromise for a desktop quad-core PC.

101

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Symbol browser window

The Symbol Browser shows useful information about your linked application and complements the information
displayed in the Project Explorer window. You can select different ways to filter and group the information in
the Symbol Browser to provide an at-a-glance overview of your application. You can use the Symbol Browser to
drill down to see the size and location of each part of your program. The way symbols are sorted and grouped is
saved between runs; so, when you rebuild an application, SEGGER Embedded Studio automatically updates the

Symbol Browser so you can see the effect of your changes on the memory layout of your program.

User interface

Button Description

{El Group symbols by source filename.

{ﬁ Group symbols by symbol type (equates, functions,

labels, sections, and variables).

{. Group symbols by the section where they are defined.
& | Move the insertion point to the statement that defined

- the symbol.

Select columns to display.

The main part of the Symbol Browser displays each symbol (both external and static) that is linked into an
application. SEGGER Embedded Studio displays the following icons to the left of each symbol:

Icon Description
% Private Equate A private symbol not defined relative to
a section.

Public Equate A public symbol that is not defined
relative to a section.

Private Function A private function symbol.
Public Function A public function symbol.

Private Label A private data symbol, defined relative to
a section.

e » @ » o

Public Label A public data symbol, defined relative to a
section.

Section A program section.

102

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Choosing what to show

To activate the Symbol Browser window:
Choose View > Symbol Browser or press Ctrl+Alt+Y.
You can choose to display the following fields for each symbol:

Value:The value of the symbol. For labels, code, and data symbols, this will be the address of the symbol.
For absolute or symbolic equates, this will be the value of the symbol.

Range:The range of addresses the code or data item covers. For code symbols that correspond to high-
level functions, the range is the range of addresses used for that function's code. For data addresses that
correspond to high-level static or extern variables, the range is the range of addresses used to store that
data item. These ranges are only available if the corresponding source file was compiled with debugging
information turned on: if no debugging information is available, the range will simply be the first address
of the function or data item.

Size:The size, in bytes, of the code or data item. The Size column is derived from the Range of the symbol:
if the symbol corresponds to a high-level code or data item and has a range, Size is calculated as the
difference between the start and end addresses of the range. If a symbol has no range, the size column is
blank.

Section:The section in which the symbol is defined. If the symbol is not defined within a section, the
Section column is blank.

Type:The high-level type for the data or code item. If the source file that defines the symbol is compiled
with debugging information turned off, type information is not available and the Type column is blank.

Initially the Range and Size columns are shown in the Symbol Browser. To select which columns to display, use
the Field Chooser button on the Symbol Browser toolbar.
To select the fields to display:

1. Click the Field Chooser button on the Symbol Browser toolbar.
2. Select the fields you wish to display and deselect the fields you wish to hide.

Organizing and sorting symbols

When you group symbols by section, each symbol is grouped underneath the section in which it is defined.

Symbols that are absolute or are not defined within a section are grouped beneath (No Section).

To group symbols by section:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. From the pop-up menu, choose Group By Section.

103

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by section.
When you group symbols by type, each symbol is classified as one of the following:

An Equate has an absolute value and is not defined as relative to, or inside, a section.

A Function is defined by a high-level code sequence.

A Variable is defined by a high-level data declaration.

A Label is defined by an assembly language module. Label is also used when high-level modules are

compiled with debugging information turned off.

When you group symbols by source file, each symbol is grouped underneath the source file in which it is
defined. Symbols that are absolute, are not defined within a source file, or are compiled without debugging
information, are grouped beneath (Unknown).

To group symbols by type:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Group By Type from the pop-up menu.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by type.

To group symbols by source file:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Group By Source File.
The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by source file.

When you sort symbols alphabetically, all symbols are displayed in a single list in alphabetical order.

To list symbols alphabetically:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.
2. Choose Sort Alphabetically.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols alphabetically.

Filtering and finding symbols

When you're dealing with big projects with hundreds, or even thousands, of symbols, a way to filter those
symbols in order to isolate just the ones you need is very useful. The Symbol Browser's toolbar provides an
editable combobox} you can use to specify the symbols you'd like displayed. You can type * to match a sequence

of zero or more characters and ? to match exactly one character.

The symbols are filtered and redisplayed as you type into the combo box. Typing the first few characters of a

symbol name is usually enough to narrow the display to the symbol you need. Note: the C compiler prefixes all

104

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

high-level language symbols with an underscore character, so the variable ext ern i nt u or the function
voi d fn(voi d) have low-level symbol names _u and _f n. The Symbol Browser uses the low-level symbol
name when displaying and filtering, so you must type the leading underscore to match high-level symbols.
To display symbols that start with a common prefix:

Type the desired prefix text into the combo box, optionally followed by a "*".
For instance, to display all symbols that start with "i2c_", type "i2¢_" and all matching symbols are displayedyou
don't need to add a trailing "*" in this case, because it is implied.
To display symbols that end with a common suffix:

Type * into the combo box, followed by the required suffix.

For instance, to display all symbols that end in _data, type *_data and all matching symbols are displayedin this

case, the leading * is required.

When you have found the symbol you're interested in and your source files have been compiled with debugging
information turned on, you can jump to a symbol's definition using the Go To Definition button.

To jump to the definition of a symbol:

1. Select the symbol from the list of symbols.
2. On the Symbol Browser toolbar, click Go To Definition.

or

1. Right-click the symbol in the list of symbols.

2. Choose Go To Definition from the shortcut menu.

Watching symbols

If a symbol's range and type is known, you can add it to the most recently opened Watch window or Memory

window.

To add a symbol to the Watch window:

1. In the Symbol Browser, right-click the symbol you wish to add to the Watch window.
2. On the shortcut menu, choose Add To Watch.

To add a symbol to the Memory window:

1. In the Symbol Browser, right-click the symbol you wish to add to the Memory window.

105

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

2. Choose Locate Memory from the shortcut menu.

Using size information

Here are a few common ways to use the Symbol Browser:

What function uses the most code space? What requires the most data space?

IS L T o e

Choose View > Symbol Browser or press Ctrl+Alt+Y.

In the Grouping button menu on the Symbol Browser toolbar, select Group By Type.
Ensure the Size field is checked in the Field Chooser button's menu.

Ensure that the filter on the Symbol Browser toolbar is empty.

Click on the Size field in the header to sort by data size.

The sizes of variables and of functions are shown in separate lists.

What's the overall size of my application?

> W

Choose View > Symbol Browser or press Ctrl+Alt+Y.

In the Grouping button menu on the Symbol Browser toolbar, select Group By Section.
Ensure the Range and Size fields are checked in the Field Chooser button's menu.

Read the section sizes and ranges of each section in the application.

106

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Memory usage window

The Memory Usage window displays a graphical summary of how memory has been used in each memory

segment of a linked application.

Bdemal _FLASH (e BO00000C
B 2.9MB free of 4 MB

Extemal _SRAM b8 1 0000

Each bar represents an entire memory segment. Green represents the area of the segment that contains code or
data.
To activate the Memory Usage window:

Choose View > Memory Usage or press Ctrl+Alt+Z.

The memory-usage graph will only be visible if your active project's target is an executable file and the file exists.
If the executable file has not been linked by SEGGER Embedded Studio, memory-usage information may not be

available.

Displaying section information

The Memory Usage window can also be used to visualize how program sections have been placed in memory.
To display the program sections, simply click the memory segment to expand it; or, alternatively, right-click and
choose Show Memory Sections from the shortcut menu.

107

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

SRAM (4 000000
4 11.3kB free of 16 kB

wvectors_ram (e DOD0000

&0 bytes used

data (4000003
1 kB used

b=s (cA00004 3c
1.1 kB used

heap (4000084
1 kB used

stack (e A0000cc4

1 kB uszed

Each bar represents an entire memory segment. Green represents the area of the segment that contains the
program section.

Displaying segment overflow

The Memory Usage window also displays segment overflows when the total size of the program sections placed
in a segment is larger than the segment size. When this happens, the segment and section bars represents the
total memory used, green areas represent the code or data within the segment, and red areas represent code or
data placed outside the segment.

108

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Extemal _SRAM (b3 1 000000

4 65 kB over 1 MBE

data? (bc8 1000000

65 kB used

bss2 (31010400

1 ME used

Getting more-detailed information

If you require more-detailed information than that provided by the Memory Usage window, such as the location
of specific objects within memory, use the Symbol browser window.

109

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Bookmarks window

The Bookmarks window contains a list of bookmarks that are set in the project. The bookmarks are stored in the
session file associated with the project and persist across runs of SEGGER Embedded Studioif you remove the

session file, the bookmarks associated with the project are lost.

User interface

Button Description

Toggle a bookmark at the insertion point in the active
— editor. Equivalent to choosing Edit > Bookmarks >
Toggle Bookmark or pressing Ctrl+F2.

(] Go to the previous bookmark in the bookmark list.

- Equivalent to choosing Edit > Bookmarks > Previous
Bookmark or pressing Alt+Shift+F2.

(] Go to the next next bookmark in the bookmark list.

o Equivalent to choosing Edit > Bookmarks > Next
Bookmark or pressing Alt+F2.

q{ Clear all bookmarksyou confirm the action using a
dialog. Equivalent to choosing Edit > Bookmarks >
Clear All Bookmarks or pressing Ctrl+K, Alt+F2.

O Selects the fill color for newly created bookmarks.

Double-clicking a bookmark in the bookmark list moves focus to the the bookmark.

You can set bookmarks with the mouse or using keystrokessee Using bookmarks.

110

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Editing your code

SEGGER Embedded Studio has a built-in editor that allows you to edit text, but some features make it particularly

well suited to editing code.

You can open multiple code editors to browse or edit project source code, and you can copy and paste among

them. The Windows menu contains a list of all open code editors.

The code editor supports the language of the source file it is editing, showing code with syntax highlighting and

offering smart indenting.
You can open a code editor in several ways, some of which are:

By double-clicking a file in the Project Explorer or by right-clicking a file and selecting Open from the
shortcut menu.
Using the File > New File or File > Open commands.

Elements of the code editor

The code editor is composed of several elements, which are described here.

Code pane:The area where you edit code. You can set options that affect the code pane's text indents,
tabs, drag-and-drop behavior, and so forth.

Margin gutter:A gray area on the left side of the code editor where margin indicators such as breakpoints,
bookmarks, and shortcuts are displayed. Clicking this area sets a breakpoint on the corresponding line of
code.

Horizontal and vertical scroll bars:You can scroll the code pane horizontally and vertically to view code that

extends beyond the edges of the pane.

111

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Basic editing
This section is a whirlwind tour of the basic editing features SEGGER Embedded Studio's code editor provides.

Whether you are editing code, HTML, or plain text, the code editor is just like many other text editors or word
processors. For code that is part of a project, the project's programming language support provides syntax

highlighting (colorization), indentation, and so on.

This section is not a reference for everything the code editor provides; for that, look in the following sections.

112

Embedded Studio Reference Manual

Moving the insertion point

SEGGER Embedded Studio User Guide

The most common way to navigate through text is to use use the mouse or the keyboard's cursor keys.

Using the mouse

You can move the insertion point within a document by clicking the mouse inside the editor window.

Using the keyboard

The keystrokes most commonly used to navigate through a document are:

Keystroke
Up

Down
Left

Right

Home

End
PageUp
PageDown
Ctrl+Home
Ctrl+End
Ctrl+Left
Ctrl+Right

Description

Move the insertion point up one line

Move the insertion point down one line
Move the insertion point left one character
Move the insertion point right one character

Move the insertion point to the first non-whitespace
character on the line pressing Home a second time
moves the insertion point to the leftmost column

Move the insertion point to the end of the line

Move the insertion point up one page

Move the insertion point down one page

Move the insertion point to the start of the document
Move the insertion point to the end of the document
Move the insertion point left one word

Move the insertion point right one word

SEGGER Embedded Studio offers additional movement keystrokes, though most users are more comfortable

using repeated simple keystrokes to accomplish the same thing:

Keystroke
Alt+Up
Alt+Down
Alt+Home
Alt+End
Ctrl+Up

Description

Move the insertion point up five lines

Move the insertion point down five lines

Move the insertion point to the top of the window
Move the insertion point to the bottom of the window

Scroll the document up one line in the window
without moving the insertion point

113

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Ctrl+Down Scroll the document down one line in the window
without moving the insertion point

If you are editing source code, the are source-related keystrokes too:

Keystroke Description

Move the insertion point backwards to the previous
Ctrl+PgUp) P P

function or method.
Ctrl+PgDn Move the insertion point forwards to the next function

or method.

114

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Adding text

The editor has two text-input modes:

Insertion mode:As you type on the keyboard, text is entered at the insertion point and any text to the right
of the insertion point is shifted along. A visual indication of insertion mode is that the cursor is a flashing
line.

Overstrike mode:As you type on the keyboard, text at the insertion point is replaced with your typing. A
visual indication of insertion mode is that the cursor is a flashing block.

Insert and overstrike modes are common to all editors: if one editor is in insert mode, all editors are in insert
mode. To configure the cursor appearance, choose Tools > Options.
To toggle between insertion and overstrike mode:

Click Insert.
When overstrike mode is enabled, the mode indicator changes from INS to OVR and the cursor will change to
the overstrike cursor.
To add or insert text:

1. Move the insertion point to the place text is to be inserted.
2. Enter the text using the keyboard.

To overwrite characters in an existing line, press the Insert key to place the editor into overstrike mode.

115

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Deleting text

The text editor supports the following common editing keystrokes:

Keystroke Description

Backspace Delete the character before the insertion point
Delete Delete the character after the insertion point
Ctrl+Backspace Delete one word before the insertion point
Ctrl+Delete Delete one word after the insertion point

To delete characters or words:

1. Place the insertion point before the word or letter you want to delete.

2. Press Delete as many times as needed.

or
1. Place the insertion point after the letter or word you want to delete.
2. Press Backspace as many times as needed.

To delete text that spans more than a few characters:

1. Select the text you want to delete.
2. Press Delete or Backspace to delete it.

116

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Using the clipboard

You can select text by using the keyboard or the mouse.

To select text with the keyboard:

Hold down the Shift key while using the cursor keys.

To select text with the mouse:

1. Click the start of the selection.

2. Drag the mouse to mark the selection.

3. Release the mouse to end selecting.
To copy selected text to the clipboard:

Choose Edit > Copy or press Ctrl+C.

The standard Windows key sequence Ctrl+Ins also copies text to the clipboard.

To cut selected text to the clipboard:
Choose Edit > Cut or press Ctrl+X.

The standard Windows key sequence Shift+Del also cuts text to the clipboard.

To insert the clipboard content at the insertion point:
Choose Edit > Paste or press Ctrl+V.

The standard Windows key sequence Shift+Ins also inserts the clipboard content at the insertion point.

117

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Undo and redo

The editor has an undo facility to undo previous editing actions. The redo feature can be used to re-apply
previously undone actions.
To undo one editing action:

Choose Edit > Undo or press Ctrl+Z.

The standard Windows key sequence Alt+Backspace also undoes an edit.

To undo multiple editing actions:
1. On the Standard toolbar, click the arrow next to the Undo button.
2. Select the editing operations to undo.

To undo all edits:

Choose Edit > Others > Undo All or press Ctrl+K, Ctrl+Z.

To redo one editing action:
Choose Edit > Redo or press Ctrl+Y.

The standard Windows key sequence Alt+Shift+Backspace also redoes an edit.

To redo multiple editing actions:

1. On the Standard toolbar, click the arrow next to the Redo tool button.

2. From the pop-up menu, select the editing operations to redo.

To redo all edits:

Choose Edit > Others > Redo All or press Ctrl+K, Ctrl+Y.

118

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Drag and drop

You can select text, then drag it to another location. You can drop the text at a different location in the same
window or in another one.
To drag and drop text:

1. Select the text you want to move.
2. Press and hold the mouse button to drag the selected text to where you want to place it.

3. Release the mouse button to drop the text.

Dragging text moves it to the new location. To copy it to a new location, hold down the Ctrl key while dragging
the text: the mouse pointer changes to indicate a copy operation. Press the Esc key while dragging text to cancel

the drag-and-drop edit.

By default, drag-and drop-editing is disabled and you must enable it if you want to use it.

To enable or disable drag-and-drop editing:

1. Choose Tools > Options or press Alt+,.
2. Click Text Editor.
3. Set Allow Drag and Drop Editing to Yes to enable or to No to disable drag-and-drop editing.

119

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Searching

To find text in the current file:

1. Press Ctrl+F.

2. Enter the string to search for.

As you type, the editor searches the file for a match. The pop-up shows how many matches are in the current file.
To move through the matches while the Find box is still active, press Tab or F3 to move to the next match and
Shift+Tab or Shift+F3 to move to the previous match.

If you press Ctrl+F a second time, SEGGER Embedded Studio pops up the standard Find dialog to search the file.
If you wish to bring up the Find dialog without pressing Ct r | +F twice, choose Search > Find.

120

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Advanced editing

You can do anything using its basic code-editing features, but the SEGGER Embedded Studio text editor has a

host of labor-saving features that make editing programs a snap.

This section describes the code-editor features intended to make editing source code easier.

121

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Indenting source code

The editor uses the Tab key to increase or decrease the indentation level of the selected text.

To increase indentation:

Select the text to indent.

Choose Selection > Increase Line Indent or press Tab.

To decrease indentation:

Select the text to indent.

Choose Selection > Decrease Line Indent or press Shift+Tab.

The indentation size can be changed in the Language Properties pane of the editor's Properties window, as can

all the indent-related features listed below.

To change indentation size:

Choose Tools > Options or press Alt+,.
Select the Languages page.
Set the Indent Size environment option for the required language.

You can choose to use spaces or tab tab characters to fill whitespace when indenting.

To set tab or space fill when indenting:

Choose Tools > Options or press Alt+,.
Select the Languages page.
Set the Use Tabs environment option for the required language. Note: changing this setting does not add

or remove existing tabs from files, the change will only affect new indents.

The editor can assist with source code indentation while inserting text. There are three levels of indentation

assistance:

None:The indentation of the source code is left to the user.

Indent:This is the default. The editor maintains the current indentation level. When you press Return or
Enter, the editor moves the insertion point down one line and indented to the same level as the now-
previous line.

Smart:The editor analyzes the source code to compute the appropriate indentation level for each line.
You can change how many lines before the insertion point will be analyzed for context. The smart-indent

mode can be configured to indent either open and closing braces or the lines following the braces.

Changing indentation options:

To change the indentation mode:

122

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Set the Indent Mode environment option for the required language.
To change whether opening braces are indented in smart-indent mode:

Set the Indent Opening Brace environment option for the required language.
To change whether closing braces are indented in smart-indent mode:

Set the Indent Closing Brace environment option for the required language.
To change the number of previous lines used for context in smart-indent mode:

Set the Indent Context Lines environment option for the required language.

123

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Commenting out sections of code

To comment selected text:

Choose Selection > Comment or press Ctrl+/.

To uncomment selected text:
Choose Selection > Uncomment or press Ctrl+Shift+/.

You can also toggle the commenting of a selection by typing /. This has no menu equivalent.

124

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Adjusting letter case

The editor can change the case of the current word or the selection. The editor will change the case of the
selection, if there is a selection, otherwise it will change the case of word at the insertion point.
To change text to uppercase:

Choose Selection > Make Uppercase or press Ctrl+Shift+U.

This changes, for instance, Hello to HELLO.

To change text to lowercase:
Choose Selection > Make Lowercase or press Ctrl+U.

This changes, for instance, Hello to hello.

To switch between uppercase and lowercase:
Choose Selection > Switch Case.
This changes, for instance, Hello to hELLO.

With large software teams or imported source code, sometimes identifiers don't conform to your local coding
style. To assist in conversion between two common coding styles for identifiers, SEGGER Embedded Studio's
editor offers the following two shortcuts:

To change from split case to camel case:

Choose Selection > Camel Case or press Ctrl+K, Ctrl+Shift+U.

This changes, for instance, this_is_wrong to thislsWrong.

To change from camel case to split case:
Choose Selection > Split Case or press Ctrl+K, Ctrl+U.

This changes, for instance, thislsWrong to this_is_wrong.

125

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Using bookmarks

To edit a document elsewhere and then return to your current location, add a bookmark. The Bookmarks
window maintains a list of the bookmarks set in source files see Bookmarks window.
To place a bookmark:

1. Move the insertion point to the line you wish to bookmark.
2. Choose Edit > Bookmarks > Toggle Bookmark or press Ctrl+F2.

A bookmark symbol appears next to the line in the indicator margin to show the bookmark is set.

To place a bookmark using the mouse:

1. Right-click the margin gutter where the bookmark should be set.
2. Choose Toggle Bookmark.

The default color to use for new bookmarks is configured in the Bookmarks window. You can choose a specific

color for the bookmark as follows:

1. Press and hold the Alt key.
2. Click the margin gutter where the bookmark should be set.
3. From the palette, click the bookmark color to use for the bookmark.

To navigate forward through bookmarks:

1. Choose Edit > Bookmarks > Next Bookmark In Document or press F2.
2. The editor moves the insertion point to the next bookmark in the document.

If there is no following bookmark, the insertion point moves to the first bookmark in the document.

To navigate backward through bookmarks:

1. Choose Edit > Bookmarks > Previous Bookmark In Document or press Shift+F2.

2. The editor moves the insertion point to the previous bookmark in the document.

If there is no previous bookmark, the insertion point moves to the last bookmark in the document.

To remove a bookmark:

1. Move the insertion point to the line containing the bookmark.
2. Choose Edit > Bookmarks > Toggle Bookmark or press Ctrl+F2.

The bookmark symbol disappears, indicating the bookmark is no longer set.

To remove all bookmarks in a document:

Choose Edit > Bookmarks > Clear Bookmarks In Document or press Ctrl+K, F2.

126

Embedded Studio Reference Manual

Quick reference for bookmark operations

Keystroke
Ctrl+F2

Ctrl+K, 0

F2

Shift+F2

Ctrl+Q, F2

Ctrl+Q, Shift+F2

Ctrl+K, F2

Alt+F2

Alt+Shift+F2

Ctrl+Q, Alt+F2

Ctrl+Q, Alt+Shift+F2

Ctrl+K, Alt+F2

Menu

Edit > Bookmarks > Toggle
Bookmark

Edit > Bookmarks > Next
Bookmark In Document

Edit > Bookmarks > Previous
Bookmark In Document

Edit > Bookmarks > First
Bookmark In Document

Edit > Bookmarks > Last Bookmark
In Document

Edit > Bookmarks > Clear
Bookmarks In Document

Edit > Bookmarks > Next
Bookmark

Edit > Bookmarks > Previous
Bookmark

Edit > Bookmarks > First
Bookmark

Edit > Bookmarks > Last Bookmark

Edit > Bookmarks > Clear All
Bookmarks

127

SEGGER Embedded Studio User Guide

Description

Toggle a bookmark at the insertion
point.

Clear the bookmark at the insertion
point.

Move the insertion point to next
bookmark in the document.

Move the insertion point to
previous bookmark in the
document.

Move the insertion point to the first
bookmark in the document.

Move the insertion point to the last
bookmark in the document.

Clear all bookmarks in the
document.

Move the insertion point to the next
bookmark in the Bookmarks list.

Move the insertion point to
the previous bookmark in the
Bookmarks list.

Move the insertion point to the first
bookmark in the Bookmarks list.

Move the insertion point to the last
bookmark in the Bookmarks list.

Clear all bookmarks in all
documents.

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Find and Replace window

The Find and Replace window allows you to search for and replace text in the current document or in a range of

specified files.

To activate the Find and Replace window:

Choose Search > Replace in Files or press Ctrl+Alt+F.

To find text in a single file:

Select Current Document in the context combo box.

Enter the string to be found in the text edit input.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end
of the line, on both sides of the string being searched forset the Whole word option.

If the search string is a regular expression, set the Use regexp option.

Click the Find button to find all occurrences of the string in the current document.

To find and replace text in a single file:

Click the Replace button on the toolbar.

Enter the string to search for into the Find what input.

Enter the replacement string into the Replace with input. If the search string is a regular expression, the n
back-reference can be used in the replacement string to reference captured text.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end
of the line, on both sides of the string being searched forset the Match whole word option.

If the search string is a regular expression, set the Use regular expression option.

Click the Find Next button to find next occurrence of the string, then click the Replace button to replace

the found string with the replacement string; or click Replace All to replace all occurrences of the search

string without prompting.

To find text in multiple files:

Click the Find In Files button on the toolbar.

Enter the string to search for into the Find what input.

Select the appropriate option in the Look in input to select whether to carry out the search in all open
documents, all documents in the current project, all documents in the current solution, or all files in a
specified folder.

If you have specified that you want to search in a folder, select the folder you want to search by entering
its path in the Folder input and use the Look in files matching input to specify the type of files you want

to search.

128

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end
of the line, on both sides of the string being searched forset the Match whole word option.

If the search string is a regular expression, set the Use regular expression option.

Click the Find All button to find all occurrences of the string in the specified files, or click the Bookmark

All button to bookmark all the occurrences of the string in the specified files.

To replace text in multiple files:

Click the Replace In Files button on the toolbar.

Enter the string to search for into the Find what input.

Enter the replacement string into the Replace with input. If the search string is a regular expression, the n
back-reference can be used in the replacement string to reference captured text.

Select the appropriate option in the Look in input to select whether you want to carry out the search

and replace in all open documents, all documents contained in the current project, all documents in the
current solution, or all files in a specified folder.

If you have specified that you want to search in a folder, select the folder you want to search by entering
its path in the Folder input and use the Look in files matching input to specify the type of files you want
to search.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end
of the line, on both sides of the string being searched forset the Match whole word option.

If the search string is a regular expression, set the Use regular expression option.

Click the Replace All button to replace all occurrences of the string in the specified files.

129

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Clipboard Ring window

The code editor captures all cut and copy operations, and stores the cut or copied item on the clipboard ring. The
clipboard ring stores the last 20 cut or copied text items, but you can configure the maximum number by using
the environment options dialog. The clipboard ring is an excellent place to store scraps of text when you're

working with many documents and need to cut and paste between them.

To activate the clipboard ring:

Choose Edit > Clipboard Ring > Clipboard Ring or press Ctrl+Alt+C.

To paste from the clipboard ring:

1. Cut or copy some text from your code. The last item you cut or copy into the clipboard ring is the current
item for pasting.

2. Press Ctrl+Shift+V to paste the clipboard ring's current item into the current document.

3. Repeatedly press Ctrl+Shift+V to cycle through the entries in the clipboard ring until you get to the one
you want to permanently paste into the document. Each time you press Ctrl+Shift+V, the editor replaces
the last entry you pasted from the clipboard ring, so you end up with just the last one you selected. The
item you stop on then becomes the current item.

4. Move to another location or cancel the selection. You can use Ctrl+Shift+V to paste the current item
again or to cycle the clipboard ring to a new item.

Clicking an item in the clipboard ring makes it the current item.

To paste a specific item from the clipboard ring:

1. Move the insertion point to the position to paste the item in the document.
2. Click the arrow at the right of the item to paste.
3. Choose Paste from the pop-up menu.

or

1. Click the item to paste to make it the current item.
2. Move the insertion point to the position to paste the item in the document.
3. Press Ctrl+Shift+V.

To paste all items into a document:

To paste all items on the clipboard ring into the current document, move the insertion point to where you want

to paste the items and do one of the following:
Choose Edit > Clipboard Ring > Paste All.

or

130

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

On the Clipboard Ring toolbar, click the Paste All button.

To remove an item from the clipboard ring:
1. Click the arrow at the right of the item to remove.
2. Choose Delete from the pop-up menu.
To remove all items from the clipboard ring:
Choose Edit > Clipboard Ring > Clear Clipboard Ring.
or

On the Clipboard Ring toolbar, click the Clear Clipboard Ring button.

To configure the clipboard ring:

1. Choose Tools > Options or press Alt+,.

2. Click the Windows category to show the Clipboard Ring Options group.

3. Select Preserve Contents Between Runs to save the content of the clipboard ring between runs, or
deselect it to start with an empty clipboard ring.

4. Change Maximum Items Held In Ring to configure the maximum number of items stored on the

clipboard ring.

131

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Mouse-click accelerators

SEGGER Embedded Studio provides a number of mouse-click accelerators in the editor that speed access to

commonly used functions. The mouse-click accelerators are user configurable using Tools > Options.

Default mouse-click assignments

Click Default

Left Not configurable start selection.
Shift+Left Not configurable extend selection.
Ctrl+Left Select word.

Alt+Left Execute Go To Definition.

Middle No action.

Shift+Middle Display Go To Include menu.
Ctrl+Middle No action.

Alt+Middle Display Go To Method menu.
Right Not configurable show context menu.
Shift+Right No action.

Ctrl+Right No action.

Alt+Right Execute Find References.

Each accelerator can be assigned one of the following actions:

Default:The system default for that click.

Go To Definition:Go to the definition of the item clicked, equivalent to choosing Navigate > Go To
Definition or pressing Alt+G.

Find References:Find references to the item clicked, equivalent to choosing Navigate > Find References or
pressing Alt+R.

Find in Solution:Textually find the item clicked in all the files in the solution, equivalent to choosing Search
> Find Extras > Find in Solution or pressing Alt+U.

Find Help:Use F1-help on the item clicked, equivalent to choosing Help > Help or pressing F1.

Go To Method:Display the Go To Method menu, equivalent to choosing Navigate > Find Method or
pressing Ctrl+M.

Go To Include:Display the Go To Include menu, equivalent to choosing Navigate > Find Include or
pressing Ctrl+Shift+M.

Paste:Paste the clipboard at the position clicked, equivalent to choosing Edit > Paste or pressing Ctrl+V.

Configuring Mac OS X

On Mac OS X you must configure the mouse to pass middle clicks and right clicks to the application if you wish
to use mouse-click accelerators in SEGGER Embedded Studio. Configure the mouse preferences in the Mouse
control panel in Mac OS X System Preferences to the following:

132

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Right mouse button set to Secondary Button.
Middle mouse button set to Button 3.

133

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Regular expressions

The editor can search and replace text using regular expressions. A regular expression is a string that uses
special characters to describe and reference patterns of text. The regular expression system used by the editor
is modeled on Perl's regexp language. For more information on regular expressions, see Mastering Regular
Expressions, Jeffrey E F Freidl, ISBN 0596002890.

Summary of special characters

The following table summarizes the special characters the SEGGER Embedded Studio editor supports

Pattern Description

\d Match a numeric character.

\D Match a non-numeric character.

\s Match a whitespace character.

\S Match a non-whitespace character.

\w Match a word character.

\W Match a non-word character.

[c] Match set of characters; e.g., [ch] matches characters

cor h. A range can be specified using the - character;
e.g., [0-27-9] matches if the characteris 0, 1, 2,7 8, or
9. A range can be negated using the A character; e.g.,
[Aa-z] matches if the character is anything other than a
lowercase alphabetic character.

\c Match the literal character c. For example, you would
use * to match the character *.

\a Match ASCII bell character (ASCII code 7).

\f Match ASCII form feed character (ASCIl code 12).

\n Match ASClII line feed character (ASCII code 10).

\r Match ASCII carriage return character (ASCIl code 13).

\t Match ASCII horizontal tab character (ASCIl code 9).

\v Match ASClII vertical tab character.

\xhhhh Match Unicode character specified by hexadecimal
number hhhh.

Match any character.

* Match zero or more occurrences of the preceding
expression.

+ Match one or more occurrences of the preceding
expression.

134

Embedded Studio Reference Manual

{n}
{n}

\b
\B
(e)

\n

Examples

SEGGER Embedded Studio User Guide

Match zero or one occurrences of the preceding
expression.

Match n occurrences of the preceding expression.

Match at least n occurrences of the preceding
expression.

Match at most m occurrences of the preceding
expression.

Match at least n and at most m occurrences of the
preceding expression.

Beginning of line.
End of line.

Word boundary.
Non-word boundary.
Capture expression e.

Back-reference to nth captured text.

The following regular expressions can be used with the editor's search-and-replace operations. To use the

regular expression mode, the Use regular expression checkbox must be set in the search-and-replace dialog.

Once enabled, regular expressions can be used in the Find what search string. The Replace With strings can use

the "n" back-reference string to reference any captured strings.

"Find what"

u\w.d

/\.*.s

7

(typedef.+\s+)(\S+);

"Replace With"

\TTEST_\2;

Description

Search for any-length string
containing one or more word
characters beginning with the
character u and ending in the
character d.

Search for any lines ending in a
semicolon.

Find C type definition and insert the
string TEST onto the beginning of
the type name.

135

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Locals window

The Locals window displays a list of all variables that are in scope of the selected stack frame in the Call Stack.

The Locals window has a toolbar and a main data display.

Button Description

Mo Display the selected item in binary.

Xg Display the selected item in octal.

Xig Display the selected item in decimal.

¥ Display the selected item in hexadecimal.

;;:1% Display the selected item as a signed decimal.

' Display the selected item as a character or Unicode
character.

Set the range displayed in the active Memory window
to span the memory allocated to the selected item.

Sort variables alphabetically by name.

z4
8
3

Sort variables numerically by address or register
number (default).

-—

Using the Locals window

The Locals window shows the local variables of the active function when the debugger is stopped. The contents
of the Locals window changes when you use the Debug Location toolbar items or select a new frame in the Call
Stack window. When the program stops at a breakpoint, or is stepped, the Locals window updates to show the
active stack frame. ltems that have changed since they were previously displayed are highlighted in red.
To activate the Locals window:

Choose View > Locals or press Ctrl+Alt+L.
When you select a variable in the main part of the display, the display-format button highlighted on the Locals
window toolbar changes to show the selected item's display format.

To change the display format of a local variable:

Right-click the item to change.

From the shortcut menu, choose the desired display format.

136

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

or
Click the item to change.
On the Locals window toolbar, select the desired display format.
To modify the value of a local variable:

Click the value of the local variable to modify.
Enter the new value for the local variable. Prefix hexadecimal numbers with 0x, binary numbers with Ob,

and octal numbers with 0.
or

Right-click the value of the local variable to modify.

From the shortcut menu, select one of the commands to modify the local variable's value.

137

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Globals window

The Globals window displays a list of all variables that are global to the program. The operations available on the
entries in this window are the same as the Watch window, except you cannot add or delete variables from the
Globals window.

Globals window user interface
The Globals window consists of a toolbar and main data display.

Globals toolbar

Button Description

Xq Display the selected item in binary.

Xg Display the selected item in octal.

¥y Display the selected item in decimal.

X Display the selected item in hexadecimal.

}qﬁj Display the selected item as a signed decimal.

' Display the selected item as a character or Unicode
character.

Set the range displayed in the active Memory window
to span the memory allocated to the selected item.

Sort variables alphabetically by name.

2
8
9

Sort variables numerically by address or register
number (default).

-—

Using the Globals window

The Globals window shows the global variables of the application when the debugger is stopped. When the
program stops at a breakpoint, or is stepped, the Globals window updates to show the active stack frame and

new variable values. Items that have changed since they were previously displayed are highlighted in red.

To activate the Globals window:

Choose View > Globals or press Ctrl+Alt+G.

138

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Changing the display format

When you select a variable in the main part of the display, the display-format button highlighted on the Globals
window toolbar changes to show the item's display format.

To change the display format of a global variable:

Right-click the item to change.
From the shortcut menu, choose the desired display format.

or
Click the item to change.
On the Globals window toolbar, select the desired display format.
To modify the value of a global variable:

Click the value of the global variable to modify.
Enter the new value for the global variable. Prefix hexadecimal numbers with 0x, binary numbers with Ob,

and octal numbers with 0.

139

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Watch window

The Watch window provides a means to evaluate expressions and to display the results of those expressions.
Typically, expressions are just the name of a variable to be displayed, but they can be considerably more
complex; see Debug expressions. Note: expressions are always evaluated when your program stops, so the

expression you are watching is the one that is in scope of the stopped program position.

The Watch window is divided into a toolbar and the main data display.

Button Description

Xy Display the selected item in binary.

Xg Display the selected item in octal.

Xig Display the selected item in decimal.

¥ Display the selected item in hexadecimal.

Kﬁ;. Display the selected item as a signed decimal.

' Display the selected item as a character or Unicode
character.

Set the range displayed in the active Memory window
to span the memory allocated to the selected item.

>< Remove the selected watch item.

% Remove all the watches.

Right-clicking a watch item shows a shortcut menu with commands that are not available from the toolbar.

Button Description
et View pointer or array as a null-terminated string.
%] View pointer or array as an array.

¥ View pointer value.

3::' Set watch value to zero.

X Set watch value to one.

1% Increment watched variable by one.

13 Decrement watched variable by one.

140

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Negated watched variable.

=X
% Invert watched variable.
View the properties of the watch value.

You can view details of the watched item using the Properties dialog.

Filename
The filename context of the watch item.

Line number
The line number context of the watch item.

(Name)
The name of the watch item.

Address
The address or register of the watch item.

Expression
The debug expression of the watch item.

Previous Value
The previous watch value.

Size In Bytes
The size of the watch item in bytes.

Type
The type of the watch item.

Value
The value of the watch item.

Using the Watch window

Each expression appears as a row in the display. Each row contains the expression and its value. If the value of an

expression is structured (for example, an array), you can open the structure to see its contents.

The display updates each time the debugger locates to source code. So it will update each time your program
stops on a breakpoint, or single steps, and whenever you traverse the call stack. tems that have changed since

they were previously displayed are highlighted in red.

To activate the Watch window:

Choose View > Watch > Watch 1 or press Ctrl+T, W, 1.

141

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

You can show other Watch windows similarly.

You can add a new expression to be watched by clicking and typing into the last entry in the Watch window.

You can change an expression by clicking its entry and editing its contents.

When you select a variable in the main part of the display, the display format button highlighted on the Watch
window toolbar changes to show the item's display format.

To change the display format of an expression:

Right-click the item to change.
From the shortcut menu, choose the desired display format.

or

Click the item to change.

On the Watch window toolbar, select the desired display format.

The selected display format will then be used for all subsequent displays and will be preserved after the debug

session stops.

For C programs, the interpretation of pointer types can be changed by right-clicking and selecting from the

shortcut menu. A pointer can be interpreted as:

a null-terminated ASClI string
an array
an integer

dereferenced

To modify the value of an expression:

Click the value of the local variable to modify.
Enter the new value of the local variable. Prefix hexadecimal numbers with 0x, binary numbers with 0b,
and octal numbers with 0.

or

Right-click the value of the local variable to modify.
From the shortcut menu, choose one of the commands to modify the variable's value.

142

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Register window

The Register windows show the values of both CPU registers and the processor's special function or peripheral
registers. Because microcontrollers are becoming very highly integrated, it's not unusual for them to have
hundreds of special function registers or peripheral registers, so SEGGER Embedded Studio provides four
register windows. You can configure each register window to display one or more register groups for the
processor being debugged.

A Register window has a toolbar and a main data display.

Button Description

Display the CPU, special function register, and
peripheral register groups.

,ﬂ Display the CPU registers.

gt Hide the CPU registers.

—» Force-read a register, ignoring the access attribute of
the register.

Update the selected register group.

Set the active memory window to the address and size
of the selected register group.

Using the registers window

Both CPU registers and special function registers are shown in the main part of the Registers window. When the
program stops at a breakpoint, or is stepped, the Registers windows update to show the current values of the

registers. Items that have changed since they were previously displayed are highlighted in red.

To activate the first register window:
Choose View > Registers > Registers 1 or press Ctrl+T, R, 1.

Other register windows can be similarly activated.

Displaying CPU registers

The values of the CPU registers displayed in the Registers window depend up upon the selected context. The
selected context can be:

The register state the CPU stopped in.

The register state when a function call occurred using the Call Stack window.

143

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

The register state of the currently selected thread using the the Threads window.
The register state you supplied with the Debug > Locate operation.
To display a group of CPU registers:

On the Registers window toolbar, click the Groups button.
From the pop-up menu, select the register groups to display and deselect the ones to hide.

You can deselect all CPU register groups to allow more space in the display for special function registers or
peripheral registers. So, for instance, you can have one register window showing the CPU registers and other

register windows showing different peripheral registers.

Displaying special function or peripheral registers

The Registers window shows the set of register groups defined in the memory-map file the application was built
with. If there is no memory-map file associated with a project, the Registers window will show only the CPU
registers.

To display a special function or peripheral register:

On the Registers toolbar, click the Groups button.
From the pop-up menu, select the register groups to display and deselect the ones to hide.

Changing display format

When you select a register in the main part of the display, the display-format button highlighted on the
Registers window toolbar changes to show the item's display format.

To change the display format of a register:

Right-click the item to change.

From the shortcut menu, choose the desired display format.
or

Click the item to change.
On the Registers window toolbar, select the desired display format.

Modifying register values

To modify the value of a register:

Click the value of the register to modify.

144

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Enter the new value for the register. Prefix hexadecimal numbers with 0x, binary numbers with 0b, and

octal numbers with 0.
or

Right-click the value of the register to modify.
From the shortcut menu, choose one of the commands to modify the register value.

Modifying the saved register value of a function or thread may not be supported.

145

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Memory window

The Memory window shows the contents of the connected target's memory areas and allows the memory to be
edited. SEGGER Embedded Studio provides four memory windows, you can configure each memory window to
display different memory ranges.

The Memory window has a toolbar and a data display/edit area

Field/Button Description

Address Address to dlsplay. This can be a numeric value or a
debug expression.

Size Number of bytes to display. This can be a number or
a debug expression. If unspecified, the number of
bytes required to fill the window will be automatically
calculated.

Columns Number of columns to display. If unspecified, the
number of columns required to fill the window will be
automatically calculated.

X Select binary display.

Mg Select octal display.

X10 Select unsigned decimal display.

Kﬁ;. Select signed decimal display.

¥ Select hexadecimal display (default).

+:§+ Select byte display (default).

J_ﬁ_' Select 2-byte display.

1-3-:+ Select 4-byte display.

Display both data and text (default).

Display data only.

Display text only.

E

Display an incrementing address range that starts from
the selected address (default).

Display a decrementing address range that starts from
the selected address.

—_—

146

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

[E Display an incrementing address range that ends at
the selected address.

[Display a decrementing address range that ends at the
selected address.

fJ Evaluate the address and size expressions, and update
the Memory window.

Using the memory window

The memory window does not show the complete address space of the target, instead you must enter both the
address and the number of bytes to display. You can specify the address and size using numeric values or debug
expressions which enable you to position the memory display at the address of a variable or at the value of a
register. You can also specify whether you want the expressions to be evaluated each time the memory window
is updated, or you can re-evaluate them yourself with the press of a button. Memory windows update each time
your program stops on a breakpoint, after a single step and whenever you traverse the call stack. If any values
that were previously displayed have changed, they are highlighted in red.

To activate the first Memory window:
Choose View > Memory > Memory 1 or press Ctrl+T, M, 1.

Other register windows can be similarly activated.

Using the mouse
You can move the memory window's edit cursor by clicking on a data or text entry.

The vertical scroll bar can be used to modify the address being viewed by clicking the up and down buttons, the

page up and down areas or using the vertical scroll wheel when the scroll bar is at it's furthest extent.

Using the keyboard

Keystroke Description

Up f\./lovc? the cursor up one line, or if th.e cursor is on the
first line, move the address up one line.

Down Move the cursor down one ling, or if the cursor is on
the last line, move the address down line line.

Left Move the cursor left one character.

Right Move the cursor right one character.

Home Move the cursor to the first entry.

End Move the cursor to the last entry.

PageUp Move the cursor up one page, or if the cursor is on first

page, move the address up one page.

147

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

PageDown Move the cursor down one page, or if the cursor is on
the last page, move the address down one page.

Ctrl+E Toggle the cursor between data and text editing.

Editing memory

To edit memory, simply move the cursor to the data or text entry you want to modify and start typing. The

memory entry will be written and read back as you type.

Shortcut menu commands

The shortcut menu contains the following commands:

Action Description
Access Memory By Display Width Access memory in terms of the display width.
Address Order Specify whether the address range shown uses

Address as the start or end address and whether
addresses should increment or decrement.

Auto Evaluate Re-evaluate Address and Size each time the Memory
window is updated.

Auto Refresh Specify how frequently the memory window should
automatically refresh.

Export To Binary Editor Create a binary editor with the current Memory
window contents.

Save As Save the current Memory window contents to a file.
Supported file formats are Binary File, Motorola S-
Record File, Intel Hex File, TI Hex File, and Hex File.

Load From Load the current Memory window from a file.
Supported file formats are Binary File, Motorola S-
Record File, Intel Hex File, TI Hex File, and Hex File.

Display formats

You can set the Memory window to display 8-bit, 16-bit, and 32-bit values that are formatted as hexadecimal,

decimal, unsigned decimal, octal, or binary. You can also specify how many columns to display.

Saving memory contents

You can save the displayed contents of the memory window to a file in various formats. Alternatively, you can

export the contents to a binary editor to work on them.

You can save the displayed memory values as a binary file, Motorola S-record file, Intel hex file, or a Texas

Instruments TXT file.

148

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

To save the current state of memory to a file:

Select the start address and number of bytes to save by editing the Start Address and Size fields in the
Memory window toolbar.

Right-click the main memory display.

From the shortcut menu, select Save As, then choose the format from the submenu.

To export the current state of memory to a binary editor:

Select the start address and number of bytes to save by editing the Start Address and Size fields in the
Memory window toolbar.

Right-click the main memory display.

Choose Export to Binary Editor from the shortcut menu.

Note that subsequent modifications in the binary editor will not modify memory in the target.

149

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Breakpoints window

The Breakpoints window manages the list of currently set breakpoints on the solution. Using the Breakpoints

window, you can:

Enable, disable, and delete existing breakpoints.
Add new breakpoints.

Show the status of existing breakpoints.

Breakpoints are stored in the session file, so they will be remembered each time you work on a particular
project. When running in the debugger, you can set breakpoints on assembly code addresses. These low-level
breakpoints appear in the Breakpoints window for the duration of the debug run but are not saved when you

stop debugging.

When a breakpoint is reached, the matching breakpoint is highlighted in the Breakpoints window.

Breakpoints window layout
The Breakpoints window has a toolbar and a main breakpoint display.

Button Description

Create a new breakpoint using the New Breakpoint
dialog.

Toggle the selected breakpoint between enabled and
disabled states.

Remove the selected breakpoint.

Move the insertion point to the statement where the
selected breakpoint is set.

Delete all breakpoints.
Disable all breakpoints.

Enable all breakpoints.

LEE & e 3

Create a new breakpoint group and makes it active.

The main part of the Breakpoints window shows what breakpoints are set and the state they are in. You can

organize breakpoints into folders, called breakpoint groups.
SEGGER Embedded Studio displays these icons to the left of each breakpoint:

Icon Description

150

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Enabled breakpoint An enabled breakpoint will stop
P your program running when the breakpoint condition
is met.

Disabled breakpoint A disabled breakpoint will not
stop the program when execution passes through it.

7] Invalid breakpoint An invalid breakpoint is one
where the breakpoint cannot be set; for example, no
executable code is associated with the source code
line where the breakpoint is set or the processor does
not have enough hardware breakpoints.

Showing the Breakpoints window

To activate the Breakpoints window:

Choose Breakpoints > Breakpoints or press Ctrl+Alt+B.

Managing single breakpoints

You can manage breakpoints in the Breakpoint window.

To delete a breakpoint:

In the Breakpoints window, click the breakpoint to delete.

From the Breakpoints window toolbar, click the Delete Breakpoint} button.
To edit a breakpoint:

In the Breakpoints window, right-click the breakpoint to edit.
Choose Edit Breakpoint from the shortcut menu.
Edit the breakpoint in the New Breakpoint dialog.

To toggle the enabled state of a breakpoint:

In the Breakpoints window, right-click the breakpoint to enable or disable.

Choose Enable/Disable Breakpoint from the shortcut menu.
or

In the Breakpoints window, click the breakpoint to enable or disable.
Press Ctrl+F9.

151

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Breakpoint groups

Breakpoints are divided into breakpoint groups. You can use breakpoint groups to specify sets of breakpoints
that are applicable to a particular project in the solution or for a particular debug scenario. Initially, there is a

single breakpoint group, named Default, to which all new breakpoints are added.

To create a new breakpoint group:

From the Breakpoints window toolbar, click the New Breakpoint Group button.
or

From the Debug menu, choose Breakpoints then New Breakpoint Group.
or

Right-click anywhere in the Breakpoints window.

Choose New Breakpoint Group from the shortcut menu.
In the New Breakpoint Group dialog, enter the name of the breakpoint group.

When you create a breakpoint, it is added to the active breakpoint group.

To make a group the active group:

In the Breakpoints window, right-click the breakpoint group to make active.

Choose Set as Active Group from the shortcut menu.

To delete a breakpoint group:

In the Breakpoints window, right-click the breakpoint group to delete.

Choose Delete Breakpoint Group from the shortcut menu.

You can enable all breakpoints within a group at once.

To enable all breakpoints in a group:

In the Breakpoints window, right-click the breakpoint group to enable.

Choose Enable Breakpoint Group from the shortcut menu.

You can disable all breakpoints within a group at once.

To disable all breakpoints in a group:

In the Breakpoints window, right-click the breakpoint group to disable.
Choose Disable Breakpoint Group from the shortcut menu.

Managing all breakpoints

You can delete, enable, or disable all breakpoints at once.

152

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

To delete all breakpoints:
Choose Breakpoints > Clear All Breakpoints or press Ctrl+Shift+F9.
or

On the Breakpoints window toolbar, click the Delete All Breakpoints button.

To enable all breakpoints:
Choose Breakpoints > Enable All Breakpoints or press Ctrl+B, N.
or

On the Breakpoints window toolbar, click the Enable All Breakpoints button.

To disable all breakpoints:
Choose Breakpoints > Disable All Breakpoints or press Ctrl+B, X.
or

On the Breakpoints window toolbar, click the Disable All Breakpoints button.

153

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Call Stack window

The Call Stack window displays the list of function calls (stack frames) that were active when program execution
halted. When execution halts, SEGGER Embedded Studio populates the call-stack window from the active
(currently executing) task. For simple, single-threaded applications not using the SEGGER Embedded Studio
tasking library, there is only a single task; but for multi-tasking programs that use the SEGGER Embedded Studio
Tasking Library, there may be any number of tasks. SEGGER Embedded Studio updates the Call Stack window

when you change the active task in the Threads window.
The Call Stack window has a toolbar and a main call-stack display.

Button Description

=5 Move the insertion point to where the call was made
= to the selected frame.

Set the debugger context to the selected stack frame.

Move the debugger context down one stack to the
called function.

> ¢ ¥

Move the debugger context up one stack to the calling
function.

Select the fields to display for each entry in the call
stack.

[

Set the debugger context to the most recent stack
frame and move the insertion point to the currently
executing statement.

%Il

The main part of the Call Stack window displays each unfinished function call (active stack frame) at the point
when program execution halted. The most recent stack frame is displayed at the bottom of the list and the
oldest is displayed at the top of the list.

SEGGER Embedded Studio displays these icons to the left of each function name:

Icon Description

s Indicates the stack frame of the current task.

[Indicates the stack frame selected for the debugger
context.

... Indicates that a breakpoint is active and when the

function returns to its caller.

These icons can be overlaid to show, for instance, the debugger context and a breakpoint on the same stack

frame.

154

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Showing the call-stack window

To activate the Call Stack window:

Choose View > Call Stack or press Ctrl+Alt+S.

Configuring the call-stack window

Each entry in the Call Stack window displays the function name and, additionally, parameter names, types, and
values. You can configure the Call Stack window to show varying amounts of information for each stack frame.
By default, SEGGER Embedded Studio displays all information.

To show or hide a field:

1. On the Call Stack toolbar, click the Options button on the far right.
2. Select the fields to show, and deselect the ones that should be hidden.

Changing the debugger context

You can select the stack frame for the debugger context from the Call Stack window.

To move the debugger context to a specific stack frame:
In the Call Stack window, double-click the stack frame to move to.
or

In the Call Stack window, select the stack frame to move to.
On the Call Stack window's toolbar, click the Switch To Frame button.

or

In the Call Stack window, right-click the stack frame to move to.

Choose Switch To Frame from the shortcut menu.

The debugger moves the insertion point to the statement where the call was made. If there is no debug
information for the statement at the call location, SEGGER Embedded Studio opens a disassembly window at the
instruction.

To move the debugger context up one stack frame:

On the Call Stack window's toolbar, click the Up One Stack Frame button.

or

155

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

On the Debug Location toolbar, click the Up One Stack Frame button.
or
Press Alt+-.
The debugger moves the insertion point to the statement where the call was made. If there is no debug
information for the statement at the call location, SEGGER Embedded Studio opens a disassembly window at the
instruction.
To move the debugger context down one stack frame:
On the Call Stack window's toolbar, click the Down One Stack Frame button.
or
On the Debug Location toolbar, click the Down One Stack Frame button.
or
Press Alt++.

The debugger moves the insertion point to the statement where the call was made. If there is no debug
information for the statement at the call location, SEGGER Embedded Studio opens a disassembly window at the

instruction.

Setting a breakpoint on a return to a function

To set a breakpoint on return to a function:

In the Call Stack window, click the stack frame on the function to stop at on return.

On the Build toolbar, click the Toggle Breakpoint button.
or

In the Call Stack window, click the stack frame on the function to stop at on return.
Press F9.

or

In the Call Stack window, right-click the function to stop at on return.
Choose Toggle Breakpoint from the shortcut menu.

156

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Threads window

The Threads window displays the set of executing contexts on the target processor structured as a set of
gueues.
To activate the Threads window:

Choose View > More Debug Windows > Threads or press Ctrl+Alt+H.

The window is populated using the threads script, which is a JavaScript program store in a file whose file-type
project option is "Threads Script” (or is called t hr eads. j s) and is in the project that is being debugged.

When debugging starts, the threads script is loaded and the function init() is called to determine which columns

are displayed in the Threads window.

When the application stops on a breakpoint, the function update() is called to create entries in the Threads
window corresponding to the columns that have been created together with the saved execution context
(register state) of the thread. By double-clicking one of the entries, the debugger displays its saved execution

contextto put the debugger back into the default execution context, use Show Next Statement.

Writing the threads script

The threads script controls the Threads window with the Threads object.
The methods Threads.setColumns and Threads.setSortByNumber can be called from the function init().

function init()

{
Thr eads. set Col ums(" Nane", “"Priority", "State", "Tinme");
Thr eads. set Sor t ByNunber (" Ti me") ;

}

The above example creates the named columns Name, Priority, State, and Time in the Threads window, with

the Time column sorted numerically rather than alphabetically.

If you don't supply the function init() in the threads script, the Threads window will create the default columns

Name, Priority, and State.

The methods Threads.clear(), Threads.newqueue(), and Threads.add() can be called from the function
update().

The Threads.clear() method clears the Threads window.

The Threads.newqueue() function takes a string argument and creates a new, top-level entry in the Threads
window. Subsequent entries added to this window will go under this entry. If you don't call this, new entries will

all be at the top level of the Threads window.

157

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

The Threads.add() function takes a variable number of string arguments, which should correspond to the
number of columns displayed by the Threads window. The last argument to the Threads.add() function
should be an array (possibly empty) containing the registers of the thread or, alternatively, a handle that can
be supplied a call to the threads script function getregs(handle), which will return an array when the thread is
selected in the Threads window. The array containing the registers should have elements in the same order in
which they are displayed in the CPU Registers displaytypically this will be in register-number order, e.g., r0, r1,

and so on.

function update()

{
Threads. cl ear ();
Thr eads. newgueue(" My Tasks");
Thr eads. add(" Task1", "0", "Executing", "1000", [0,1,2,3,4,5,6,7,8,9,10, 11, 12,13, 14, 15, 16]);
Thr eads. add(" Task2", "1", "Witing", "2000", [O,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16]);
}

The above example will create a fixed output on the Threads window and is here to demonstrate how to call the
methods.

To get real thread state, you need to access the debugger from the threads script. To do this, you can use
the JavaScript method Debug.evaluate("expression"), which will evaluate the string argument as a debug
expression and return the result. The returned result will be an object if you evaluate an expression that denotes

a structure or an array. If the expression denotes a structure, each field can be accessed by using its field name.
So, if you have structs in the application as follows

struct task {
char *nane;
unsi gned char priority;
char *state,;
unsi gned time;
struct task *next;
unsi gned registers[17];
unsi gned t hread_| ocal _storage[4];

b

struct task task2 =
{
"Task2",

i

"Wai ting",

2000,
0,
{ 0,1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16 },
{0123}

b

struct task taskl =
{
"Task1",
0,
"Executing",
1000,
&t ask2,
{01,2,34,56,7,8,9, 10, 11, 12, 13, 14, 15, 16 },

158

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

{ 01,23}
b

you can update() the Threads window using the following:

taskl = Debug. eval uate("taskl");
Threads. add(taskl. nane, taskl.priority, taskl.state, taskl.tine, taskl.registers);

You can use pointers and C-style cast to enable linked-list traversal.

var next = Debug. eval uate("&t askl");
whi | e (next)
{

var xt = Debug.eval uate("*(struct task*)"+next);
Threads. add(xt.nane, xt.priority, xt.state, xt.time, xt.registers);
next = xt.next;

Note that, if the threads script goes into an endless loop, the debuggerand consequently SEGGER Embedded
Studiowill become unresponsive and you will need to kill SEGGER Embedded Studio using a task manager.

Therefore, the above loop is better coded as follows:

var next = Debug. eval uate("&t askl");

var count = O;

whil e (next && count < 10)

{

var xt = Debug. eval uate("*(struct task*)"+next);
Thr eads. add(xt.nane, xt.priority, xt.state, xt.time, xt.registers);
next = Xt.next;
count ++;

You can speed up the Threads window update by not supplying the registers of the thread to the Threads.add()
function. To do this, you should supply a handle/pointer to the thread as the last argument to the Threads.add()

function. For example:

var next = Debug. eval uat e(" &t ask1");
var count = O;
whil e (next && count < 10)

{

var xt = Debug.eval uate("*(struct task*)"+next);

Thr eads. add(xt.name, xt.priority, xt.state, xt.tine, next);
next =xt . next;

count ++;

When the thread is selected, the Threads window will call getregs(x) in the threads script. That function should

return the array of registers, for example:

function getregs(x)

{

return Debug. eval uate("((struct task*)"+x+")->registers");

}

159

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

If you use thread local storage, implementing the gettls(x) function enables you to return an expression for the
debugger to evaluate when the base address of the thread local storage is accessed, for example:

function gettls(x)

{

return "((struct task*)"+x+")->thread_| ocal _storage";

}

The debugger may require the name of a thread which you can provide by implementing the getname(x)

function, for example:

function getnane(x)

{

return Debug. eval uate("((struct task*)"+x+")->nanme");

}

160

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Execution Profile window

The Execution Profile window shows a list of source locations and the number of times those source locations
have been executed. This window is only available for targets that support the collection of jump trace

information.
To activate the Execution Profile window:

Choose View > More Debug Windows > Execution Profile or press Ctrl+T, P.

The count value displayed is the number of times the first instruction of the source code location has been
executed. The source locations displayed are target dependent: they could represent each statement of the
program or each jump target of the program. If however the debugger is in intermixed or disassembly mode
then the count values will be displayed on a per instruction basis.

The execution counts window is updated each time your program stops and the window is visible so if you have
this window displayed then single stepping may be slower than usual.

161

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Execution Trace window

The trace window displays historical information on the instructions executed by the target.

To activate the Trace window:
Choose View > More Debug Windows > Execution Trace or press Ctrl+T, T.

The type and number of the trace entries depends upon the target that is connected when gathering trace
information. Some targets may trace all instructions, others may trace jump instructions, and some may trace

modifications to variables. You'll find the trace capabilities of your target on the shortcut menu.

Each entry in the trace window has a unique number, and the lower the number the earlier the trace. You can
click on the header to show earliest to latest or the latest to earliest trace entries. If a trace entry can have source

code located to it then double-clicking the trace entry will show the appropriate source display.
Some targets may provide timing information which will be displayed in the ticks column.

The trace window is updated each time the debugger stops when it is visible so single stepping is likely to be

slower if you have this window displayed.

162

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Debug file search editor

When a program is built with debugging enabled, the debugging information contains the paths and filenames
of all the source files for the program in order to allow the debugger to find them. If a program or library linked
into the program is on a different machine than the one on which it was compiled, or if the source files were

moved after the program was compiled, the debugger will not be able to find the source files.

In this situation, the simplest way to help SEGGER Embedded Studio find the source files is to add the directory
containing the source files to one of its source-file search paths. Alternatively, if SEGGER Embedded Studio

cannot find a source file, it will prompt you for its location and will record its new location in the source-file map.

Debug source-file search paths

Debug's source-file search paths can be used to help the debugger locate source files that are no longer located
where they were at compile time. When a source file cannot be found, the search-path directories will be
checked, in turn, to see if they contain the source file. SEGGER Embedded Studio maintains two debug source-

file search paths:

Project-session search path:This path is for the current project session and does not apply to all projects.

The global search path:This system-wide path applies to all projects.

The project-session search path is checked before the global search path.

To edit the debug search paths:

Choose Debug > Options > Search Paths.

Debug source file map

If a source file cannot be found while debugging and the debugger has to prompt the user for its location,

the results are stored in the debug source file map. The debug source file map simply correlates, or maps, the
original pathnames to the new locations. When a file cannot be found at its original location or in the debug
search paths, the debug source file map is checked to see if a new location has been recorded for the file or if the
user has specified that the file does not exist. Each project session maintains its own source file map, the map is
not shared by all projects.

To view the debug source file map:

Choose Debug > Options > Search Paths.

To remove individual entries from the debug source file map:

Choose Debug > Options > Search Paths.

163

Embedded Studio Reference Manual

Right-click the mapping to delete.
Choose Delete Mapping from the shortcut menu.

To remove all entries from the debug source file map:

Choose Debug > Options > Search Paths.
Right-click any mapping.

Choose Delete All Mappings from the shortcut menu.

164

SEGGER Embedded Studio User Guide

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Breakpoint expressions

The debugger can set breakpoints by evaluating simple C-like expressions. Note that the exact capabilities
offered by the hardware to assist in data breakpointing will vary from target to target; please refer to the
particular target interface you are using and the capabilities of your target silicon for exact details. The simplest
expression supported is a symbol name. If the symbol name is a function, a breakpoint occurs when the first
instruction of the symbol is about to be executed. If the symbol name is a variable, a breakpoint occurs when the
symbol has been accessed; this is termed a data breakpoint. For example, the expression X will breakpoint when
xis accessed. You can use a debug expression (see Debug expressions) as a breakpoint expression. For example,
X[4] will breakpoint when element 4 of array x is accessed, and @ p will breakpoint when the sp register is

accessed.

Data breakpoints can be specified, using the == operator, to occur when a symbol is accessed with a specific
value. The expression X == 4 will breakpoint when x is accessed and its value is 4. The operators <, >=, >;, >=,
==, and = can be used similarly. For example, @p <= 0x1000 will breakpoint when register sp is accessed

and its value is less than or equal to 0x1000.

You can use the operator & to mask the value you wish to break on. For example, (x & 1) == 1 will

breakpoint when x is accessed and has an odd value.

You can use the operator && to combine comparisons. For example
(x >= 2) && (x <= 14)

will breakpoint when x is accessed and its value is between 2 and 14.

You can specify an arbitrary memory range using an array cast expression. For example, (char [256])
(0x1000) will breakpoint when the memory region 0x10000x10FF is accessed.

You can specify an inverse memory range using the ! operator. For example ! (char [256]) (0x1000) will
breakpoint when memory outside the range 0x10000x10FF is accessed.

165

Embedded Studio Reference Manual SEGGER Embedded Studio User Guide

Debug expressions

The debugger can evaluate simple expressions that can be displayed in the Watch window or as a tool-tip in the

code editor.
The simplest expression is an identifier the debugger tries to interpret in the following order:

an identifier that exists in the scope of the current context.

the name of a global identifier in the program of the current context.
Numbers can be used in expressions. Hexadecimal numbers must be prefixed with 0x.
Registers can be referenced by prefixing the register name with @

The standard C and C++ operators !, ~,*,/ , %+, - ,>>,<<, <, <=,>,>=,==,| ,& ", &%, and | | are supported

on numeric types.

The standard assignment operators =, +=, - =, * =,/ =, %, >>, >>=, <<=, &=, | =, *= are supported on numeric

types.

The array subscript operator [] is supported on array and pointer types.

The structure access operator . is supported on structured types (this also works on pointers to structures), and -

> works similarly.

The dereference operator (prefix *) is supported on pointers, the address-of (prefix &) and sizeof operators are

supported.

The addr essof (filename, linenumber) operator will return the address of the specified source code line

number.
Function calling with parameters and return results.

Casting to basic pointer types is supported. For example, (unsigned char *)0x300 can be used to display the

memory at a given location.

Casting to basic array types is supported. For example, (unsigned char[256])0x100 can be used to reference a

memory region.

Operators have the precedence and associativity one expects of a C-like programming language.

166

Embedded Studio Reference Manual Command-line options

Command-line options

This section describes the command-line options accepted by SEGGER Embedded Studio.

Usage

emStudio [options] [files]

167

Embedded Studio Reference Manual Command-line options

-D (Define macro)

Syntax

-D macro=value

Description

Define a SEGGER Embedded Studio macro value.

168

Embedded Studio Reference Manual Command-line options

-noclang (Disable Clang support)

Syntax

-noclang

Description

Disable Clang support.

169

Embedded Studio Reference Manual Command-line options

-packagesdir (Specify packages directory)

Syntax

-packagesdir dir

Description

Override the default value of the $(PackagesDir) macro.

170

Embedded Studio Reference Manual Command-line options

-permit-multiple-studio-instances (Permit multiple
studio instances)

Syntax

-permit-multiple-studio-instances

Description

Allow multiple instances of SEGGER Embedded Studio to run at the same time. This behaviour can also be
enabled using the Environment > Startup Options > Allow Multiple SEGGER Embedded Studios environment

option.

171

Embedded Studio Reference Manual Command-line options

-rootuserdir (Set the root user data directory)

Syntax

-rootuserdir dir

Description

Set the SEGGER Embedded Studio root user data directory.

172

Embedded Studio Reference Manual Command-line options

-save-settings-off (Disable saving of environment
settings)

Syntax

-save-settings-off

Description

Disable the saving of modified environment settings.

173

Embedded Studio Reference Manual

-set-setting (Set environment setting)

Syntax

-set-setting environment_setting=value

Description

Sets an environment setting to a specified value. For example:

-set-setting "Environment/Buil d/ Show Conmand Li nes=Yes"

174

Command-line options

Embedded Studio Reference Manual Command-line options

-templatesfile (Set project templates path)

Syntax

-templatesfile path

Description

Sets the search path for finding project template files.

175

Embedded Studio Reference Manual Command-line options

176

Embedded Studio Reference Manual Uninstalling SEGGER Embedded Studio

Uninstalling SEGGER Embedded Studio

This section describes how to completely uninstall SEGGER Embedded Studio for each supported operating

system:

Uninstalling SEGGER Embedded Studio from Windows
Uninstalling SEGGER Embedded Studio from Mac OS X
Uninstalling SEGGER Embedded Studio from Linux

Uninstalling SEGGER Embedded Studio from Windows

Removing user data and settings

The uninstaller does not remove any user data such as settings or installed packages. To completely remove the
user data you will need to carry out the following operations for each user that has used SEGGER Embedded

Studio on your system.
To remove user data using SEGGER Embedded Studio:

1. Start SEGGER Embedded Studio.
2. Click Tools > Admin > Remove All User Data...

Alternatively, if SEGGER Embedded Studio has already been uninstalled you can manually remove the user data

as follows:

1. Click the Windows Start button.

177

Embedded Studio Reference Manual Uninstalling SEGGER Embedded Studio

S T

Type %LOCALAPPDATA% in the search field and press enter to open the local application data folder.
Open the SEGGER folder.

Open the SEGGER Embedded Studio folder.

Delete the v3 folder.

If you want to delete user data for all versions of the software, delete the SEGGER Embedded Studio folder

as well.

Uninstalling SEGGER Embedded Studio

To uninstall SEGGER Embedded Studio:

vk N =

If SEGGER Embedded Studio is running, click File > Exit to shut it down.

Click the Start Menu and select Control Panel. The Control Panel window will open.

In the Control Panel window, click the Uninstall a program link under the Programs section.
From the list of currently installed programs, select SEGGER Embedded Studio 3.10i.

To begin the uninstall, click the Uninstall button at the top of the list.

Uninstalling SEGGER Embedded Studio from Mac OS X

Removing user data and settings

Uninstalling does not remove any user data such as settings or installed packages. To completely remove the

user data you will need to carry out the following operations for each user that has used SEGGER Embedded

Studio on your system.

To remove user data using SEGGER Embedded Studio:

1.
2.

Start SEGGER Embedded Studio.
Click Tools > Admin > Remove All User Data...

Alternatively, if SEGGER Embedded Studio has already been uninstalled you can manually remove the user data

as follows:

1. Open Finder.

2. Go to the SHOME/Library/SEGGER/SEGGER Embedded Studio directory.

3.

4. If you want to delete user data for all versions of the software, drag the SEGGER Embedded Studio folder to

Drag the v3 folder to the Trash.

the Trash as well.

Uninstalling SEGGER Embedded Studio

To uninstall SEGGER Embedded Studio:

178

Embedded Studio Reference Manual Uninstalling SEGGER Embedded Studio

1. If SEGGER Embedded Studio is running, shut it down.
2. Open the Applications folder in Finder.
3. Drag the SEGGER Embedded Studio 3.10i folder to the Trash.

Uninstalling SEGGER Embedded Studio from Linux

Removing user data and settings

The uninstaller does not remove any user data such as settings or installed packages. To completely remove the
user data you will need to carry out the following operations for each user that has used SEGGER Embedded

Studio on your system.
To remove user data using SEGGER Embedded Studio:

1. Start SEGGER Embedded Studio.
2. Click Tools > Admin > Remove All User Data...

Alternatively, if SEGGER Embedded Studio has already been uninstalled you can manually remove the user data

as follows:

1. Open a terminal window or file browser.
Go to the SHOME/.segger/SEGGER Embedded Studio directory.
Delete the v3 directory.

> W

If you want to delete user data for all versions of the software, delete the SEGGER Embedded Studio

directory as well.

Uninstalling SEGGER Embedded Studio
To uninstall SEGGER Embedded Studio:

1. If SEGGER Embedded Studio is running, click File > Exit to shut it down.

2. Open a terminal window.

3. Go to the SEGGER Embedded Studio bin directory (this is /usr/share/segger_embedded_studio_3.10i/bin by
default).

4. Run sudo ./uninstall to start the uninstaller.

179

Embedded Studio Reference Manual Uninstalling SEGGER Embedded Studio

180

Embedded Studio Reference Manual ARM target support

ARM target support

When a target-specific executable project is created using the New Project Wizard, the following default files are

added to the project:

Target_St art up. s The target-specific startup code. See Target startup code.

crt 0. s The SEGGER Embedded Studio standard C runtime. See Startup code.

Target_MemoryMap.xml The target-specific memory map file for the board. See Section Placement. Note
that, for some targets, a general linker placement file may not be suitable. In these cases, there will be two
memory-map files: one for a flash build and one for a RAM build.

fl ash_pl acenent . xm The linker placement file for a flash build.

sram pl acenent . xm The linker placement file for a RAM build.

Initially, shared versions of these files are added to the project. If you want to modify any these shared files,
select the file in the Project Explorer and then click the Import option from the shortcut menu. This will copy a
writable version of the file into your project directory and change the path in the Project Explorer to that of the

local version. You can then make changes to the local file without affecting the shared copy of it.

The following list describes the typical flow of a C program created with SEGGER Embedded Studio's project

templates:

The processor starts executing at address 0x0000000, which is the reset exception vector. The exception-
vector table can be found in the target-specific startup code (see Target startup code), and is put into the
program section .vectors, which is positioned at address 0x00000000 by the target-specific memory-map
file.

The processor jumps to the reset_handler label in the target-specific startup code, which configures the

target (see Target startup code).

181

Embedded Studio Reference Manual ARM target support

When the target is configured, the target-specific startup code jumps to the _start entry point in the C
runtime code, which sets up the C runtime environment (see Startup code).

When the C runtime environment has been set up, the C runtime code jumps to the C entry-point
function, main.

When the program returns from main, it re-enters the C runtime code, executes the destructors and
enters an endless loop.

182

Embedded Studio Reference Manual ARM target support

Target startup code

The following section describes the role of the target-specific startup code.

When you create a new project to produce an executable file using a target-specific project template, a file
containing the default startup code for the target will be added to the project. Initially, a shared version of this
file will be added to the project; if you want to modify this file, select the file in the Project Explorer and select

Import to copy the file to your project directory.

ARM Target startup code
The target startup file typically consists of the exception vector table and the default set of exception handlers.

_vectors This is the exception vector table. It is put into its own .vectors section in order to ensure that

it is always placed at address 0x00000000. The vector table contains jump instructions to the particular
exception handlers. It is recommended that absolute jump instructions are used | dr pc, [pc,
#handl er _address - . - 8] ratherthan relative branch instructions b handl er _addr ess
since many devices shadow the memory at address zero to start execution but the program will be linked
to run at a different address.

reset_handler This is the main reset handler function and typically is the main entry point of an
executable. The reset handler will usually carry out any target-specific initialization and then will jump to
the _start entry point. In a C system, the _start entry point is in the crt0.s file. During development it is
usual to replace this jump with an endless loop which will stop the device running potentially dangerous

in-development code directly out of reset.

undef_handler This is the default, undefined-instruction exception handler.*
swi_handler This is the default, software-interrupt exception handler.*
pabort_handler This is the default, prefetch-abort exception handler.”
dabort_handler This is the default, data-abort exception handler.”
irg_handler This is the default, IRQ-exception handler.*

fig_handler This is the default, FIQ-exception handler.*

" Declared as a weak symbol to allow the user to override the implementation.

Note that ARM exception handlers must be written in ARM assembly code. The CPU or board support package of
the project you have created will typically supply an ARM assembly-coded irq_handler implementation that will

enable you to write interrupt service routines as C functions.

Cortex-M Target startup code

The target startup file typically consists of the exception vector table and the default set of exception handlers.

183

Embedded Studio Reference Manual ARM target support

_vectors This is the exception vector table. It is put into its own .vectors section in order to ensure that it
is always placed at address 0x00000000.

The vector table is structured as follows:

The first entry is the initial value of the stack pointer.

The second entry is the address of the reset handler function. The reset handler will usually carry out any
target-specific initialization and then jump to the _start entry point. In a C system, the _start entry point
isinthecrt 0. s file. During development it is usual to replace this jump with an endless loop which will
stop the device running potentially dangerous in-development code directly out of reset.

The following 15 entries are the addresses of the standard Cortex-M exception handlers ending with the
SysTick_ISR entry.

Subsequent entries are addresses of device-specific interrupt sources and their associated handlers.

For each exception handler, a weak symbol is declared that will implement an endless loop. You can
implement your own exception handler as a regular C function. Note that the name of the C function

must match the name in the startup code e.g. void SysTick_ISR(void). You can use the C preprocessor to
rename the symbol in the startup code if you have existing code with different exception handler names e.g.
SysTick_ISR=SysTick_Handler.

184

Embedded Studio Reference Manual ARM target support

Startup code

The following section describes the role of the C runtime-startup code, crt0.s (and the Cortex-M3/Thumb-2

equivalent thumb_crt0.s).

When you create a new project to produce an executable file using a target-specific project template, the crt0.s
file is added to the project. Initially, a shared version of this file is added to the project. If you want to modify this
file, right-click it in the Project Explorer and then select Import from the shortcut menu to copy the file to your

project directory.

The entry point of the C runtime-startup code is _start. In a typical system, this will be called by the target-

specific startup code after it has initialized the target.
The C runtime carries out the following actions:

Initialize the stacks.

If required, copy the contents of the .data (initialized data) section from non-volatile memory.

If required, copy the contents of the .fast section from non-volatile memory to SRAM.

Initialize the .bss section to zero.

Initialize the heap.

Call constructors.

If compiled with FULL_LIBRARY, get the command line from the host using debug_getargs and set
registers to supply argc and argv to main.

Call the main entry point.

On return from main or when exit is called

If compiled with FULL_LIBRARY, call destructors.
If compiled with FULL_LIBRARY, call atexit functions.
If compiled with FULL_LIBRARY, call debug_exit while supplying the return result from main.

Wait in exit loop.

Program sections

The following program sections are used for the C runtime in section-placement files:

Section name Description
.vectors The exception vector table.
init Startup code that runs before the call to the

application's main function.

.ctors Static constructor function table.

.dtors Static destructor function table.

text The program code.

fast Code to copy from flash to RAM for fast execution.

185

Embedded Studio Reference Manual ARM target support

.data The initialized static data.

.bss The zeroed static data.

.rodata The read-only constants and literals of the program.
ARM.exidx The C++ exception table.

Stacks

The ARM maintains six separate stacks. The position and size of these stacks are specified in the project's section-

placement or memory-map file by the following program sections:

Section name Linker size symbol Description

. stack __STACKSI ZE__ System and User mode stack.
.stack_svc __STACKSI ZE_SVC__ Supervisor mode stack
.stack_irq __STACKSI ZE | RQ__ IRQ mode stack

.stack _fiq __STACKSI ZE_ FI Q__ FIQ mode stack

. stack_abt ___STACKSI ZE_ABT __ Abort mode stack

. stack_und __STACKSI ZE_UND___ Undefined mode stack

For Cortex-M devices the following stacks and linker symbol stack sizes are defined:

Section name Linker size symbol Description
. stack ___STACKSI ZE__ Main stack.
. stack_process ___STACKSI ZE _PROCESS Process stack.

The crt0.s startup code references these sections and initializes each of the stack-pointer registers to point to the
appropriate location. To change the location in memory of a particular stack, the section should be moved to the

required position in the section-placement or memory-map file.

Should your application not require one or more of these stacks, you can remove those sections from the

memory-map file or set the size to 0 and remove the initialization code from the crt 0. s file.

The .data section

The .data section contains the initialized data. If the run address is different from the load address, as it would be
in a flash-based application in order to allow the program to run from reset, the cr t 0. s startup code will copy

the .data section from the load address to the run address before calling the main entry point.

The .fast section

For performance reasons, it is a common requirement for embedded systems to run critical code from fast

memory; the .fast section can be used to simplify this. If the .fast section's run address is different from the load

186

Embedded Studio Reference Manual ARM target support

address, the crt 0. s startup code will copy the .fast section from the load address to the run address before

calling the main entry point.

The .bss Section

The .bss section contains the zero-initialized data. The startup codeincrt 0. s references the .bss section and
sets its contents to zero.

The heap

The position and size of the heap is specified in the project's section-placement or memory-map file by the
.heap program section.

The startup codein crt 0. s references this section and initializes the heap. To change the position of the heap,
the section should be moved to the required position in the section-placement or memory-map file.

There is a Heap Size linker project option you can modify in order to alter the heap size. For compatibility with
earlier versions of SEGGER Embedded Studio, you can also specify the heap size using the heap section's Size
attribute in the section-placement or memory-map file.

Should your application not require the heap functions, you can remove the heap section from the memory-
map file or set the size to zero and remove the heap-initialization code from the crt 0. s file.

187

Embedded Studio Reference Manual ARM target support

Section Placement

SEGGER Embedded Studio's memory-map files are XML files and are used

Linking:by the linker, to describe how to lay out a program in memory.

Loading:by the loader, to check whether a program being downloaded will actually fit into the target's
memory.

Debugging:by the debugger, to describe the location and types of memory a target has. This information
is used to decide how to debug the programfor example, whether to set hardware or software

breakpoints on particular memory location.

Section placement files map program sections used in your program into the memory spaces defined in the
memory map. For instance, it's common for code and read-only data to be programmed into non-volatile flash

memory, whereas read-write data needs to be mapped onto either internal or external RAM.

Memory map files are provided in the CPU support package you are using and are referenced in executable
projects by the Memory Map File project option. Section-placement files are provided in the base SEGGER
Embedded Studio distribution.

ARM section placement
The following placement files are supplied for ARM targets:

File Description

Single FLASH segment with internal RAM segment and

fl ash_pl acenent . xm
P optional external RAM segment.

flash_run_text_fromram pl acenent.xm Single FLASH segment with internal RAM segment
and optional external RAM segments. Text section is
copied from FLASH to RAM.

i nternal _sram pl acenent . xm Single internal RAM segment.

fl ash_pl acenent . xni Two FLASH segments with internal RAM segment and
optional external RAM segment.

i nternal _sram pl acenent . xm Internal RAM segment and optional external RAM
segment.

Cortex-M section placement

The following placement files are supplied for Cortex-M targets:

File Description
fl ash_pl acenment . xni Two FLASH segments and two RAM segments.
fl ash_pl acenent 2. xni One FLASH segment and two RAM segments.

188

Embedded Studio Reference Manual ARM target support

flash _to _ram pl acenent . xni One FLASH segment and one RAM segment. Text
section is copied from FLASH to RAM.

ram pl acement . xni Two RAM segments.

The memory segments defined in the section placement files have macro-expandable names which can be

defined using the Section Placement Macros project option.

Some of the section placement files have a macro-expandable start attribute in the first program section. You

can use this to reserve space at the beginning of the memory segment.

189

Embedded Studio Reference Manual ARM target support

190

Embedded Studio Reference Manual C Library User Guide

C Library User Guide

This section describes the library and how to use and customize it.

The libraries supplied with SEGGER Embedded Studio have all the support necessary for input and output using
the standard C functions printf and scanf, support for the assert function, both 32-bit and 64-bit floating point,
and are capable of being used in a multi-threaded environment. However, to use these facilities effectively you
will need to customize the low-level details of how to input and output characters, what to do when an assertion
fails, how to provide protection in a multithreaded environment, and how to use the available hardware to the
best of its ability.

191

Embedded Studio Reference Manual C Library User Guide

Floating point

The SEGGER Embedded Studio C library uses IEEE floating point format as specified by the ISO 60559 standard

with restrictions.

This library favors code size and execution speed above absolute precision. It is suitable for applications
that need to run quickly and not consume precious resources in limited environments. The library does not
implement features rarely used by simple applications: floating point exceptions, rounding modes, and

subnormals.

NaNs and infinities are supported and correctly generated. The only rounding mode supported is round-to-
nearest. Subnormals are always flushed to a correctly-signed zero. The mathematical functions use stable

approximations and do their best to cater ill-conditioned inputs.

192

Embedded Studio Reference Manual C Library User Guide

Single and double precision

SEGGER Embedded Studio C allows you to choose whether the double data type uses the IEC 60559 32-bit or 64-
bit format. The following sections describe the details of why you would want to choose a 32-bit double rather

than a 64-bit double in many circumstances.

Why choose 32-bit doubles?

Many users are surprised when using float variables exclusively that sometimes their calculations are compiled
into code that calls for double arithmetic. They point out that the C standard allows float arithmetic to be carried

out only using float operations and not to automatically promote to the double data type of classic K&R C.

This is valid point. However, upon examination, even the simplest calculations can lead to double arithmetic.

Consider:

/1 Conpute sin(2x)
float sin_two_x(float x)

{

return sinf(2.0 * x);

}

This looks simple enough. We're using the sinf function which computes the sine of a float and returns a float
result. There appears to be no mention of a double anywhere, yet the compiler generates code that calls double

support routinesbut why?

The answer is that the constant 2.0 is a double constant, not a float constant. That is enough to force the
compiler to convert both operands of the multiplication to double format, perform the multiplication in double
precision, and then convert the result back to float precision. To avoid this surprise, the code should have been

written:

/| Conpute sin(2x)
float sin_two_x(float x)

{

return sinf(2.0F * x);

}

This uses a single precision floating-point constant 2.0F. It's all too easy to forget to correctly type your floating-
point constants, so if you compile your program with double meaning the same as float, you can forget all

about adding the 'F' suffix to your floating point constants.

As an aside, the C99 standard is very strict about the way that floating-point is implemented and the latitude the
compiler has to rearrange and manipulate expressions that have floating-point operands. The compiler cannot
second-guess user intention and use a number of useful mathematical identities and algebraic simplifications
because in the world of IEC 60559 arithmetic many algebraic identities, such as x * 1 = x, do not hold when x

takes one of the special values NaN, infinity, or negative zero.

193

Embedded Studio Reference Manual C Library User Guide

More reasons to choose 32-bit doubles

Floating-point constants are not the only silent way that double creeps into your program. Consider this:

void wite_results(float x)

{
}

printf("After all that x=%\\n", Xx);

Again, no mention of a double anywhere, but double support routines are now required. The reason is that ISO
C requires that float arguments are promoted to double when they are passed to the non-fixed part of variadic
functions such as printf. So, even though your application may never mention double, double arithmetic may

be required simply because you use printf or one of its near relatives.

If, however, you compile your code with 32-bit doubles, then there is no requirement to promote a float to a
double as they share the same internal format.

Why choose 64-bit doubles?

If your application requires very accurate floating-point, more precise than the seven decimal digits supported
by the float format, then you have little option but to use double arithmetic as there is no simple way to
increase the precision of the float format. The double format delivers approximately 15 decimal digits of

precision.

194

Embedded Studio Reference Manual C Library User Guide

Multithreading

The SEGGER Embedded Studio libraries support multithreading, for example, where you are using CTL or a third-
party real-time operating system (RTOS).

Where you have single-threaded processes, there is a single flow of control. However, in multithreaded
applications there may be several flows of control which access the same functions, or the same resources,
concurrently. To protect the integrity of resources, any code you write for multithreaded applications must be
reentrant and thread-safe.

Reentrancy and thread safety are both related to the way functions in a multithreaded application handle

resources.

Reentrant functions

A reentrant function does not hold static data over successive calls and does not return a pointer to static data.
For this type of function, the caller provides all the data that the function requires, such as pointers to any
workspace. This means that multiple concurrent calls to the function do not interfere with each other, that the

function can be called in mainline code, and that the function can be called from an interrupt service routine.

Thread-safe functions

A thread-safe function protects shared resources from concurrent access using locks. In C, local variables are
held in processor registers or are on the stack. Any function that does not use static data, or other shared
resources, is thread-safe. In general, thread-safe functions are safe to call from any thread but cannot be called

directly, or indirectly, from an interrupt service routine.

195

Embedded Studio Reference Manual C Library User Guide

Thread safety in the SEGGER Embedded Studio library

In the SEGGER Embedded Studio C library:

some functions are inherently thread-safe, for example strcmp.

some functions, such as malloc, are not thread-safe by default but can be made thread-safe by
implementing appropriate lock functions.

other functions are only thread-safe if passed appropriate arguments, for example tmpnam.

some functions are never thread-safe, for example setlocale.

We define how the functions in the C library can be made thread-safe if needed. If you use a third-party library
in a multi-threaded system and combine it with the SEGGER Embedded Studio C library, you will need to ensure
that the third-party library can be made thread-safe in just the same way that the SEGGER Embedded Studio C

library can be made thread-safe.

196

Embedded Studio Reference Manual C Library User Guide

Implementing mutual exclusion in the C library

The SEGGER Embedded Studio C library ships as standard with callouts to functions that provide thread-safety in
a multithreaded application. If your application has a single thread of execution, the default implementation of

these functions does nothing and your application will run without modification.

If your application is intended for a multithreaded environment and you wish to use the SEGGER Embedded

Studio C library, you must implement the following locking functions:

__heap_lock and __heap_unlock to provide thread-safety for all heap operations such as malloc, free,
and realloc.

__printf_lock and __printf_unlock to provide thread-safety for printf and relatives.

__scanf_lock and __scanf_unlock to provide thread-safety for scanf and relatives.

__debug_io_lock and __debug_io_unlock to provide thread-safety for semi-hosting support in the
SEGGER Embedded Studio I/0 function.

If you use a third-party RTOS with the SEGGER Embedded Studio C library, you will need to use whatever your

RTOS provides for mutual exclusion, typically a semaphore, a mutex, or an event set.

197

Embedded Studio Reference Manual C Library User Guide

Input and output

The Clibrary provides all the standard C functions for input and output except for the essential items of where to
output characters printed to stdout and where to read characters from stdin.

If you want to output to a UART, to an LCD, or input from a keyboard using the standard library print and scan

functions, you need to customize the low-level input and output functions.

198

Embedded Studio Reference Manual C Library User Guide

Customizing putchar

To use the standard output functions putchar, puts, and printf, you need to customize the way that characters
are written to the standard output device. These output functions rely on a function __putchar that outputs a

character and returns an indication of whether it was successfully written.
The prototype for __putchar is

int _ putchar(int ch);

Sending all output to the SEGGER Embedded Studio virtual terminal

You can send all output to the SEGGER Embedded Studio virtual terminal by supplying the following
implementation of the__putchar function in your code:
#i ncl ude <debugi 0. h>

int _ putchar(int ch)
{

}

return debug_putchar(ch);

This hands off output of the character ch to the low-level debug output routine, debug_putchar.

Whilst this is an adequate implementation of __putchar, it does consume stack space for an unnecessary nested
call and associated register saving. A better way of achieving the same result is to define the low-level symbol for
__putchar to be equivalent to the low-level symbol for debug_putchar. To do this, we need to instruct the linker

to make the symbols equivalent.

Select the project node in the Project Explorer.

Display the Properties Window.

Enter the text __put char =debug_put char into the Linker > Linker Symbol Definitions property of
the Linker Options group.

Sending all output to another device

If you need to output to a physical device, such as a UART, the following notes will help you:

If the character cannot be written for any reason, putchar must return EOF. Just because a character can't
be written immediately is not a reason to return EOF: you can busy-wait or tasking (if applicable) to wait
until the character is ready to be written.

The higher layers of the library do not translate C's end of line character '\\n' before passing it to putchar.
If you are directing output to a serial line connected to a terminal, for instance, you will most likely need

to output a carriage return and line feed when given the character \\n' (ASCll code 10).

199

Embedded Studio Reference Manual C Library User Guide

The standard functions that perform input and output are the printf and scanf functions.These functions
convert between internal binary and external printable data. In some cases, though, you need to read and write
formatted data on other channels, such as other RS232 ports. This section shows how you can extend the 1/0

library to best implement these function.

Classic custom printf-style output

Assume that we need to output formatted data to two UARTs, numbered 0 and 1, and we have a functions
uartO_putc and uart1_putc that do just that and whose prototypes are:

int uartO_putc(int ch, _ printf_t *ctx);
int vartl putc(int ch, __printf_t *ctx);

These functions return a positive value if there is no error outputting the character and EOF if there was an
error. The second parameter, ct X, is the context that the high-level formatting routines use to implement the C

standard library functions.
Using a classic implementation, you would use sprintf to format the string for output and then output it:

void uartO_printf(const char *fnt, ...)

{
char buf[80], *p;
va_list ap;
va_start(ap, fnm);
vsnprintf(buf, sizeof(buf), fnt, ap);
for (p = buf; *p; ++p)
uartO0_putc(*p, 0); // null context
va_end(ap);

We would, of course, need an identical routine for outputting to the other UART. This code is portable, but it
requires an intermediate buffer of 80 characters. On small systems, this is quite an overhead, so we could reduce
the buffer size to compensate. Of course, the trouble with that means that the maximum number of characters
that can be output by a single call to uartO_printf is also reduced. What would be good is a way to output
characters to one of the UARTs without requiring an intermediate buffer.

SEGGER Embedded Studio printf-style output

SEGGER Embedded Studio provides a solution for just this case by using some internal functions and data types
in the SEGGER Embedded Studio library. These functions and types are define in the header file <__vfprintf.h>.

The first thing to introduce is the __printf_t type which captures the current state and parameters of the format

conversion:

typedef struct _ printf_tag
{
size_t charcount;
size_t maxchars;
char *string;
int (*output_fn)(int, struct __printf_tag *ctx);

200

Embedded Studio Reference Manual C Library User Guide

} __printf_t;

This type is used by the library functions to direct what the formatting routines do with each character they need
to output. If st r i ng is non-zero, the character is appended is appended to the string pointed to by string; if
out put _f nis non-zero, the character is output through the function output_fn with the context passed as the

second parameter.

The member charcount counts the number of characters currently output, and maxchars defines the maximum

number of characters output by the formatting routine __vfprintf.
We can use this type and function to rewrite uart0_printf:

int vartO_printf(const char *fnt, ...)
{
int n;
va_list ap;
__printf_t iod;
va_start (ap, fnt);
iod.string = 0;
i od. maxchars = | NT_NAX;
iod.output_fn = uartO_putc;
n=_vfprintf(\& od, fnt, ap);
va_end(ap);
return n;

This function has no intermediate buffer: when a character is ready to be output by the formatting routine, it
calls the output_fn function in the descriptor iod to output it immediately. The maximum number of characters
isn't limited as the maxchars member is set to INT_MAX. if you wanted to limit the number of characters output

you can simply set the maxchars member to the appropriate value before calling __vfprintf.
We can adapt this function to take a UART number as a parameter:

int vart_printf(int uvart, const char *fnt, ...)
{

int n;

va_list ap;

__printf_t iod;

va_start (ap, fnt);

iod.is_string = 0;

i od. maxchars = | NT_MAX;

iod.output_fn = uart ? uartl_putc : uartO_putc;

n=_ vfiprintf(\& od, fnt, ap);

va_end(ap);

return n;

Now we can use:

uart _printf(0, "This is uart %\n...", 0);
uart_printf(1, "..and this is uvart %\n", 1);

__vfprintf returns the actual number of characters printed, which you may wish to dispense with and make the

uart_printf routine return void.

201

Embedded Studio Reference Manual C Library User Guide

Extending input functions

The formatted input functions would be implemented in the same manner as the output functions: read a string
into an intermediate buffer and parse using sscanf. However, we can use the low-level routines in the SEGGER
Embedded Studio library for formatted input without requiring the intermediate buffer.

The type __stream_scanf_t is:

typedef struct
{

char is_string;

int (*getc_fn)(void);

int (*ungetc_fn)(int);
} __streamscanf _t;

The function getc_fn reads a single character from the UART, and ungetc_fn pushes back a character to the

UART. You can push at most one character back onto the stream.
Here's an implementation of functions to read and write from a single UART:

static int uartO0_ungot = ECF;

int uartO_getc(void)

{
if (uartO_ungot)
{
int ¢ = uart0O_ungot;
uart 0_ungot = EOF;
return c;
}
el se
return read_char_fromuart (0);
}
int uvartO_ungetc{int c)
{
uart0_ungot = c;
}

You can use these two functions to perform formatted input using the UART:

int uartO_scanf(const char *fnt, ...)
{

__stream scanf _t iod;

va_list a;

int n;

va_start(a, fmt);

iod.is_string = O;

iod.getc_fn = uart0_getc;

iod.ungetc_fn = uart0O_ungetc;

n = vfscanf((__scanf_t *)\ & od, (const unsigned char *)fnt, a);
va_end(a);

return n;

Using this template, we can add functions to do additional formatted input from other UARTSs or devices, just as

we did for formatted output.

202

Embedded Studio Reference Manual C Library User Guide

Locales

The SEGGER Embedded Studio C library supports wide characters, multi-byte characters and locales. However,
as not all programs require full localization, you can tailor the exact support provided by the SEGGER Embedded
Studio C library to suit your application. These sections describe how to add new locales to your application and

customize the runtime footprint of the C library.

203

Embedded Studio Reference Manual C Library User Guide

Unicode, ISO 10646, and wide characters

The ISO standard 10646 is identical to the published Unicode standard and the SEGGER Embedded Studio C
library uses the Unicode 6.2 definition as a base. Hence, whenever you see the term Unicode in this document, it
is equivalent to Unicode 6.2 and ISO/IEC 10646:2011.

The SEGGER Embedded Studio C library supports both 16-bit and 32-bit wide characters, depending upon the
setting of wide character width in the project.

When compiling with 16-bit wide characters, all characters in the Basic Multilingual Plane are representable
in a singlewchar _t (values 0 through OxFFFF). When compiling with 32-bit wide characters, all characters in
the Basic Multilingual Plane and planes 1 through 16 are representable in a single wchar_t (values 0 through
0x10FFFF).

The wide character type will hold Unicode code points in a locale that is defined to use Unicode and character

type functions such as iswalpha will work correctly on all Unicode code points.

204

Embedded Studio Reference Manual C Library User Guide

Multi-byte characters

SEGGER Embedded Studio supports multi-byte encoding and decoding of characters. Most new software on the
desktop uses Unicode internally and UTF-8 as the external, on-disk encoding for files and for transport over 8-bit

mediums such as network connections.

However, in embedded software there is still a case to use code pages, such as ISO-Latin1, to reduce the
footprint of an application whilst also providing extra characters that do not form part of the ASCII character set.

The SEGGER Embedded Studio C library can support both models and you can choose a combination of models,

dependent upon locale, or construct a custom locale.

205

Embedded Studio Reference Manual C Library User Guide

The standard C and POSIX locales

The standard Clocale is called simply C. In order to provide POSIX compatibility, the name POSIX is a synonym
for C.

The Clocale is fixed and supports only the ASCII character set with character codes 0 through 127. There is no
multi-byte character support, so the character encoding between wide and narrow characters is simply one-
to-one: a narrow character is converted to a wide character by zero extension. Thus, ASCIl encoding of narrow

characters is compatible with the ISO 10646 (Unicode) encoding of wide characters in this locale.

206

Embedded Studio Reference Manual C Library User Guide

Additional locales in source form

The SEGGER Embedded Studio C library provides only the C locale; if you need other locales, you must provide
those by linking them into your application. We have constructed a number of locales from the Unicode
Common Locale Data Repository (CLDR) and provided them in source form in the $(St udi oDi r) / sour ce

folder for you to include in your application.
A Clibrary locale is divided into two parts:

the locale's date, time, numeric, and monetary formatting information

how to convert between multi-byte characters and wide characters by the functions in the C library.

The first, the locale data, is independent of how characters are represented. The second, the code set in use,

defines how to map between narrow, multi-byte, and wide characters.

207

Embedded Studio Reference Manual C Library User Guide

Installing a locale

If the locale you request using setlocale is neither C nor POSIX, the C library calls the function
__user_find_locale to find a user-supplied locale. The standard implementation of this function is to return a
null pointer which indicates that no additional locales are installed and, hence, no locale matches the request.

The prototype for __user_find_locale is:
const _ RAL locale_ t * user_find_|ocal e(const char *locale);

The parameter locale is the locale to find; the locale name is terminated either by a zero character or by a
semicolon. The locale name, up to the semicolon or zero, is identical to the name passed to setlocale when you

select a locale.

Now let's install the Hungarian locale using both UTF-8 and ISO 8859-2 encodings. The UTF-8 codecs are
included in the SEGGER Embedded Studio C library, but the Hungarian locale and the ISO 8859-2 codec are not.

You will find the file locale_hu_HU.c in the source directory as described in the previous section. Add this file to

your project.

Although this adds the data needed for the locale, it does not make the locale available for the C library: we need

to write some code for __user_find_locale to return the appropriate locales.
To create the locales, we need to add the following code and data to tie everything together:

#i ncl ude <__crossworks. h>

static const _ RAL locale t hu HU utf8 = {
"hu_HU. utf 8",
&l ocal e_hu_HU,
&codeset _utf8

h

static const __RAL |ocale_t hu_HU iso 8859 2 = {
"hu_HU. i so_8859_2",
&l ocal e_hu_HU,
&codeset i so_8859 2

e

const _ RAL locale_t *
__user_find_| ocal e(const char *I|ocal e)

{
if (__RAL _conpare_|l ocal e_nane(l ocal e, hu_HU utf8. name) == 0)
return &hu_HU utf8;
else if (__RAL conpare_l ocal e_nane(l ocale, hu_HU iso_8859 2. nanme) == 0)
return &u_HU i so_8859 2;
el se
return O;
}

The function __RAL_conpar e_| ocal e_nane matches locale names up to a terminating null character, or
a semicolon (which is required by the implementation of set | ocal e in the Clibrary when setting multiple
locales using LC_ALL).

208

Embedded Studio Reference Manual C Library User Guide

In addition to this, you must provide a buffer, __user | ocal e_nane_buf f er, for locale names encoded
by setlocale. The buffer must be large enough to contain five locale names, one for each category. In the
above example, the longest locale name is hu_HU. i so_8859 2 which is 16 characters in length. Using this

information, buffer must be at least (16+1)5 = 85 characters in size:

const char __user_| ocal e_nane_buffer[85];

209

Embedded Studio Reference Manual C Library User Guide

Setting a locale directly

Although we support setlocale in its full generality, most likely you'll want to set a locale once and forget about
it. You can do that by including the locale in your application and writing to the instance variables that hold the
underlying locale data for the SEGGER Embedded Studio C library.

For instance, you might wish to use Czech locale with a UTF codeset:

static _ RAL_locale_t cz_locale =

{
"cz_CZ. utf8",
& RAL cs CZ |ocale,
& RAL codeset _utf8
b

You can install this directly into the locale without using setlocale:

__RAL_gl obal _| ocal e. __cat egory[LC_COLLATE]
__RAL gl obal | ocale. __category[LC CTYPE]

[&cz_| ocal e;
[
__RAL gl obal _| ocal e. __cat egory[LC_MONETARY]
[
[

&cz | ocal €;
&cz | ocal e;
&cz | ocal €;
&cz_| ocal e;

__RAL gl obal _| ocal e. __cat egory[LC_NUVERI C]
__RAL_gl obal _| ocal e. __category[LC_TI ME]

210

Embedded Studio Reference Manual C Library User Guide

Complete API reference

This section contains a complete reference to the SEGGER Embedded Studio C library API.

File Description
Describes the diagnostic facilities which you can build

<assert.h> . Lo
into your application.

<debugio.h> Describes the virtual console services and semi-
hosting support that SEGGER Embedded Studio
provides to help you when developing your
applications.

<ctype.h> Describes the character classification and
manipulation functions.

<errno.h> Describes the macros and error values returned by the
Clibrary.

<float.h> Defines macros that expand to various limits and
parameters of the standard floating point types.

<limits.h> Describes the macros that define the extreme values of
underlying C types.

<locale.h> Describes support for localization specific settings.

<math.h> Describes the mathematical functions provided by the
Clibrary.

<setjmp.h> Describes the non-local goto capabilities of the C
library.

<stdarg.h> Describes the way in which variable parameter lists are
accessed.

<stddef.h> Describes standard type definitions.

<stdio.h> Describes the formatted input and output functions.

<stdlib.h> Describes the general utility functions provided by the
Clibrary.

<string.h> Describes the string handling functions provided by
the Clibrary.

<time.h> Describes the functions to get and manipulate date
and time information provided by the C library.

<wchar.h> Describes the facilities you can use to manipulate wide

characters.

211

Embedded Studio Reference Manual

<assert.h>

APl Summary

Macros

assert

Functions

__assert

C Library User Guide

Allows you to place assertions and diagnostic tests into
programs

User defined behaviour for the assert macro

212

Embedded Studio Reference Manual C Library User Guide

__assert

Synopsis

void __assert(const char *expression,
const char *fil enane,
int line);

Description

There is no default implementation of __assert. Keeping __assert out of the library means that you can can
customize its behaviour without rebuilding the library. You must implement this function where expression
is the stringized expression, filename is the filename of the source file and line is the linenumber of the failed

assertion.

213

Embedded Studio Reference Manual C Library User Guide

assert

Synopsis

#defi ne assert(e)

Description

If NDEBUG is defined as a macro name at the point in the source file where <assert.h> is included, the assert

macro is defined as:
#defi ne assert (ignore) ((void)O0)

If NDEBUG is not defined as a macro name at the point in the source file where <assert.h> is included, the assert

macro expands to a void expression that calls __assert.

#define assert(e) ((e) ? (void)0O : _ assert(#e, __FILE , _ LINE))

When such an assert is executed and e is false, assert calls the __assert function with information about the
particular call that failed: the text of the argument, the name of the source file, and the source line number.

These are the stringized expression and the values of the preprocessing macros __FILE__and __LINE__.

Note

The assert macro is redefined according to the current state of NDEBUG each time that <assert.h> is included.

214

Embedded Studio Reference Manual

<complex.h>

APl Summary

Trigonometric functions
cacos

cacosf

casin

casinf

catan

catanf

ccos

ccosf

csin

csinf

ctan

ctanf

Hyperbolic trigonometric functions
cacosh

cacoshf

casinh

casinhf

catanh
catanhf

ccosh
ccoshf
csinh
csinhf
ctanh

ctanhf

Exponential and logarithmic functions

cexp
cexpf

clog

C Library User Guide

Compute inverse cosine of a complex float
Compute inverse cosine of a complex float
Compute inverse sine of a complex float
Compute inverse sine of a complex float
Compute inverse tangent of a complex float
Compute inverse tangent of a complex float
Compute cosine of a complex float
Compute cosine of a complex float
Compute sine of a complex float

Compute sine of a complex float

Compute tangent of a complex float

Compute tangent of a complex float

Compute inverse hyperbolic cosine of a complex float
Compute inverse hyperbolic cosine of a complex float
Compute inverse hyperbolic sine of a complex float
Compute inverse hyperbolic sine of a complex float

Compute inverse hyperbolic tangent of a complex
float

Compute inverse hyperbolic tangent of a complex
float

Compute hyperbolic cosine of a complex float
Compute hyperbolic cosine of a complex float
Compute hyperbolic sine of a complex float
Compute hyperbolic sine of a complex float
Compute hyperbolic tangent of a complex float

Compute hyperbolic tangent of a complex float

Computes the base-e exponential of a complex float
Computes the base-e exponential of a complex float

Computes the base-e logarithm of a complex float

215

Embedded Studio Reference Manual

clogf

Power and absolute value functions
cabs

cabsf

cpow

cpowf

csqrt

csqrtf

Manipulation functions
carg

cargf

cimag

cimagf

conj

conjf

cproj

cprojf

creal

crealf

C Library User Guide

Computes the base-e logarithm of a complex float

Computes the absolute value of a complex float
Computes the absolute value of a complex float
Compute a complex float raised to a power
Compute a complex float raised to a power
Compute square root of a complex float

Compute square root of a complex float

Compute argument of a complex float
Compute argument of a complex float
Compute imaginary part of a complex float
Compute imaginary part of a complex float
Compute conjugate of a complex float
Compute conjugate of a complex float
Compute projection on the Riemann sphere
Compute projection on the Riemann sphere
Compute real part of a complex float

Compute real part of a complex float

216

Embedded Studio Reference Manual

cabs

Synopsis

doubl e cabs(doubl e conpl ex z);

Description

cabs returns the absolute value of z.

217

C Library User Guide

Embedded Studio Reference Manual

cabsf

Synopsis

float cabsf(float conplex z);

Description

cabsf returns the absolute value of z.

218

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

Ccacos

Synopsis

doubl e conpl ex cacos(doubl e conpl ex z);

Description

cacos returns the principal value the inverse cosine of z with branch cuts outside the interval [-1,+1] on the
real axis. The principal value lies in the interval [0,] on the real axis and in the range of a strip mathematically

unbounded on the imaginary axis.

219

Embedded Studio Reference Manual C Library User Guide

cacosf

Synopsis

fl oat conpl ex cacosf(float conplex z);

Description

cacosf returns the principal value the inverse cosine of z with branch cuts outside the interval [-1,+1] on the
real axis. The principal value lies in the interval [0,] on the real axis and in the range of a strip mathematically

unbounded on the imaginary axis.

220

Embedded Studio Reference Manual C Library User Guide

cacosh

Synopsis

doubl e conpl ex cacosh(doubl e conpl ex z);

Description

cacosh returns the principal value the inverse hyperbolic cosine of z with branch cuts of values less than 1 on
the real axis. The principal value lies in the range of a half-strip of non-negative values on the real axis and in the

interval [-i,+i] on the imaginary axis.

221

Embedded Studio Reference Manual C Library User Guide

cacoshf

Synopsis

fl oat conpl ex cacoshf(float conplex _z);

Description

cacoshf returns the principal value the inverse hyperbolic cosine of z with branch cuts of values less than 1 on
the real axis. The principal value lies in the range of a half-strip of non-negative values on the real axis and in the

interval [-i,+i] on the imaginary axis.

222

Embedded Studio Reference Manual

carg

Synopsis

doubl e carg(doubl e conpl ex z);

Description

carg computes the argument of z with a branch cut along the negative real axis.

223

C Library User Guide

Embedded Studio Reference Manual

cargf

Synopsis

float cargf(float conplex z);

Description

cargf computes the argument of z with a branch cut along the negative real axis.

224

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

casin

Synopsis

doubl e conpl ex casi n(doubl e conpl ex z);

Description

casin returns the principal value the inverse sine of z with branch cuts outside the interval [-1,+1] on the real axis.
The principal value lies in the interval [,] on the real axis and in the range of a strip mathematically unbounded

on the imaginary axis.

225

Embedded Studio Reference Manual C Library User Guide

casinf

Synopsis

fl oat conpl ex casinf(float conplex z);

Description

casinf returns the principal value the inverse sine of z with branch cuts outside the interval [-1,4+1] on the
real axis. The principal value lies in the interval [,] on the real axis and in the range of a strip mathematically

unbounded on the imaginary axis.

226

Embedded Studio Reference Manual C Library User Guide

casinh

Synopsis

doubl e conpl ex casi nh(doubl e conpl ex z);

Description

casinh returns the principal value the inverse hyperbolic sine of z with branch cuts outside the inteval [-i,+i] on
the imaginary axis. The principal value lies in the range of a strip mathematically unbounded on the real axis and

in the interval [-i,+i] on the imaginary axis.

227

Embedded Studio Reference Manual C Library User Guide

casinhf

Synopsis

fl oat conpl ex casinhf(float conplex z);

Description

casinhf returns the principal value the inverse hyperbolic sine of z with branch cuts outside the inteval [-i,+i] on
the imaginary axis. The principal value lies in the range of a strip mathematically unbounded on the real axis and

in the interval [-i,+i] on the imaginary axis.

228

Embedded Studio Reference Manual C Library User Guide

catan

Synopsis

doubl e conpl ex catan(doubl e conpl ex z);

Description

catan returns the principal value the inverse sine of z with branch cuts outside the interval [-1,+1] on the
real axis. The principal value lies in the interval [,] on the real axis and in the range of a strip mathematically

unbounded on the imaginary axis.

229

Embedded Studio Reference Manual C Library User Guide

catanf

Synopsis

float conpl ex catanf(float conplex z);

Description

catanf returns the principal value the inverse sine of z with branch cuts outside the interval [-1,4+1] on the
real axis. The principal value lies in the interval [,] on the real axis and in the range of a strip mathematically

unbounded on the imaginary axis.

230

Embedded Studio Reference Manual C Library User Guide

catanh

Synopsis

doubl e conpl ex cat anh(doubl e conpl ex z);

Description

catanh returns the principal value the inverse hyperbolic sine of z with branch cuts outside the inteval [-1,+1] on
the real axis. The principal value lies in the range of a strip mathematically unbounded on the real axis and in the

interval [-i,+i] on the imaginary axis.

231

Embedded Studio Reference Manual C Library User Guide

catanhf

Synopsis

float conpl ex catanhf(float conplex z);

Description

catanhf returns the principal value the inverse hyperbolic sine of z with branch cuts outside the inteval [-1,+1]
on the real axis. The principal value lies in the range of a strip mathematically unbounded on the real axis and in

the interval [-i,+i] on the imaginary axis.

232

Embedded Studio Reference Manual C Library User Guide

CCos

Synopsis

doubl e conpl ex ccos(doubl e conpl ex z);

Description

ccos returns the complex cosine of z.

233

Embedded Studio Reference Manual C Library User Guide

ccosf

Synopsis

fl oat conpl ex ccosf(float conplex z);

Description

ccosf returns the complex cosine of z.

234

Embedded Studio Reference Manual

ccosh

Synopsis

doubl e conpl ex ccosh(doubl e conpl ex z);

Description

ccosh returns the complex hyperbolic cosine of z.

235

C Library User Guide

Embedded Studio Reference Manual

ccoshf

Synopsis

fl oat conpl ex ccoshf(float conplex z);

Description

ccoshf returns the complex hyperbolic cosine of z.

236

C Library User Guide

Embedded Studio Reference Manual

cexp

Synopsis

doubl e conpl ex cexp(doubl e conpl ex z);

Description

cexp returns the complex base-e exponential value of z.

237

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

cexpf

Synopsis

fl oat conpl ex cexpf(float conplex z);

Description

cexpf returns the complex base-e exponential value of z.

238

Embedded Studio Reference Manual C Library User Guide

cimag

Synopsis

doubl e ci mag(doubl e conpl ex) ;

Description

cimag computes the imaginary part of z.

239

Embedded Studio Reference Manual C Library User Guide

cimagf

Synopsis

float cinmagf(float conplex);

Description

cimagf computes the imaginary part of z.

240

Embedded Studio Reference Manual

clog

Synopsis

doubl e conpl ex cl og(doubl e conpl ex z);

Description

clog returns the complex base-e logarithm value of z.

241

C Library User Guide

Embedded Studio Reference Manual

clogf

Synopsis

float conplex clogf(float conplex z);

Description

clogf returns the complex base-e logarithm value of z.

242

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

conj

Synopsis

doubl e conpl ex conj (doubl e conpl ex) ;

Description

conj computes the conjugate of z by reversing the sign of the imaginary part.

243

Embedded Studio Reference Manual C Library User Guide

conjf

Synopsis

fl oat conplex conjf(float conplex);

Description

conjf computes the conjugate of z by reversing the sign of the imaginary part.

244

Embedded Studio Reference Manual C Library User Guide

cpow
Synopsis
doubl e conpl ex cpow doubl e conpl ex x

doubl e conpl ex y);

Description

cpow computes x raised to the power y with a branch cut for the x along the negative real axis.

245

Embedded Studio Reference Manual C Library User Guide

cpowf
Synopsis
float conpl ex cpowf (float conplex x,

float conplex y);

Description

cpowf computes x raised to the power y with a branch cut for the x along the negative real axis.

246

Embedded Studio Reference Manual C Library User Guide

cproj

Synopsis

doubl e conpl ex cproj (doubl e conpl ex) ;

Description

cproj computes the projection of z on the Riemann sphere.

247

Embedded Studio Reference Manual C Library User Guide

cprojf

Synopsis

float conplex cprojf(float conplex);

Description

cprojf computes the projection of z on the Riemann sphere.

248

Embedded Studio Reference Manual

creal

Synopsis

doubl e creal (doubl e conpl ex) ;

Description

creal computes the real part of z.

249

C Library User Guide

Embedded Studio Reference Manual

crealf

Synopsis

float creal f(float conplex);

Description

crealf computes the real part of z.

250

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

csin

Synopsis

doubl e conpl ex csin(doubl e conpl ex z);

Description

csin returns the complex sine of z.

251

Embedded Studio Reference Manual C Library User Guide

csinf

Synopsis

float conplex csinf(float conplex z);

Description

csinf returns the complex sine of z.

252

Embedded Studio Reference Manual

csinh

Synopsis

doubl e conpl ex csinh(doubl e conpl ex z);

Description

csinh returns the complex hyperbolic sine of z.

253

C Library User Guide

Embedded Studio Reference Manual

csinhf

Synopsis

float conpl ex csinhf(float conplex z);

Description

csinhf returns the complex hyperbolic sine of z.

254

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

csqrt

Synopsis

doubl e conpl ex csqrt (doubl e conpl ex z);

Description

csqrt computes the complex square root of z with a branch cut along the negative real axis.

255

Embedded Studio Reference Manual C Library User Guide

csqrtf

Synopsis

float conplex csqrtf(float conplex z);

Description

csqrtf computes the complex square root of z with a branch cut along the negative real axis.

256

Embedded Studio Reference Manual C Library User Guide

ctan

Synopsis

doubl e conpl ex ctan(doubl e conpl ex z);

Description

ctan returns the complex tangent of z.

257

Embedded Studio Reference Manual C Library User Guide

ctanf

Synopsis

float conplex ctanf(float conplex z);

Description

ctanf returns the complex tangent of z.

258

Embedded Studio Reference Manual C Library User Guide

ctanh

Synopsis

doubl e conpl ex ctanh(doubl e conpl ex z);

Description

ctanh returns the complex hyperbolic tangent of z.

259

Embedded Studio Reference Manual

ctanhf

Synopsis

float conpl ex ctanhf(float conplex z);

Description

ctanhf returns the complex hyperbolic tangent of z.

260

C Library User Guide

Embedded Studio Reference Manual

<ctype.h>

APl Summary

Classification functions
isalnum

isalpha

isblank

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

Conversion functions
tolower

toupper

Classification functions (extended)
isalnum_|

isalpha_l

isblank_I

iscntrl_|

isdigit_|

isgraph_l|

islower_|

isprint_|

ispunct_|

isspace_|

isupper_|

isxdigit_|I

Conversion functions (extended)

tolower_|

C Library User Guide

Is character alphanumeric?

Is character alphabetic?

Is character a space or horizontal tab?
Is character a control?

Is character a decimal digit?

Is character any printing character except space?
Is character a lowercase letter?

Is character printable?

Is character a punctuation mark?

Is character a whitespace character?
Is character an uppercase letter?

Is character a hexadecimal digit?

Convert uppercase character to lowercase

Convert lowercase character to uppercase

Is character alphanumeric?

Is character alphabetic?

Is character a space or horizontal tab?
Is character a control character?

Is character a decimal digit?

Is character any printing character except space?
Is character a lowercase letter?

Is character printable?

Is character a punctuation mark?

Is character a whitespace character?
Is character an uppercase letter?

Is character a hexadecimal digit?

Convert uppercase character to lowercase

261

Embedded Studio Reference Manual C Library User Guide

toupper_| Convert lowercase character to uppercase

262

Embedded Studio Reference Manual

isalnum

Synopsis

int isalnumiint c);

Description

C Library User Guide

isalnum returns nonzero (true) if and only if the value of the argument c is an alphabetic or numeric character.

263

Embedded Studio Reference Manual

isalnum_|

Synopsis

int isalnuml(int c,
locale_t loc);

Description

C Library User Guide

isalnum_I returns nonzero (true) if and only if the value of the argument c is a alphabetic or numeric character in

locale loc.

264

Embedded Studio Reference Manual C Library User Guide

isalpha

Synopsis

int isal pha(int c);

Description

isalpha returns true if the character cis alphabetic. That is, any character for which isupper or islower returns
true is considered alphabetic in addition to any of the locale-specific set of alphabetic characters for which none

of iscntrl, isdigit, ispunct, or isspace is true.

In the Clocale, isalpha returns nonzero (true) if and only if isupper or islower return true for value of the

argument c.

265

Embedded Studio Reference Manual

isalpha_l
Synopsis
int isalpha_|(int c,

locale_t loc);

Description

C Library User Guide

isalpha_l returns nonzero (true) if and only if isupper or islower return true for value of the argument cin locale

loc.

266

Embedded Studio Reference Manual

isblank

Synopsis

int isblank(int c);

Description

C Library User Guide

isblank returns nonzero (true) if and only if the value of the argument c is either a space character (') or the

horizontal tab character (" \\ t').

267

Embedded Studio Reference Manual C Library User Guide

isblank_|

Synopsis

int isblank_ | (int c,
locale_t loc);

Description

isblank_I returns nonzero (true) if and only if the value of the argument c is either a space character (' ') or the

horizontal tab character (' \\ t ') in locale loc.

268

Embedded Studio Reference Manual C Library User Guide

iscntrl

Synopsis

int iscntrl(int c);

Description

iscntrl returns nonzero (true) if and only if the value of the argument c is a control character. Control characters

have values 0 through 31 and the single value 127.

269

Embedded Studio Reference Manual

iscntrl_|

Synopsis

int iscntrl_I(int c,
locale_t loc);

Description

C Library User Guide

iscntrl_I returns nonzero (true) if and only if the value of the argument c is a control character in locale loc.

270

Embedded Studio Reference Manual
isdigit

Synopsis

int isdigit(int c);

Description

isdigit returns nonzero (true) if and only if the value of the argument c is a digit.

271

C Library User Guide

Embedded Studio Reference Manual
isdigit_|

Synopsis

int isdigit_|(int c,

locale_t loc);

Description

C Library User Guide

isdigit_| returns nonzero (true) if and only if the value of the argument c is a decimal digit in locale loc.

272

Embedded Studio Reference Manual

isgraph

Synopsis

int isgraph(int c);

Description

C Library User Guide

isgraph returns nonzero (true) if and only if the value of the argument c is any printing character except space ('

).

273

Embedded Studio Reference Manual

isgraph_|
Synopsis
int isgraph_Il (int c,

locale_t loc);

Description

C Library User Guide

isgraph_l returns nonzero (true) if and only if the value of the argument c is any printing character except space

(" ")inlocaleloc.

274

Embedded Studio Reference Manual

islower

Synopsis

int islower(int c);

Description

C Library User Guide

islower returns nonzero (true) if and only if the value of the argument c is an lowercase letter.

275

Embedded Studio Reference Manual

islower |

Synopsis

int islower_|(int c,
locale_t loc);

Description

C Library User Guide

islower_| returns nonzero (true) if and only if the value of the argument c is an lowercase letter in locale loc.

276

Embedded Studio Reference Manual

isprint

Synopsis

int isprint(int c);

Description

C Library User Guide

isprint returns nonzero (true) if and only if the value of the argument c is any printing character including space

¢ ")

277

Embedded Studio Reference Manual

isprint_|I
Synopsis
int isprint_I|(int c,

locale_t loc);

Description

C Library User Guide

isprint_| returns nonzero (true) if and only if the value of the argument c is any printing character including

space (" ')inlocale loc.

278

Embedded Studio Reference Manual

ispunct

Synopsis

int ispunct(int c);

Description

C Library User Guide

ispunct returns nonzero (true) for every printing character for which neither isspace nor isalnum is true.

279

Embedded Studio Reference Manual

ispunct_|
Synopsis
int ispunct_I(int c,

locale_t loc);

Description

C Library User Guide

ispunct_I returns nonzero (true) for every printing character for which neither isspace nor isalnum is true in in

locale loc.

280

Embedded Studio Reference Manual C Library User Guide

isspace

Synopsis

int isspace(int c);

Description

isspace returns nonzero (true) if and only if the value of the argument c is a standard white-space character.
The standard white-space characters are space (' '), formfeed (' \\ f'), new-line (' \\ n'), carriage return (' \

\r'), horizontaltab (" \\ t '), and verticaltab (" \ v').

281

Embedded Studio Reference Manual

isspace_|
Synopsis
int isspace_ | (int c,

locale_t loc);

Description

C Library User Guide

isspace_l returns nonzero (true) if and only if the value of the argument c is a standard white-space character in

in locale loc..

282

Embedded Studio Reference Manual

isupper

Synopsis

int isupper(int c);

Description

C Library User Guide

isupper returns nonzero (true) if and only if the value of the argument c is an uppercase letter.

283

Embedded Studio Reference Manual

isupper_|
Synopsis
int isupper_I(int c,

locale_t loc);

Description

C Library User Guide

isupper_I returns nonzero (true) if and only if the value of the argument cis an uppercase letter in locale loc.

284

Embedded Studio Reference Manual
isxdigit

Synopsis

int isxdigit(int c);

Description

C Library User Guide

isxdigit returns nonzero (true) if and only if the value of the argument c is a hexadecimal digit.

285

Embedded Studio Reference Manual

isxdigit_|
Synopsis
int isxdigit_|I(int c,

locale t loc);

Description

C Library User Guide

isxdigit_I returns nonzero (true) if and only if the value of the argument c is a hexadecimal digit in locale loc.

286

Embedded Studio Reference Manual C Library User Guide

tolower

Synopsis

int tolower(int c);

Description

tolower converts an uppercase letter to a corresponding lowercase letter. If the argument c is a character for
which isupper is true and there are one or more corresponding characters, as specified by the current locale, for
which islower is true, the tolower function returns one of the corresponding characters (always the same one for

any given locale); otherwise, the argument is returned unchanged.

Note that even though isupper can return true for some characters, tolower may return that uppercase

character unchanged as there are no corresponding lowercase characters in the locale.

287

Embedded Studio Reference Manual C Library User Guide

tolower |

Synopsis

int tolower_ | (int c,
locale_t loc);

Description

tolower_| converts an uppercase letter to a corresponding lowercase letter in locale loc. If the argument cis a
character for which isupper is true in locale loc, tolower_| returns the corresponding lowercase letter; otherwise,

the argument is returned unchanged.

288

Embedded Studio Reference Manual C Library User Guide

toupper

Synopsis

int toupper(int c);

Description

toupper converts a lowercase letter to a corresponding uppercase letter. If the argument i s a character for
which islower is true and there are one or more corresponding characters, as specified by the current locale, for
which isupper is true, toupper returns one of the corresponding characters (always the same one for any given
locale); otherwise, the argument is returned unchanged. Note that even though islower can return true for some
characters, toupper may return that lowercase character unchanged as there are no corresponding uppercase

characters in the locale.

289

Embedded Studio Reference Manual C Library User Guide

toupper_l|

Synopsis

int toupper_|I (int c,
locale_t loc);

Description

toupper_| converts a lowercase letter to a corresponding uppercase letter in locale loc. If the argument ¢
is a character for which islower is true in locale loc, toupper_I returns the corresponding uppercase letter;

otherwise, the argument is returned unchanged.

290

Embedded Studio Reference Manual

<debugio.h>

APl Summary

File Functions
debug_clearerr
debug_fclose
debug_feof
debug_ferror
debug_fflush
debug_fgetc
debug_fgetpos
debug_fgets
debug_filesize
debug_fopen
debug_fprintf
debug_fprintf_c
debug_fputc
debug_fputs
debug_fread
debug_freopen
debug_fscanf
debug_fscanf _c
debug_fseek
debug_fsetpos
debug_ftell
debug_fwrite
debug_remove
debug_rename
debug_rewind
debug_tmpfile
debug_tmpnam
debug_ungetc
debug_vfprintf

debug_vfscanf

C Library User Guide

Clear error indicator

Closes an open stream

Check end of file condition
Check error indicator

Flushes buffered output
Read a character from a stream
Return file position

Read a string

Return the size of a file
Opens a file on the host PC
Formatted write

Formatted write

Write a character

Write a string

Read data

Reopens a file on the host PC
Formatted read

Formatted read

Set file position

Teturn file position

Return file position

Write data

Deletes a file on the host PC
Renames a file on the host PC
Set file position to the beginning
Open a temporary file
Generate temporary filename
Push a character

Formatted write

Formatted read

291

Embedded Studio Reference Manual

Debug Terminal Output Functions
debug_printf
debug_printf_c
debug_putchar
debug_puts
debug_vprintf

Debug Terminal Input Functions
debug_getch
debug_getchar
debug_getd
debug_getf
debug_geti
debug_getl
debug_getll
debug_gets
debug_getu
debug_getul
debug_getull
debug_kbhit
debug_scanf
debug_scanf ¢
debug_vscanf
Debugger Functions
debug_abort
debug_break
debug_enabled
debug_exit
debug_getargs
debug_loadsymbols
debug_runtime_error
debug_unloadsymbols
Misc Functions
debug_getenv
debug_perror

debug_system

C Library User Guide

Formatted write
Formatted write
Write a character
Write a string

Formatted write

Blocking character read
Line-buffered character read
Line-buffered double read
Line-buffered float read
Line-buffered integer read
Line-buffered long read
Line-buffered long long read
String read

Line-buffered unsigned integer
Line-buffered unsigned long read
Line-buffered unsigned long long read
Polled character read

Formatted read

Formatted read

Formatted read

Stop debugging

Stop target

Test if debug input/output is enabled
Stop debugging

Get arguments

Load debugging symbols

Stop and report error

Unload debugging symbols

Get environment variable value
Display error

Execute command

292

Embedded Studio Reference Manual C Library User Guide

debug_time get time

293

Embedded Studio Reference Manual

debug_abort

Synopsis

voi d debug_abort (void);

Description

debug_abort causes the debugger to exit and a failure result is returned to the user.

294

C Library User Guide

Embedded Studio Reference Manual

debug_break

Synopsis

voi d debug_break(void);

Description

C Library User Guide

debug_break causes the debugger to stop the target and position the cursor at the line that called

debug_break.

295

Embedded Studio Reference Manual C Library User Guide

debug_clearerr

Synopsis

voi d debug_cl earerr (DEBUG FI LE *stream ;

Description

debug_clearerr clears any error indicator or end of file condition for the stream.

296

Embedded Studio Reference Manual

debug_enabled

Synopsis

i nt debug_enabl ed(voi d);

Description

C Library User Guide

debug_enabled returns non-zero if the debugger is connected - you can use this to test if a debug input/output

functions will work.

297

Embedded Studio Reference Manual

debug_exit

Synopsis

voi d debug _exit(int result);

Description

debug_exit causes the debugger to exit and result is returned to the user.

298

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

debug_fclose

Synopsis

int debug fclose(DEBUG FILE *stream;

Description
debug_fclose flushes any buffered output of the stream and then closes the stream.

debug_fclose returns 0 on success or -1 if there was an error.

299

Embedded Studio Reference Manual C Library User Guide

debug_feof

Synopsis

i nt debug feof (DEBUG FI LE *stream ;

Description

debug_feof returns non-zero if the end of file condition is set for the stream.

300

Embedded Studio Reference Manual C Library User Guide

debug_ferror

Synopsis

int debug ferror(DEBUG FI LE *stream;

Description

debug_ferror returns non-zero if the error indicator is set for the stream.

301

Embedded Studio Reference Manual

debug_fflush

Synopsis

int debug fflush(DEBUG FILE *stream;

Description

debug_fflush flushes any buffered output of the stream.

debug_fflush returns 0 on success or -1 if there was an error.

302

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

debug_fgetc

Synopsis

int debug fgetc(DEBUG FI LE *stream ;

Description

debug_fgetc reads and returns the next character on stream or -1 if no character is available.

303

Embedded Studio Reference Manual

debug_fgetpos
Synopsis
int debug fgetpos(DEBUG FI LE *stream

| ong *pos);

Description

debug_fgetpos is equivalent to debug_fseek .

304

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

debug_fgets

Synopsis

char *debug_fgets(char *s,
int n,
DEBUG FI LE *stream ;

Description

debug_fgets reads at most n-1 characters or the characters up to (and including) a newline from the input
stream into the array pointed to by s. A null character is written to the array after the input characters.

debug_fgets returns s on success, or 0 on error or end of file.

305

Embedded Studio Reference Manual C Library User Guide

debug_filesize

Synopsis

int debug filesize(DEBUG FILE *stream;

Description
debug_filesize returns the size of the file associated with the stream in bytes.

debug_filesize returns -1 on error.

306

Embedded Studio Reference Manual C Library User Guide

debug_fopen

Synopsis

DEBUG FI LE *debug_f open(const char *fil enane,
const char *node);

Description

debug_fopen opens the filename on the host PC and returns a stream or 0 if the open fails. The filename is a
host PC filename which is opened relative to the debugger working directory. The mode is a string containing

one of:

r open file for reading.

w create file for writing.

a open or create file for writing and position at the end of the file.

r+ open file for reading and writing.

w+ create file for reading and writing.

a+ open or create text file for reading and writing and position at the end of the file.

followed by one of:

t for a text file.

b for a binary file.

debug_fopen returns a stream that can be used to access the file or 0 if the open fails.

307

Embedded Studio Reference Manual C Library User Guide

debug_fprintf

Synopsis

int debug fprintf(DEBUG FILE *stream
const char *format,

)

Description

debug_fprintf writes to stream, under control of the string pointed to by format that specifies how subsequent
arguments are converted for output. The format string is a standard C printf format string. The actual formatting
is performed on the host by the debugger and therefore debug_fprintf consumes only a very small amount of

code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_fprintf returns the number of characters transmitted, or a negative value if an output or encoding error

occurred.

308

Embedded Studio Reference Manual C Library User Guide

debug_fprintf_c

Synopsis

int debug fprintf_c(DEBUG FILE *stream
__code const char *format,

)

Description

debug_fprintf_cis equivalent to debug_fprintf with the format string in code memory.

309

Embedded Studio Reference Manual

debug_fputc

Synopsis

int debug fputc(int c,
DEBUG FI LE *streamn;

Description

debug_fputc writes the character c to the output stream.

debug_fputc returns the character written or -1 if an error occurred.

310

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

debug_fputs

Synopsis

i nt debug_fputs(const char *s,
DEBUG FI LE *streamn;

Description

debug_fputs writes the string pointed to by s to the output stream and appends a new-line character. The

terminating null character is not written.

debug_fputs returns -1 if a write error occurs; otherwise it returns a nonnegative value.

311

Embedded Studio Reference Manual C Library User Guide

debug_fread

Synopsis

int debug fread(void *ptr,
int size,
int nobj,

DEBUG FI LE *strean);

Description
debug_fread reads from the input stream into the array ptr at most nobj objects of size size.

debug_fread returns the number of objects read. If this number is different from nobj then debug_feof and

debug_ferror can be used to determine status.

312

Embedded Studio Reference Manual C Library User Guide

debug_freopen

Synopsis

DEBUG FI LE *debug_freopen(const char *fil enane,
const char *node,
DEBUG FI LE *stream ;

Description

debug_freopen is the same as debug_open except the file associated with the stream is closed and the opened

file is then associated with the stream.

313

Embedded Studio Reference Manual C Library User Guide

debug_fscanf

Synopsis

i nt debug_fscanf(DEBUG FI LE *stream
const char *format,

)
Description

debug_fscanf reads from the input stream, under control of the string pointed to by format, that specifies how
subsequent arguments are converted for input. The format string is a standard C scanf format string. The actual
formatting is performed on the host by the debugger and therefore debug_fscanf consumes only a very small

amount of code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_fscanf returns number of characters read, or a negative value if an output or encoding error occurred.

314

Embedded Studio Reference Manual C Library User Guide

debug_fscanf ¢

Synopsis

int debug fscanf_ c(DEBUG FILE *stream
__code const char *format,

)

Description

debug_fscanf_cis equivalent to debug_fscanf with the format string in code memory.

315

Embedded Studio Reference Manual C Library User Guide

debug_fseek

Synopsis

int debug fseek(DEBUG FI LE *stream
| ong of fset,
int origin);

Description

debug_fseek sets the file position for the stream. A subsequent read or write will access data at that position.

The origin can be one of:

0 sets the position to offset bytes from the beginning of the file.
1 sets the position to offset bytes relative to the current position.
2 sets the position to offset bytes from the end of the file.

Note that for text files offset must be zero. debug_fseek returns zero on success, non-zero on error.

316

Embedded Studio Reference Manual C Library User Guide

debug_fsetpos

Synopsis

int debug fsetpos(DEBUG FILE *stream
const |ong *pos);

Description

debug_fsetpos is equivalent to debug_fseek with 0 as the origin.

317

Embedded Studio Reference Manual

debug_ftell

Synopsis

| ong debug ftell (DEBUG FI LE *stream;

Description

debug_ftell returns the current file position of the stream.

debug_ftell returns -1 on error.

318

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

debug_fwrite

Synopsis

int debug fwite(const void *ptr,
int size,
int nobj,

DEBUG FI LE *stream;

Description
debug_fwrite write to the output stream from the array ptr at most nobj objects of size size.

debug_fwrite returns the number of objects written. If this number is different from nobj then debug_feof and

debug_ferror can be used to determine status.

319

Embedded Studio Reference Manual C Library User Guide

debug_getargs

Synopsis

i nt debug_get args(unsi gned bufsi ze,
unsi gned char *buf);

Description

debug_getargs stores the debugger command line arguments into the memory pointed at by buf up to a
maximum of bufsize bytes. The command line is stored as a C argc array of null terminated string and the

number of entries is returned as the result.

320

Embedded Studio Reference Manual

debug_getch

Synopsis

i nt debug _getch(void);

Description

C Library User Guide

debug_getch reads one character from the Debug Terminal. This function will block until a character is

available.

321

Embedded Studio Reference Manual

debug_getchar

Synopsis

i nt debug_getchar (void);

Description

C Library User Guide

debug_getchar reads one character from the Debug Terminal. This function uses line input and will therefore

block until characters are available and ENTER has been pressed.

debug_getchar returns the character that has been read.

322

Embedded Studio Reference Manual C Library User Guide

debug_getd

Synopsis

i nt debug_getd(double *);

Description

debug_getd reads a double from the Debug Terminal. The number is written to the double object pointed to
by d.

debug_getd returns zero on success or -1 on error.

323

Embedded Studio Reference Manual

debug_getenv

Synopsis

char *debug_get env(char *nane);

Description

C Library User Guide

debug_getenv returns the value of the environment variable name or 0 if the environment variable cannot be

found.

324

Embedded Studio Reference Manual C Library User Guide

debug_getf

Synopsis

int debug getf(float *f);

Description
debug_getf reads an float from the Debug Terminal. The number is written to the float object pointed to by f.

debug_getf returns zero on success or -1 on error.

325

Embedded Studio Reference Manual C Library User Guide

debug_geti

Synopsis

int debug geti(int *i);

Description

debug_geti reads an integer from the Debug Terminal. If the number starts with Ox it is interpreted as a
hexadecimal number, if it starts with Q it is interpreted as an octal number, if it starts with Ob it is interpreted as
a binary number, otherwise it is interpreted as a decimal number. The number is written to the integer object

pointed to by i.

debug_geti returns zero on success or -1 on error.

326

Embedded Studio Reference Manual C Library User Guide

debug_getli

Synopsis

int debug getl (long *I);

Description

debug_getl reads a long from the Debug Terminal. If the number starts with Ox it is interpreted as a
hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with it is interpreted as
a binary number, otherwise it is interpreted as a decimal number. The number is written to the long object

pointed to by I.

debug_getl returns zero on success or -1 on error.

327

Embedded Studio Reference Manual C Library User Guide

debug_getli

Synopsis

int debug getll(long long *I1);

Description

debug_getll reads a long long from the Debug Terminal. If the number starts with Ox it is interpreted as a
hexadecimal number, if it starts with Q it is interpreted as an octal number, if it starts with Ob it is interpreted as
a binary number, otherwise it is interpreted as a decimal number. The number is written to the long long object

pointed to by II.

debug_getll returns zero on success or -1 on error.

328

Embedded Studio Reference Manual

debug_gets

Synopsis

char *debug_gets(char *s);

Description

C Library User Guide

debug_gets reads a string from the Debug Terminal in memory pointed at by s. This function will block until

ENTER has been pressed.

debug_gets returns the value of s.

329

Embedded Studio Reference Manual C Library User Guide

debug_getu

Synopsis

i nt debug_getu(unsi gned *u);

Description

debug_getu reads an unsigned integer from the Debug Terminal. If the number starts with Ox it is interpreted
as a hexadecimal number, if it starts with Q it is interpreted as an octal number, if it starts with Ob it is interpreted
as a binary number, otherwise it is interpreted as a decimal number. The number is written to the unsigned

integer object pointed to by u.

debug_getu returns zero on success or -1 on error.

330

Embedded Studio Reference Manual C Library User Guide

debug_getul

Synopsis

i nt debug_getul (unsi gned | ong *ul);

Description

debug_getul reads an unsigned long from the Debug Terminal. If the number starts with Ox it is interpreted as
a hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with Ob it is interpreted
as a binary number, otherwise it is interpreted as a decimal number. The number is written to the long object

pointed to by ul.

debug_getul returns zero on success or -1 on error.

331

Embedded Studio Reference Manual C Library User Guide

debug_getull

Synopsis

i nt debug _getull (unsigned |ong |Iong *ull);

Description

debug_getull reads an unsigned long long from the Debug Terminal. If the number starts with 0x it is
interpreted as a hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with Ob it
is interpreted as a binary number, otherwise it is interpreted as a decimal number. The number is written to the

long long object pointed to by ull.

debug_getull returns zero on success or -1 on error.

332

Embedded Studio Reference Manual

debug_kbhit

Synopsis

i nt debug_kbhit (void);

Description

C Library User Guide

debug_kbhit polls the Debug Terminal for a character and returns a non-zero value if a character is available or 0

if not.

333

Embedded Studio Reference Manual C Library User Guide

debug_loadsymbols

Synopsis

voi d debug_| oadsynbol s(const char *fil enane,
const voi d *address,
const char *breaksynbol);

Description

debug_loadsymbols instructs the debugger to load the debugging symbols in the file denoted by filename.
The filename is a (macro expanded) host PC filename which is relative to the debugger working directory. The
address is the load address which is required for debugging position independent executables, supply NULL for
regular executables. The breaksymbol is the name of a symbol in the filename to set a temporary breakpoint on
or NULL.

334

Embedded Studio Reference Manual C Library User Guide

debug_perror

Synopsis

voi d debug_perror(const char *s);

Description

debug_perror displays the optional string s on the Debug Terminal together with a string corresponding to the

errno value of the last Debug IO operation.

335

Embedded Studio Reference Manual C Library User Guide

debug_printf

Synopsis

int debug_printf(const char *fornmat,
)i

Description

debug_printf writes to the Debug Terminal, under control of the string pointed to by format that specifies
how subsequent arguments are converted for output. The format string is a standard C printf format string. The
actual formatting is performed on the host by the debugger and therefore debug_printf consumes only a very

small amount of code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_printf returns the number of characters transmitted, or a negative value if an output or encoding error

occurred.

336

Embedded Studio Reference Manual C Library User Guide

debug_printf_c
Synopsis
int debug printf_c(__code const char *format,

20)

Description

debug_printf_cis equivalent to debug_printf with the format string in code memory.

337

Embedded Studio Reference Manual

debug_putchar

Synopsis

i nt debug_putchar(int c);

Description

debug_putchar write the character c to the Debug Terminal.

debug_putchar returns the character written or -1 if a write error occurs.

338

C Library User Guide

Embedded Studio Reference Manual

debug_puts

Synopsis

i nt debug_puts(const char *);

Description

debug_puts writes the string s to the Debug Terminal followed by a new-line character.

debug_puts returns -1 if a write error occurs, otherwise it returns a nonnegative value.

339

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

debug_remove

Synopsis

i nt debug_renove(const char *fil enanme);

Description

debug_remove removes the filename denoted by filename and returns 0 on success or -1 on error. The

filename is a host PC filename which is relative to the debugger working directory.

340

Embedded Studio Reference Manual C Library User Guide

debug_rename

Synopsis

i nt debug_renane(const char *ol dfil enang,
const char *newfil ename);

Description

debug_rename renames the file denoted by oldpath to newpath and returns zero on success or non-zero on

error. The oldpath and newpath are host PC filenames which are relative to the debugger working directory.

341

Embedded Studio Reference Manual C Library User Guide

debug_rewind

Synopsis

voi d debug_rew nd(DEBUG FI LE *stream ;

Description

debug_rewind sets the current file position of the stream to the beginning of the file and clears any error and

end of file conditions.

342

Embedded Studio Reference Manual C Library User Guide

debug_runtime_error

Synopsis

voi d debug_runtinme_error(const char *error);

Description

debug_runtime_error causes the debugger to stop the target, position the cursor at the line that called

debug_runtime_error, and display the null-terminated string pointed to by error.

343

Embedded Studio Reference Manual C Library User Guide

debug_scanf

Synopsis

i nt debug_scanf(const char *format,
)

Description

debug_scanf reads from the Debug Terminal, under control of the string pointed to by format that specifies
how subsequent arguments are converted for input. The format string is a standard C scanf format string. The
actual formatting is performed on the host by the debugger and therefore debug_scanf consumes only a very

small amount of code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_scanf returns number of characters read, or a negative value if an output or encoding error occurred.

344

Embedded Studio Reference Manual C Library User Guide

debug_scanf_c

Synopsis

int debug_scanf_c(__code const char *format,

oo)

Description

debug_scanf_cis equivalent to debug_scanf with the format string in code memory.

345

Embedded Studio Reference Manual C Library User Guide

debug_system

Synopsis

i nt debug_systen{char *command);

Description

debug_system executes the command with the host command line interpreter and returns the commands exit

status.

346

Embedded Studio Reference Manual

debug_time

Synopsis

| ong debug_tinme(long *ptr);

Description

C Library User Guide

debug_time returns the number of seconds elapsed since midnight (00:00:00), January 1, 1970, coordinated

universal time (UTC), according to the system clock of the host computer. The return value is stored in *ptr if ptr

is not NULL.

347

Embedded Studio Reference Manual C Library User Guide

debug_tmpfile

Synopsis

DEBUG FI LE *debug_t nmpfil e(void);

Description

debug_tmpfile creates a temporary file on the host PC which is deleted when the stream is closed.

348

Embedded Studio Reference Manual

debug_tmpnam

Synopsis

char *debug_t mpnan(char *str);

Description

C Library User Guide

debug_tmpnam returns a unique temporary filename. If stris NULL then a static buffer is used to store the

filename, otherwise the filename is stored in str. On success a pointer to the string is returned, on failure 0 is

returned.

349

Embedded Studio Reference Manual

debug_ungetc

Synopsis

i nt debug_ungetc(int c,

DEBUG FI LE *strean);

Description

C Library User Guide

debug_ungetc pushes the character c onto the input stream. If successful c is returned, otherwise -1 is returned.

350

Embedded Studio Reference Manual C Library User Guide

debug_unloadsymbols

Synopsis

voi d debug_unl oadsynbol s(const char *fil enane);

Description

debug_unloadsymbols instructs the debugger to unload the debugging symbols (previously loaded by a call to
debug_loadsymbols) in the file denoted by filename. The filename is a host PC filename which is relative to the

debugger working directory.

351

Embedded Studio Reference Manual C Library User Guide

debug_vfprintf

Synopsis

int debug_vfprintf(DEBUG FILE *stream
const char *format,
_va list);

Description

debug_vfprintf is equivalent to debug_fprintf with arguments passed using stdarg.h rather than a variable

number of arguments.

352

Embedded Studio Reference Manual C Library User Guide

debug_vfscanf

Synopsis

int debug vfscanf (DEBUG FI LE *stream
const char *format,
_va_list);

Description

debug_vfscanf is equivalent to debug_fscanf with arguments passed using stdarg.h rather than a variable

number of arguments.

353

Embedded Studio Reference Manual C Library User Guide

debug_vprintf

Synopsis

int debug vprintf(const char *format,
_va list);

Description

debug_vprintf is equivalent to debug_printf with arguments passed using stdarg.h rather than a variable

number of arguments.

354

Embedded Studio Reference Manual C Library User Guide

debug_vscanf

Synopsis

i nt debug_vscanf (const char *format,
va list);

Description

debug_vscanf is equivalent to debug_scanf with arguments passed using stdarg.h rather than a variable

number of arguments.

355

Embedded Studio Reference Manual C Library User Guide

<errno.h>

APl Summary

Error numbers

EDOM Domain error

EILSEQ lllegal byte sequence
EINVAL Invalid argument

ENOMEM No memory available
ERANGE Result too large or too small
Macros

errno Last-set error condition

356

Embedded Studio Reference Manual

EDOM

Synopsis

#def i ne EDOM

Description

EDOM - an input argument is outside the defined domain of a mathematical function.

357

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

EILSEQ

Synopsis

#def i ne El LSEQ

Description

EILSEQ - A wide-character code has been detected that does not correspond to a valid character, or a byte

sequence does not form a valid wide-character code.

358

Embedded Studio Reference Manual

EINVAL

Synopsis

#def i ne El NVAL 0x06

Description

EINVAL - An argument was invalid, or a combination of arguments was invalid.

359

C Library User Guide

Embedded Studio Reference Manual

ENOMEM

Synopsis

#def i ne ENOVEM 0x05

Description

C Library User Guide

ENOMEM - no memory can be allocated by a function in the library. Note that malloc, calloc, and realloc do not

set errno to ENOMEM on failure, but other library routines (such as duplocale) may set errno to ENOMEM when

memory allocation fails.

360

Embedded Studio Reference Manual

ERANGE

Synopsis

#def i ne ERANGE

Description

C Library User Guide

ERANGE - the result of the function is too large (overflow) or too small (underflow) to be represented in the

available space.

361

Embedded Studio Reference Manual C Library User Guide

errno

Synopsis

int errno;

Description

errno is treated as an writable I-value, but the implementation of how the I-value is read an written is hidden

from the user.

The value of errno is zero at program startup, but is never set to zero by any library function. The value of errno
may be set to a nonzero value by a library function, and this effect is documented in each function that does so.
Note

The ISO standard does not specify whether errno is a macro or an identifier declared with external linkage.

Portable programs must not make assumptions about the implementation of errno.

In this implementation, errno expands to a function call to __errno (MSP430, AVR, MAXQ) or
__aeabi_errno_addr (ARM) that returns a pointer to a volatile int. This function can be implemented by the

application to provide a thread-specific errno.

362

Embedded Studio Reference Manual

<float.h>

APl Summary

Double exponent minimum and maximum values

DBL_MAX_10_EXP
DBL_MAX_EXP
DBL_MIN_10_EXP
DBL_MIN_EXP
Implementation
DBL_DIG
DBL_MANT_DIG
DECIMAL_DIG

FLT_DIG

FLT_EVAL_METHOD

FLT_MANT_DIG

FLT_RADIX

FLT_ROUNDS

Float exponent minimum and maximum values
FLT_MAX_10_EXP

FLT_MAX_EXP

FLT_MIN_10_EXP

FLT_MIN_EXP

Double minimum and maximum values

DBL_EPSILON

DBL_MAX
DBL_MIN
Float minimum and maximum values

FLT_EPSILON

FLT_MAX
FLT_MIN

C Library User Guide

The maximum exponent value in base 10 of a double
The maximum exponent value of a double
The minimal exponent value in base 10 of a double

The minimal exponent value of a double

The number of digits of precision of a double
The number of digits in a double

The number of decimal digits that can be rounded
without change

The number of digits of precision of a float
The evaluation format

The number of digits in a float

The radix of the exponent representation

The rounding mode

The maximum exponent value in base 10 of a float
The maximum exponent value of a float
The minimal exponent value in base 10 of a float

The minimal exponent value of a float

The difference between 1 and the least value greater
than 1 of a double

The maximum value of a double

The minimal value of a double

The difference between 1 and the least value greater
than 1 of a float

The maximum value of a float

The minimal value of a float

363

Embedded Studio Reference Manual

DBL_DIG

Synopsis

#define DBL_DI G

Description

DBL_DIG specifies The number of digits of precision of a double.

15

364

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

DBL_EPSILON

Synopsis

#def i ne DBL_EPSILON 2. 2204460492503131E- 16

Description

DBL_EPSILON the minimum positive number such that 1.0 + DBL_EPSILON != 1.0.

365

Embedded Studio Reference Manual

DBL_MANT_DIG

Synopsis

#defi ne DBL_MANT DI G

Description

53

C Library User Guide

DBL_MANT_DIG specifies the number of base FLT_RADIX digits in the mantissa part of a double.

366

Embedded Studio Reference Manual

DBL_MAX

Synopsis

#def i ne DBL_MAX 1.7976931348623157E+308

Description

DBL_MAX is the maximum value of a double.

367

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

DBL_MAX_10_EXP

Synopsis

#defi ne DBL_MAX 10_EXP +308

Description

DBL_MAX_10_EXP is the maximum value in base 10 of the exponent part of a double.

368

Embedded Studio Reference Manual

DBL_MAX_EXP

Synopsis

#defi ne DBL_MAX_EXP

Description

DBL_MAX_EXP is the maximum value of base FLT_RADIX in the exponent part of a double.

+1024

369

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

DBL_MIN

Synopsis

#define DBL_M N 2.2250738585072014E- 308

Description

DBL_MIN is the minimum value of a double.

370

Embedded Studio Reference Manual

DBL_MIN_10_EXP

Synopsis

#define DBL_M N_10_EXP

Description

DBL_MIN_10_EXP is the minimum value in base 10 of the exponent part of a double.

-307

371

C Library User Guide

Embedded Studio Reference Manual

DBL_MIN_EXP

Synopsis

#define DBL_M N_EXP

Description

DBL_MIN_EXP is the minimum value of base FLT_RADIX in the exponent part of a double.

-1021

372

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

DECIMAL_DIG

Synopsis

#def i ne DECI MAL_DI G 17

Description

DECIMAL_DIG specifies the number of decimal digits that can be rounded to a floating-point number without

change to the value.

373

Embedded Studio Reference Manual

FLT_DIG

Synopsis

#define FLT_D G

Description

FLT_DIG specifies The number of digits of precision of a float.

374

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

FLT_EPSILON

Synopsis

#define FLT_EPSI LON 1. 19209290E- 07F // deci mal const ant

Description

FLT_EPSILON the minimum positive number such that 1.0 + FLT_EPSILON != 1.0.

375

Embedded Studio Reference Manual C Library User Guide

FLT_EVAL_METHOD

Synopsis

#define FLT_EVAL_METHOD 0

Description

FLT_EVAL_METHOD specifies that all operations and constants are evaluated to the range and precision of the

type.

376

Embedded Studio Reference Manual C Library User Guide

FLT_MANT_DIG

Synopsis

#define FLT_MANT DI G 24

Description

FLT_MANT_DIG specifies the number of base FLT_RADIX digits in the mantissa part of a float.

377

Embedded Studio Reference Manual

FLT_MAX

Synopsis

#def i ne FLT_MAX 3. 40282347E+38F

Description

FLT_MAX is the maximum value of a float.

378

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

FLT_MAX_10_EXP

Synopsis

#define FLT_MAX 10_EXP +38

Description

FLT_MAX_10_EXP is the maximum value in base 10 of the exponent part of a float.

379

Embedded Studio Reference Manual

FLT_MAX_EXP

Synopsis

#defi ne FLT_MAX_EXP +128

Description

FLT_MAX_EXP is the maximum value of base FLT_RADIX in the exponent part of a float.

380

C Library User Guide

Embedded Studio Reference Manual

FLT_MIN

Synopsis

#define FLT_M N 1. 17549435E- 38F

Description

FLT_MIN is the minimum value of a float.

381

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

FLT_MIN_10_EXP

Synopsis

#define FLT_M N_10_EXP -37

Description

FLT_MIN_10_EXP is the minimum value in base 10 of the exponent part of a float.

382

Embedded Studio Reference Manual C Library User Guide

FLT_MIN_EXP

Synopsis

#define FLT_M N_EXP -125

Description

FLT_MIN_EXP is the minimum value of base FLT_RADIX in the exponent part of a float.

383

Embedded Studio Reference Manual

FLT_RADIX

Synopsis

#define FLT_RADI X

Description

FLT_RADIX specifies the radix of the exponent representation.

384

C Library User Guide

Embedded Studio Reference Manual

FLT_ROUNDS

Synopsis

#define FLT_ROUNDS 1

Description

FLT_ROUNDS specifies the rounding mode of floating-point addition is round to nearest.

385

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

<is0646.h>

Overview

The header <is0646.h> defines macros that expand to the corresponding tokens to ease writing C programs

with keyboards that do not have keys for frequently-used operators.

APl Summary

Macros

and Alternative spelling for logical and operator

and_eq Alternative spelling for logical and-equals operator
bitand Alternative spelling for bitwise and operator

bitor Alternative spelling for bitwise or operator

compl Alternative spelling for bitwise complement operator
not Alternative spelling for logical not operator

not_eq Alternative spelling for not-equal operator

or Alternative spelling for logical or operator

or_eq Alternative spelling for bitwise or-equals operator
xor Alternative spelling for bitwise exclusive or operator
xor_eq Alternative spelling for bitwise exclusive-or-equals

operator

386

Embedded Studio Reference Manual C Library User Guide

and

Synopsis

#def i ne and &&

Description

and defines the alternative spelling for &&.

387

Embedded Studio Reference Manual C Library User Guide

and_eq

Synopsis

#define and_eq &=

Description

and_eq defines the alternative spelling for &=.

388

Embedded Studio Reference Manual C Library User Guide

bitand

Synopsis

#define bitand &

Description

bitand defines the alternative spelling for &

389

Embedded Studio Reference Manual C Library User Guide

bitor

Synopsis

#def i ne bitor

Description

bitor defines the alternative spelling for | .

390

Embedded Studio Reference Manual C Library User Guide

compl

Synopsis

#defi ne conpl =

Description

compl defines the alternative spelling for ~.

391

Embedded Studio Reference Manual C Library User Guide

hot

Synopsis

#def i ne not !

Description

not defines the alternative spelling for ! .

392

Embedded Studio Reference Manual C Library User Guide

not_eq

Synopsis

#define not_eq !=

Description

not_eq defines the alternative spelling for ! =.

393

Embedded Studio Reference Manual C Library User Guide

or

Synopsis

#def i ne or |

Description

or defines the alternative spelling for | | .

394

Embedded Studio Reference Manual C Library User Guide

or_eq

Synopsis

#define or_eq | =

Description

or_eq defines the alternative spelling for | =.

395

Embedded Studio Reference Manual C Library User Guide

XOr

Synopsis

#def i ne xor 2

Description

xor defines the alternative spelling for .

396

Embedded Studio Reference Manual C Library User Guide

Xor_eq

Synopsis

#define xor_eq "=

Description

xor_eq defines the alternative spelling for =.

397

Embedded Studio Reference Manual

<limits.h>

APl Summary

Long integer minimum and maximum values
LONG_MAX

LONG_MIN

ULONG_MAX

Character minimum and maximum values
CHAR_MAX

CHAR_MIN

SCHAR_MAX

SCHAR_MIN

UCHAR_MAX

Long long integer minimum and maximum values
LLONG_MAX

LLONG_MIN

ULLONG_MAX

Short integer minimum and maximum values
SHRT_MAX

SHRT_MIN

USHRT_MAX

Integer minimum and maximum values
INT_MAX

INT_MIN

UINT_MAX

Type sizes

CHAR_BIT

Multi-byte values

MB_LEN_MAX

C Library User Guide

Maximum value of a long integer
Minimum value of a long integer

Maximum value of an unsigned long integer

Maximum value of a plain character
Minimum value of a plain character
Maximum value of a signed character
Minimum value of a signed character

Maximum value of an unsigned char

Maximum value of a long long integer
Minimum value of a long long integer

Maximum value of an unsigned long long integer
Maximum value of a short integer

Minimum value of a short integer

Maximum value of an unsigned short integer
Maximum value of an integer

Minimum value of an integer

Maximum value of an unsigned integer

Number of bits in a character

maximum number of bytes in a multi-byte character

398

Embedded Studio Reference Manual

CHAR_BIT

Synopsis

#define CHAR BIT 8

Description

CHAR_BIT is the number of bits for smallest object that is not a bit-field (byte).

399

C Library User Guide

Embedded Studio Reference Manual

CHAR_MAX

Synopsis

#define CHAR MAX 255

Description

CHAR_MAX is the maximum value for an object of type char.

400

C Library User Guide

Embedded Studio Reference Manual

CHAR_MIN

Synopsis

#define CHAR MN 0

Description

CHAR_MIN is the minimum value for an object of type char.

401

C Library User Guide

Embedded Studio Reference Manual

INT_MAX

Synopsis

#def i ne | NT_MAX 2147483647

Description

INT_MAX is the maximum value for an object of type int.

402

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

INT_MIN

Synopsis

#define INT_ MN (-2147483647 - 1)

Description

INT_MIN is the minimum value for an object of type int.

403

Embedded Studio Reference Manual

LLONG_MAX

Synopsis

#define LLONG MAX 9223372036854775807LL

Description

LLONG_MAX is the maximum value for an object of type long long int.

404

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

LLONG_MIN

Synopsis

#define LLONG M N (-9223372036854775807LL - 1)

Description

LLONG_MIN is the minimum value for an object of type long long int.

405

Embedded Studio Reference Manual

LONG_MAX

Synopsis

#define LONG MAX 2147483647L

Description

LONG_MAX is the maximum value for an object of type long int.

406

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

LONG_MIN

Synopsis

#define LONG MN (-2147483647L - 1)

Description

LONG_MIN is the minimum value for an object of type long int.

407

Embedded Studio Reference Manual

MB_LEN_MAX

Synopsis

#define MB_LEN MAX 4

Description

C Library User Guide

MB_LEN_MAX is the maximum number of bytes in a multi-byte character for any supported locale. Unicode (ISO

10646) characters between 0 and 10FFFF inclusive are supported which convert to a maximum of four bytes in

the UTF-8 encoding.

408

Embedded Studio Reference Manual

SCHAR_MAX

Synopsis

#def i ne SCHAR_ MAX 127

Description

SCHAR_MAX is the maximum value for an object of type signed char.

409

C Library User Guide

Embedded Studio Reference Manual

SCHAR_MIN

Synopsis

#define SCHAR MN (- 128)

Description

SCHAR_MIN is the minimum value for an object of type signed char.

410

C Library User Guide

Embedded Studio Reference Manual

SHRT_MAX

Synopsis

#define SHRT_MAX 32767

Description

SHRT_MAX is the minimum value for an object of type short int.

411

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

SHRT_MIN

Synopsis

#define SHRT. MN (-32767 - 1)

Description

SHRT_MIN is the minimum value for an object of type short int.

412

Embedded Studio Reference Manual

UCHAR_MAX

Synopsis

#def i ne UCHAR_MAX 255

Description

UCHAR_MAX is the maximum value for an object of type unsigned char.

413

C Library User Guide

Embedded Studio Reference Manual

UINT_MAX

Synopsis

#define U NT_MAX 4294967295U

Description

UINT_MAX is the maximum value for an object of type unsigned int.

414

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

ULLONG_MAX

Synopsis

#def i ne ULLONG MAX 18446744073709551615ULL

Description

ULLONG_MAX is the maximum value for an object of type unsigned long long int.

415

Embedded Studio Reference Manual C Library User Guide

ULONG_MAX

Synopsis

#def i ne ULONG_MAX 4294967295UL

Description

ULONG_MAX is the maximum value for an object of type unsigned long int.

416

Embedded Studio Reference Manual

USHRT_MAX

Synopsis

#def i ne USHRT_MAX 65535

Description

USHRT_MAX is the minimum value for an object of type unsigned short int.

417

C Library User Guide

Embedded Studio Reference Manual

<locale.h>

APl Summary

Structures
Iconv
Functions
localeconv

setlocale

Formatting info for numeric values

Get current locale data

Set Locale

418

C Library User Guide

Embedded Studio Reference Manual

Ilconv

Synopsis

t ypedef
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

struct {
*deci nal _poi nt ;

*t housands_sep;
*Qgroupi ng
*int_curr_synbol
*currency_synbol
*mon_deci mal _poi nt;
*mon_t housands_sep
*non_gr oupi ng
*posi tive_sign
*negative_sign
int_frac_digits;
frac_digits;
p_cs_precedes;
p_sep_by_ space
n_cs_precedes;
n_sep_by_space

char p_sign_posn;
char n_sign_posn;
char int_p_cs_precedes
char int_n_cs_precedes
char int_p_sep_by_space
char int_n_sep_by_space
char int_p_sign_posn;
char int_n_sign_posn;

} I conv

Description

C Library User Guide

Iconv structure holds formatting information on how numeric values are to be written. Note that the order of

fields in this structure is not consistent between implementations, nor is it consistent between C89 and C99

standards.

The members decimal_point, grouping, and thousands_sep are controlled by LC_NUMERIC, the remainder by

LC_MON

ETARY.

The members int_n_cs_precedes, int_n_sep_by_space, int_n_sign_posn, int_p_cs_precedes,

int_p_sep_by_space. and int_p_sign_posn are added by the C99 standard.

We have standardized on the ordering specified by the ARM EABI for the base of this structure. This ordering is
neither that of C89 nor C99.

Member

currency_symbol

decimal_point

frac_digits

Description
Local currency symbol.

Decimal point separator.

Amount of fractional digits to the right of the decimal
point for monetary quantities in the local format.

419

Embedded Studio Reference Manual

grouping

int_curr_symbol

int_frac_digits

mon_decimal_point

mon_grouping

mon_thousands_sep

negative_sign

n_cs_precedes

n_sep_by_space

n_sign_posn

positive_sign

p_cs_precedes

p_sep_by_space

p_sign_posn

thousands_sep

C Library User Guide

Specifies the amount of digits that form each of the
groups to be separated by thousands_sep separator
for non-monetary quantities.

International currency symbol.

Amount of fractional digits to the right of the decimal
point for monetary quantities in the international
format.

Decimal-point separator used for monetary quantities.

Specifies the amount of digits that form each of the
groups to be separated by mon_thousands_sep
separator for monetary quantities.

Separators used to delimit groups of digits to the left
of the decimal point for monetary quantities.

Sign to be used for negative monetary quantities.

Whether the currency symbol should precede negative
monetary quantities.

Whether a space should appear between the currency
symbol and negative monetary quantities.

Position of the sign for negative monetary quantities.

Sign to be used for nonnegative (positive or zero)
monetary quantities.

Whether the currency symbol should precede
nonnegative (positive or zero) monetary quantities.

Whether a space should appear between the currency
symbol and nonnegative (positive or zero) monetary
quantities.

Position of the sign for nonnegative (positive or zero)
monetary quantities.

Separators used to delimit groups of digits to the left
of the decimal point for non-monetary quantities.

420

Embedded Studio Reference Manual

localeconv

Synopsis

| ocal econv(void);

Description

C Library User Guide

localeconv returns a pointer to a structure of type lconv with the corresponding values for the current locale

filled in.

421

Embedded Studio Reference Manual C Library User Guide

setlocale

Synopsis

char *setlocal e(i nt category,
const char *locale);

Description

setlocale sets the current locale. The category parameter can have the following values:

Name Locale affected

LC_ALL Entire locale

LC_COLLATE Affects strcoll and strxfrm

LC_CTYPE Affects character handling

LC_MONETARY Affects monetary formatting information

LC_NUMERIC Affects decimal-point character in I/O and string
formatting operations

LC_TIME Affects strftime

The locale parameter contains the name of a C locale to set or if NULL is passed the current locale is not

changed.

Return Value

setlocale returns the name of the current locale.

422

Embedded Studio Reference Manual

<math.h>

APl Summary

Comparison Macros
isgreater
isgreaterequal

isless

islessequal
islessgreater
isunordered
Classification Macros
fpclassify

isfinite

isinf

isnan

isnormal

signbit
Trigonometric functions
cos

cosf

sin

sinf

tan

tanf

Inverse trigonometric functions
acos

acosf

asin

asinf

atan

atan2

atan2f

atanf

Exponential and logarithmic functions

C Library User Guide

Is greater

Is greater or equal
Is less

Is less or equal

Is less or greater

Is unordered

Classify floating type
Test for a finite value
Test for infinity

Test for NaN

Test for a normal value

Test sign

Compute cosine of a double
Compute cosine of a float
Compute sine of a double
Compute sine of a float
Compute tangent of a double

Compute tangent of a double

Compute inverse cosine of a double

Compute inverse cosine of a float

Compute inverse sine of a double

Compute inverse sine of a float

Compute inverse tangent of a double
Compute inverse tangent of a ratio of doubles
Compute inverse tangent of a ratio of floats

Compute inverse tangent of a float

423

Embedded Studio Reference Manual

exp
exp2
exp2f
expf
expm1
expm1f
frexp
frexpf
ilogb
ilogbf
Idexp
Idexpf
log
log10
log10f
log1p
log1pf
log2
log2f
logb
logbf
logf
scalbln
scalbinf
scalbn
scalbnf
Rounding and remainder functions
ceil
ceilf
floor
floorf
fmod
fmodf
llrint

llrintf

C Library User Guide

Compute exponential of a double

Compute binary exponential of a double
Compute binary exponential of a float

Compute exponential of a float

Compute exponential minus one of a double
Compute exponential minus one of a float

Set exponent of a double

Set exponent of a float

Compute integer binary logarithm of a double
Compute integer binary logarithm of a float
Adjust exponent of a double

Adjust exponent of a float

Compute natural logarithm of a double
Compute common logarithm of a double
Compute common logarithm of a float
Compute natural logarithm plus one of a double
Compute natural logarithm plus one of a float
Compute binary logarithm of a double
Compute binary logarithm of a float

Compute floating-point base logarithm of a double
Compute floating-point base logarithm of a float
Compute natural logarithm of a float

Scale a double

Scale a float

Scale a double

Scale a float

Compute smallest integer not greater than a double
Compute smallest integer not greater than a float
Compute largest integer not greater than a double
Compute largest integer not greater than a float
Compute remainder after division of two doubles
Compute remainder after division of two floats
Round and cast double to long long

Round and cast float to long long

424

Embedded Studio Reference Manual

llround
llroundf
Irint

Irintf
Iround
Iroundf
modf
modff
nearbyint
nearbyintf
remainder
remainderf
remquo
remquof
rint

rintf
round
roundf
trunc
truncf
Power functions
cbrt

cbrtf
hypot
hypotf
pow

powf

sqrt

sqrtf
Absolute value functions
fabs

fabsf

C Library User Guide

Round and cast double to long long

Round and cast float to long long

Round and cast double to long

Round and cast float to long

Round and cast double to long

Round and cast float to long

Break a double into integer and fractional parts
Break a float into integer and fractional parts
Round double to nearby integral value

Round float to nearby integral value
Compute remainder of a double

Compute remainder of a float

Compute remainder and quotient of a double
Compute remainder and quotient of a float
Round a double to an integral value

Round a float to an integral value

Round a double to the nearest integral value
Round a float to the nearest integral value
Truncate a double value

Truncate a float value

Compute cube root of a double

Compute cube root of a float

Compute complex magnitude of two doubles
Compute complex magnitude of two floats
Raise a double to a power

Raise a float to a power

Compute square root of a double

Compute square root of a float

Compute absolute value of a double

Compute absolute value of a float

Maximum, minimum, and positive difference functions

fdim
fdimf

Compute positive difference of two doubles

Compute positive difference of two floats

425

Embedded Studio Reference Manual

fmax

fmaxf

fmin

fminf

Hyperbolic functions
cosh

coshf

sinh

sinhf

tanh

tanhf

Inverse hyperbolic functions
acosh

acoshf

asinh

asinhf

atanh

atanhf

Fused multiply functions
fma

fmaf

Floating-point manipulation functions

copysign
copysignf
nextafter
nextafterf
Error and Gamma functions
erf

erfc

erfcf

erff
Igamma
Ilgammaf
tgamma

tgammaf

C Library User Guide

Compute maximum of two doubles
Compute maximum of two floats
Compute minimum of two doubles

Compute minimum of two floats

Compute hyperbolic cosine of a double
Compute hyperbolic cosine of a float
Compute hyperbolic sine of a double
Compute hyperbolic sine of a float
Compute hyperbolic tangent of a double

Compute hyperbolic tangent of a float

Compute inverse hyperbolic cosine of a double
Compute inverse hyperbolic cosine of a float
Compute inverse hyperbolic sine of a double
Compute inverse hyperbolic sine of a float
Compute inverse hyperbolic tangent of a double

Compute inverse hyperbolic tangent of a float

Compute fused multiply-add of doubles

Compute fused multiply-add of floats

Copy magnitude and sign of a double
Copy magnitude and sign of a float
Next representable double value

Next representable float value

Compute error function of a double

Compute complementary error function of a double
Compute complementary error function of a float
Compute error function of a float

Compute log-gamma function of a double
Compute log-gamma function of a float

Compute gamma function of a double

Compute gamma function of a float

426

Embedded Studio Reference Manual C Library User Guide

aCos

Synopsis

doubl e acos(doubl e x);

Description

acos returns the principal value, in radians, of the inverse circular cosine of x. The principal value lies in the

interval [0, PI] radians.
If |x| > 1, errno is set to EDOM and acos returns HUGE_VAL.

If x is NaN, acos returns x. If [x| > 1, acos returns NaN.

427

Embedded Studio Reference Manual C Library User Guide

acosf

Synopsis

float acosf(float x);

Description

acosf returns the principal value, in radians, of the inverse circular cosine of x. The principal value lies in the

interval [0, PI] radians.
If |a| 1, errno is set to EDOM and acosf returns HUGE_VAL.

If x is NaN, acosf returns x. If |x| > 1, acosf returns NaN.

428

Embedded Studio Reference Manual

acosh

Synopsis

doubl e acosh(doubl e x);

Description

acosh returns the non-negative inverse hyperbolic cosine of x.
acosh(x) is defined as log(x + sqrt(xA2 1)), assuming completely accurate computation.

If x < 1, errno is set to EDOM and acosh returns HUGE_VAL.

If x < 1, acosh returns NaN.
If x is NaN, acosh returns NaN.

429

C Library User Guide

Embedded Studio Reference Manual

acoshf

Synopsis

float acoshf(float x);

Description

acoshf returns the non-negative inverse hyperbolic cosine of x.
acosh(x) is defined as log(x + sqrt(xA2 1)), assuming completely accurate computation.

If x < 1, errno is set to EDOM and acoshf returns HUGE_VALF.

If x < 1, acoshf returns NaN.
If x is NaN, acoshf returns that NaN.

430

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

asin

Synopsis

doubl e asi n(doubl e x);

Description

asin returns the principal value, in radians, of the inverse circular sine of x. The principal value lies in the interval

[, +]1 radians.
If |x| > 1, errno is set to EDOM and asin returns HUGE_VAL.

If x is NaN, asin returns x. If [x| > 1, asin returns NaN.

431

Embedded Studio Reference Manual C Library User Guide

asinf

Synopsis

float asinf(float x);

Description

asinf returns the principal value, in radians, of the inverse circular sine of val. The principal value lies in the

interval [, +] radians.
If |x| > 1, errno is set to EDOM and asinf returns HUGE_VALF.

If x is NaN, asinf returns x. I |x| > 1, asinf returns NaN.

432

Embedded Studio Reference Manual C Library User Guide

asinh

Synopsis

doubl e asi nh(doubl e x);

Description
asinh calculates the hyperbolic sine of x.
If |x| > ~709.782, errno is set to EDOM and asinh returns HUGE_VAL.

If xis +,, or NaN, asinh returns |x|. If [x| > ~709.782, asinh returns + or depending upon the sign of x.

433

Embedded Studio Reference Manual C Library User Guide

asinhf

Synopsis

float asinhf(float x);

Description
asinhf calculates the hyperbolic sine of x.
If |x| > ~88.7228, errnois set to EDOM and asinhf returns HUGE_VALF.

If x is +,, or NaN, asinhf returns |x|. If |x| > ~88.7228, asinhf returns + or depending upon the sign of x.

434

Embedded Studio Reference Manual

atan

Synopsis

doubl e at an(doubl e x);

Description

C Library User Guide

atan returns the principal value, in radians, of the inverse circular tangent of x. The principal value lies in the

interval [, +] radians.

435

Embedded Studio Reference Manual C Library User Guide

atan2

Synopsis

doubl e at an2(doubl e x,
doubl e y);

Description

atan2 returns the value, in radians, of the inverse circular tangent of y divided by x using the signs of xand y to
compute the quadrant of the return value. The principal value lies in the interval [/2, +] radians. If x =y = 0, errno
is set to EDOM and atan2 returns HUGE_VAL.

atan2(x, NaN) is NaN.

atan2(NaN, x) is NaN.

atan2(0, +(anything but NaN)) is 0.
(anything but NaN)) is

(anything but 0 and NaN), 0) is

(anything but and NaN), +) is 0.

atan2((anything but and NaN),) is

atan2
atan2
atan2

atan2(, +) is

atan2(,) is.

(
(
(
(o
(
(
(
(
(
(

atan2(, (anything but 0, NaN, and)) is

436

Embedded Studio Reference Manual C Library User Guide

atan2f

Synopsis

float atan2f(float vy,
float x);

Description

atan2f returns the value, in radians, of the inverse circular tangent of y divided by x using the signs of x and y to

compute the quadrant of the return value. The principal value lies in the interval [, +] radians.
If x=y =0, errno is set to EDOM and atan2f returns HUGE_VALF.

atan2f(x, NaN) is NaN.

atan2f(NaN, x) is NaN.

atan2f(0, +(anything but NaN)) is 0.
atan2f(0, (anything but NaN)) is .
atan2f((anything but 0 and NaN), 0) is
atan2f((anything but and NaN), +) is 0.
atan2f((anything but and NaN),) is
atan2f(, +) is

atan2f(,) is.

atan2f(, (anything but 0, NaN, and)) is

437

Embedded Studio Reference Manual

atanf

Synopsis

float atanf(float x);

Description

C Library User Guide

atanf returns the principal value, in radians, of the inverse circular tangent of x. The principal value lies in the

interval [, +] radians.

438

Embedded Studio Reference Manual C Library User Guide

atanh

Synopsis

doubl e at anh(doubl e x);

Description
atanh returns the inverse hyperbolic tangent of x.
If |x| 1, errno is set to EDOM and atanh returns HUGE_VAL.

If |x] > 1 atanh returns NaN.
If x is NaN, atanh returns that NaN.
If x is 1, atanh returns.

If xis 1, atanh returns.

439

Embedded Studio Reference Manual C Library User Guide

atanhf

Synopsis

float atanhf(float x);

Description
atanhf returns the inverse hyperbolic tangent of x.

If |x| > 1 atanhf returns NaN. If x is NaN, atanhf returns that NaN. If x is 1, atanhf returns . If x is 1, atanhf returns .

440

Embedded Studio Reference Manual

cbrt

Synopsis

doubl e cbrt (doubl e x);

Description

cbrt computes the cube root of x.

441

C Library User Guide

Embedded Studio Reference Manual

cbrtf

Synopsis

float cbrtf(float x);

Description

cbrtf computes the cube root of x.

442

C Library User Guide

Embedded Studio Reference Manual

ceil

Synopsis

doubl e ceil (doubl e x);

Description

ceil computes the smallest integer value not less than x.

ceil (0) is 0. ceil () is.

443

C Library User Guide

Embedded Studio Reference Manual

ceilf

Synopsis

float ceil f(float x);

Description

ceilf computes the smallest integer value not less than x.

ceilf (0) is 0. ceilf () is .

444

C Library User Guide

Embedded Studio Reference Manual

copysign
Synopsis

doubl e copysi gn(doubl e x,
doubl e y);

Description

copysign returns a value with the magnitude of x and the sign of y.

445

C Library User Guide

Embedded Studio Reference Manual

copysignf
Synopsis
fl oat copysignf(float x,

float y);

Description

copysignf returns a value with the magnitude of x and the sign of y.

446

C Library User Guide

Embedded Studio Reference Manual

CcosS

Synopsis

doubl e cos(doubl e x);

Description

cos returns the radian circular cosine of x.

If |x| > 1019, errno is set to EDOM and cos returns HUGE_VAL.

If x is NaN, cos returns x. If x| is , cos returns NaN.

447

C Library User Guide

Embedded Studio Reference Manual

cosf

Synopsis

float cosf(float x);

Description

cosf returns the radian circular cosine of x.

If |x| > 1019, errno is set to EDOM and cosf returns HUGE_VALF.

If x is NaN, cosf returns x. If |x| is, cosf returns NaN.

448

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

cosh

Synopsis

doubl e cosh(doubl e x);

Description
cosh calculates the hyperbolic cosine of x.
If |x| > ~709.782, errno is set to EDOM and cosh returns HUGE_VAL.

If xis +,, or NaN, cosh returns |x|.> If |x| > ~709.782, cosh returns + or depending upon the sign of x.

449

Embedded Studio Reference Manual C Library User Guide

coshf

Synopsis

float coshf(float x);

Description
coshf calculates the hyperbolic sine of x.
If |x| > ~88.7228, errno is set to EDOM and coshf returns HUGE_VALF.

If xis +,, or NaN, coshf returns |x|.
If |x| > ~88.7228, coshf returns + or depending upon the sign of x.

450

Embedded Studio Reference Manual

erf

Synopsis

doubl e erf(double x);

Description

erf returns the error function for x.

451

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

erfc

Synopsis

doubl e erfc(doubl e x);

Description

erfc returns the complementary error function for x.

452

Embedded Studio Reference Manual C Library User Guide

erfcf

Synopsis

float erfcf(float x);

Description

erfcf returns the complementary error function for x.

453

Embedded Studio Reference Manual

erff

Synopsis

float erff(float x);

Description

erff returns the error function for x.

454

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

exp

Synopsis

doubl e exp(doubl e x);

Description
exp computes the base-e exponential of x.
If |x| > ~709.782, errno is set to EDOM and exp returns HUGE_VAL.

If x is NaN, exp returns NaN.
If xis, exp returns.

If xis, exp returns 0.

455

Embedded Studio Reference Manual C Library User Guide

exp2

Synopsis

doubl e exp2(doubl e x);

Description

exp2 returns 2 raised to the power of x.

456

Embedded Studio Reference Manual C Library User Guide

exp2f

Synopsis

float exp2f(float x);

Description

exp2f returns 2 raised to the power of x.

457

Embedded Studio Reference Manual C Library User Guide

expf

Synopsis

float expf(float x);

Description
expf computes the base-e exponential of x.

If |x| > ~88.722, errno is set to EDOM and expf returns HUGE_VALF. If x is NaN, expf returns NaN.
If xis , expf returns .

If xis, expf returns 0.

458

Embedded Studio Reference Manual C Library User Guide

expmi

Synopsis

doubl e expnil(doubl e x);

Description

expm1 returns e raised to the power of x minus one.

459

Embedded Studio Reference Manual C Library User Guide

expm1f

Synopsis

float expnilf(float Xx);

Description

expm1f returns e raised to the power of x minus one.

460

Embedded Studio Reference Manual C Library User Guide

fabs

Synopsis

doubl e fabs(doubl e x);

461

Embedded Studio Reference Manual

fabsf

Synopsis

float fabsf(float x);

Description

fabsf computes the absolute value of the floating-point number x.

462

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

fdim
Synopsis
doubl e fdi n{double x

doubl e y);

Description

fdim returns the positive difference between x and y.

463

Embedded Studio Reference Manual C Library User Guide

fdimf

Synopsis

float fdinf(float x,
float y);

Description

fdimf returns the positive difference between x and y.

464

Embedded Studio Reference Manual C Library User Guide

floor

Synopsis
doubl e fl oor (double);

floor computes the largest integer value not greater than x.

floor (0) is 0. floor () is .

465

Embedded Studio Reference Manual C Library User Guide

floorf

Synopsis
float floorf(float);

floorf computes the largest integer value not greater than x.

floorf(0) is 0. floorf() is .

466

Embedded Studio Reference Manual C Library User Guide

fma

Synopsis

doubl e fma(doubl e x,
doubl e vy,
doubl e z);

Description

fma computes x y + z with a single rounding.

467

Embedded Studio Reference Manual C Library User Guide

fmaf

Synopsis

float fmaf(float x,
float vy,
float z);

Description

fmaf computes x y + z with a single rounding.

468

Embedded Studio Reference Manual C Library User Guide

fmax

Synopsis

doubl e fmax(doubl e x,
doubl e y);

Description
fmax determines the maximum of x and y.

fmax (NaN, y) is y. fmax (x, NaN) is x.

469

Embedded Studio Reference Manual C Library User Guide

fmaxf

Synopsis

float fmaxf(float x,
float y);

Description
fmaxf determines the maximum of x and y.

fmaxf (NaN, y) is y. fmaxf(x, NaN) is x.

470

Embedded Studio Reference Manual C Library User Guide

fmin

Synopsis

doubl e fm n(doubl e x,
doubl e y);

Description
fmin determines the minimum of x and y.

fmin (NaN, y) is y. fmin (x, NaN) is x.

471

Embedded Studio Reference Manual C Library User Guide

fminf

Synopsis

float fm nf(float x,
float y);

Description
fminf determines the minimum of x and y.

fminf (NaN, y) is y. fminf (x, NaN) is x.

472

Embedded Studio Reference Manual

fmod

Synopsis

doubl e fnod(doubl e x,
doubl e y);

Description

C Library User Guide

fmod computes the floating-point remainder of x divided by y. #b #this returns the value x n y, for some integer

n such that, if y is nonzero, the result has the same sign as x and magnitude less than the magnitude of y.

fmod (NaN, y) is NaN. fmod (x, NaN) is NaN. fmod (0, y) is O for y not zero.

fmod (, y) is NaN.
X, 0) is NaN.

fmod (x,) is x for x not infinite.

fmod

(
(
(
(

473

Embedded Studio Reference Manual

fmodf

Synopsis

float fnodf(float x,
float y);

Description

C Library User Guide

fmodf computes the floating-point remainder of x divided by y. fmodf returns the value x ny, for some integer n

such that, if y is nonzero, the result has the same sign as x and magnitude less than the magnitude of y.

fmodf (NaN, y) is NaN. fmodf (x, NaN) is NaN. fmodf (0, y) is O for y not zero.

fmodf (, y) is NaN.
fmodf (x, 0) is NaN.
fmodf (x,) is x for x not infinite.

(
(
(
(

474

Embedded Studio Reference Manual C Library User Guide

fpclassify

Synopsis

#define fpclassify(x) (__is float32(x) ? _ float32 classify(x) : _ float64 classify(x))

Description

fpclassify classifies x as NaN, infinite, normal, subnormal, zero, or into another implementation-defined

category. fpclassify returns one of:

FP_ZERO
FP_SUBNORMAL
FP_NORMAL
FP_INFINITE
FP_NAN

475

Embedded Studio Reference Manual C Library User Guide

frexp

Synopsis

doubl e frexp(double x,
int *exp);

Description
frexp breaks a floating-point number into a normalized fraction and an integral power of 2.

frexp stores power of two in the int object pointed to by exp and returns the value x, such that x has a
magnitude in the interval [1/2, 1) or zero, and value equals x * 2Aexp.

If x is zero, both parts of the result are zero.

If x is or NaN, frexp returns x and stores zero into the int object pointed to by exp.

476

Embedded Studio Reference Manual C Library User Guide

frexpf

Synopsis

float frexpf(float x,
int *exp);

Description
frexpf breaks a floating-point number into a normalized fraction and an integral power of 2.

frexpf stores power of two in the int object pointed to by frexpf and returns the value x, such that x has a

magnitude in the interval [, 1) or zero, and value equals x * 2Aexp.
If x is zero, both parts of the result are zero.

If x is or NaN, frexpf returns x and stores zero into the int object pointed to by exp.

477

Embedded Studio Reference Manual

hypot
Synopsis
doubl e hypot (doubl e x,

doubl e y);

Description

C Library User Guide

hypot computes the square root of the sum of the squares of x and y, sqrt(x*x + y*y), without undue overflow or

underflow. If x and y are the lengths of the sides of a right-angled triangle, then hypot computes the length of

the hypotenuse.

If x oryis + or, hypot returns.

If x or y is NaN, hypot returns NaN.

478

Embedded Studio Reference Manual

hypotf

Synopsis

float hypotf(float x,
float y);

Description

C Library User Guide

hypotf computes the square root of the sum of the squares of x and y, sqrtf(x*x + y*y), without undue overflow

or underflow. If x and y are the lengths of the sides of a right-angled triangle, then hypotf computes the length

of the hypotenuse.

If x oryis + or, hypotf returns . If x or y is NaN, hypotf returns NaN.

479

Embedded Studio Reference Manual

ilogb

Synopsis

int ilogb(double x);

Description

C Library User Guide

ilogb returns the integral part of the logarithm of x, using FLT_RADIX as the base for the logarithm.

480

Embedded Studio Reference Manual

ilogbf

Synopsis

int ilogbf(float x);

Description

C Library User Guide

ilogbf returns the integral part of the logarithm of x, using FLT_RADIX as the base for the logarithm.

481

Embedded Studio Reference Manual C Library User Guide

isfinite

Synopsis

#define isfinite(x) (sizeof(x) == sizeof(float) ? _float32 isfinite(x) : _ float64 isfinite(x))

Description

isfinite determines whether x is a finite value (zero, subnormal, or normal, and not infinite or NaN). isfinite

returns a non-zero value if and only if x has a finite value.

482

Embedded Studio Reference Manual C Library User Guide

isgreater

Synopsis

#define isgreater(x,y) (!isunordered(x, y) & (x >y))

Description

isgreater returns whether x is greater than y.

483

Embedded Studio Reference Manual C Library User Guide

isgreaterequal

Synopsis

#define isgreaterequal (x,y) (!isunordered(x, y) & (x >=Yy))

Description

isgreaterequal returns whether x is greater than or equal to y.

484

Embedded Studio Reference Manual C Library User Guide
isinf

Synopsis

#define isinf(x) (sizeof(x) == sizeof(float) ? _ float32_isinf(x) : _ float64_isinf(x))

Description

isinf determines whether x is an infinity (positive or negative). The determination is based on the type of the
argument.

485

Embedded Studio Reference Manual C Library User Guide

isless

Synopsis

#define isless(x,y) (!isunordered(x, y) &% (x <vy))

Description

isless returns whether x is less than y.

486

Embedded Studio Reference Manual C Library User Guide

islessequal

Synopsis

#define islessequal (x,y) (!isunordered(x, y) && (X <=y))

Description

islessequal returns whether x is less than or equal to y.

487

Embedded Studio Reference Manual C Library User Guide

islessgreater

Synopsis

#define islessgreater(x,y) (!isunordered(x, y) & (x <y || x >Y))

Description

islessgreater returns whether x is less than or greater than y.

488

Embedded Studio Reference Manual C Library User Guide

isnan

Synopsis

#define isnan(x) (sizeof(x) == sizeof(float) ? _ float32_ isnan(x) : _ float64_isnan(x))

Description

isnan determines whether x is a NaN. The determination is based on the type of the argument.

489

Embedded Studio Reference Manual C Library User Guide

isnormal

Synopsis

#define isnornal (x) (sizeof(x) == sizeof(float) ? _ float32 isnormal (x) : _ float64_isnornal (x))

Description

isnormal determines whether x is a normal value (zero, subnormal, or normal, and not infinite or NaN).. isnormal

returns a non-zero value if and only if x has a normal value.

490

Embedded Studio Reference Manual C Library User Guide

isunordered

Synopsis

#define isunordered(a,b) (fpclassify(a) == FP_NAN || fpclassify(b) == FP_NAN)

Description

isunordered returns whether x or y are unordered values.

491

Embedded Studio Reference Manual

Idexp

Synopsis

doubl e | dexp(doubl e x,
int exp);

Description

Idexp multiplies a floating-point number by an integral power of 2.

Idexp returns x * 2/ exp.

If the result overflows, errno is set to ERANGE and Idexp returns HUGE_VALF.

If x is or NaN, Idexp returns x. If the result overflows, Idexp returns .

492

C Library User Guide

Embedded Studio Reference Manual

Idexpf

Synopsis

float |dexpf(float x,
int exp);

Description

Idexpf multiplies a floating-point number by an integral power of 2.

C Library User Guide

Idexpf returns x * 2Aexp. If the result overflows, errno is set to ERANGE and Idexpf returns HUGE_VALF.

If x is or NaN, Idexpf returns x. If the result overflows, Idexpf returns .

493

Embedded Studio Reference Manual

Igamma

Synopsis

doubl e | ganma(doubl e Xx);

Description

Igamma returns the natural logarithm of the gamma function for x.

494

C Library User Guide

Embedded Studio Reference Manual

Igammaf

Synopsis

float | gammaf(float x);

Description

Igammaf returns the natural logarithm of the gamma function for x.

495

C Library User Guide

Embedded Studio Reference Manual

llrint

Synopsis

long long int Ilrint(double x);

Description

llrint rounds x to an integral value and returns it as a long long int.

496

C Library User Guide

Embedded Studio Reference Manual

llrintf

Synopsis

long long int llrintf(float x);

Description

llrintf rounds x to an integral value and returns it as a long long int.

497

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

llround

Synopsis

long long int |lround(double x);

Description

llround rounds x to an integral value, with halfway cases rounded away from zero, and returns it as a long long

int.

498

Embedded Studio Reference Manual C Library User Guide

llroundf

Synopsis

long long int |lroundf(float x);

Description

llroundf rounds x to an integral value, with halfway cases rounded away from zero, and returns it as a long long

int.

499

Embedded Studio Reference Manual C Library User Guide

log

Synopsis

doubl e | og(doubl e x);

Description
log computes the base-e logarithm of x.

If x =0, errno is set to ERANGE and log returns HUGE_VAL. If x < 0, errno is set to EDOM and log returns
HUGE_VAL.

If x <0orx=,log returns NaN.
If x =0, log returns.
If x=, log returns .

If x = NaN, log returns x.

500

Embedded Studio Reference Manual C Library User Guide

log10

Synopsis

doubl e | 0g10(doubl e x);

Description
log10 computes the base-10 logarithm of x.

If x =0, errno is set to ERANGE and log10 returns HUGE_VAL. If x < 0, errno is set to EDOM and log10 returns
HUGE_VAL.

If x <0orx=,log10 returns NaN.
If x=0,log10 returns .
If x=,log10 returns.

If x = NaN, log10 returns x.

501

Embedded Studio Reference Manual C Library User Guide

log10f

Synopsis

float |0gl0f(float x);

Description
log10f computes the base-10 logarithm of x.

If x =0, errno is set to ERANGE and log10f returns HUGE_VALF. If x < 0, errno is set to EDOM and log10f returns
HUGE_VALF.

If x <0orx=,log10f returns NaN.
If x =0, log10f returns.
If x=, log10f returns .

If x = NaN, log10f returns x.

502

Embedded Studio Reference Manual C Library User Guide

log1p

Synopsis

doubl e | oglp(doubl e x);

Description

log1p computes the base-e logarithm of x plus one.

503

Embedded Studio Reference Manual C Library User Guide

log1pf

Synopsis

float |oglpf(float x);

Description

log1pf computes the base-e logarithm of x plus one.

504

Embedded Studio Reference Manual C Library User Guide

log2

Synopsis

doubl e | 0g2(doubl e x);

Description

log2 computes the base-2 logarithm of x.

505

Embedded Studio Reference Manual C Library User Guide

log2f

Synopsis

float |og2f(float x);

Description

log2f computes the base-2 logarithm of x.

506

Embedded Studio Reference Manual C Library User Guide

logb

Synopsis

doubl e | ogb(doubl e x);

Description

logb computes the base-FLT_RADIX logarithm of x.

507

Embedded Studio Reference Manual C Library User Guide

logbf

Synopsis

float |ogbf(float x);

Description

logbf computes the base-FLT_RADIX logarithm of x.

508

Embedded Studio Reference Manual C Library User Guide

logf

Synopsis

float |ogf(float x);

Description
logf computes the base-e logarithm of x.

If x =0, errno is set to ERANGE and logf returns HUGE_VALF. If x < 0, errno is set to EDOM and logf returns
HUGE_VALF.

If x < 0orx=, logf returns NaN.
If x =0, logf returns .
If x=, logf returns .

If x = NaN, logf returns x.

509

Embedded Studio Reference Manual

Irint

Synopsis

long int Irint(double x);

Description

Irint rounds x to an integral value and returns it as a long int.

510

C Library User Guide

Embedded Studio Reference Manual

Irintf

Synopsis

long int Irintf(float x);

Description

Irintf rounds x to an integral value and returns it as a long int.

511

C Library User Guide

Embedded Studio Reference Manual

lround

Synopsis

I ong int Iround(double Xx);

Description

C Library User Guide

Iround rounds x to an integral value, with halfway cases rounded away from zero, and returns it as a long int.

512

Embedded Studio Reference Manual

Iroundf

Synopsis

long int Iroundf(float x);

Description

C Library User Guide

Iroundf rounds x to an integral value, with halfway cases rounded away from zero, and returns it as a long int.

513

Embedded Studio Reference Manual

modf

Synopsis

doubl e nodf (doubl e x,
doubl e *iptr);

Description

C Library User Guide

modf breaks x into integral and fractional parts, each of which has the same type and sign as x.

The integral part (in floating-point format) is stored in the object pointed to by iptr and modf returns the signed

fractional part of x.

514

Embedded Studio Reference Manual

modff

Synopsis

float modff(float x,
float *iptr);

Description

C Library User Guide

modff breaks x into integral and fractional parts, each of which has the same type and sign as x.

The integral part (in floating-point format) is stored in the object pointed to by iptr and modff returns the signed

fractional part of x.

515

Embedded Studio Reference Manual C Library User Guide

nearbyint

Synopsis

doubl e near byi nt (doubl e) ;

Description

nearbyint Rounds x to an integral value.

516

Embedded Studio Reference Manual C Library User Guide

nearbyintf

Synopsis

float nearbyintf(float);

Description

nearbyintf Rounds x to an integral value.

517

Embedded Studio Reference Manual

nextafter

Synopsis

doubl e next after(doubl e x,
doubl e y);

Description

nextafter Returns the next representable value after x in the direction of y.

518

C Library User Guide

Embedded Studio Reference Manual

nextafterf

Synopsis

float nextafterf(float x,
float y);

Description

nextafterf Returns the next representable value after x in the direction of y.

519

C Library User Guide

Embedded Studio Reference Manual

pow

Synopsis

doubl e pow doubl e x,
doubl e y);

Description

pow computes x raised to the powery.

C Library User Guide

If x <0andyO0, errno is set to EDOM and pow returns HUGE_VAL. If x 0 and y is not an integer value, errno is set

to EDOM and pow returns HUGE_VAL.

Ify =0, pow returns 1.

Ify =1, pow returns x.

If y = NaN, pow returns NaN.

If x=NaN andy is anything other than 0, pow returns NaN.
If x < 1or1<x andy=+, pow returns +.
Ifx<1or1<xandy=, pow returns 0.

If 1 <x<1andy=+, pow returns +0.

If 1 <x<1andy=, pow returns +.
lfx=+1orx=1andy=+ory=, pow returns NaN.

If x=+0andy > 0andy NaN, pow returns +0.

If x=0andy >0andyNaN ory not an odd integer, pow returns +0.

If x=+0and y and y NaN, pow returns +.

If x=0andy > 0andy NaN ory not an odd integer, pow returns +.
If x=0andy is an odd integer, pow returns 0.

If x=+andy > 0andy NaN, pow returns +.

If x=+andy < 0andy NaN, pow returns +0.

If x =, pow returns pow(0, y)

If x < 0 and x and y is a non-integer, pow returns NaN.

520

Embedded Studio Reference Manual C Library User Guide

powf

Synopsis

float powf (float x,
float y);

Description
powf computes x raised to the powery.

If x <0andyO0, errno. is set to EDOM and powf returns HUGE_VALF. If x 0 and y is not an integer value, errno is
set to EDOM and pow returns HUGE_VALF.

If y =0, powf returns 1.

Ify =1, powf returns x.

If y = NaN, powf returns NaN.

If x=NaN and y is anything other than 0, powf returns NaN.

If x <1or1<x andy=+, powfreturns +.

Ifx <1or1<x andy=, powf returns 0.

If 1 <x<1andy =+, powf returns +0.

If 1 <x<1andy=, powfreturns +.
lfx=+1orx=1andy=+ory=, powf returns NaN.

If x=+0andy > 0andy NaN, powf returns +0.

If x=0andy >0andyNaN ory not an odd integer, powf returns +0.
If x=+0and y and y NaN, powf returns +.

If x=0andy > 0andy NaN ory not an odd integer, powf returns +.
If x=0andy is an odd integer, powf returns 0.

If x=+andy > 0andy NaN, powf returns +.

If x=+andy < 0andy NaN, powf returns +0.

If x =, powf returns powf(0, y)

If x < 0 and x and y is a non-integer, powf returns NaN.

521

Embedded Studio Reference Manual

remainder

Synopsis

doubl e remai nder (doubl e nurer,

doubl e denon);

Description

remainder computes the remainder of numer divided by denom.

522

C Library User Guide

Embedded Studio Reference Manual

remainderf

Synopsis

float renminderf(float numer,
fl oat denon;

Description

remainderf computes the remainder of numer divided by denom.

523

C Library User Guide

Embedded Studio Reference Manual

remquo

Synopsis

doubl e remguo(doubl e nuner,
doubl e denom
int *quot);

Description

C Library User Guide

remquo computes the remainder of numer divided by denom and the quotient pointed by quot.

524

Embedded Studio Reference Manual

remquof

Synopsis

float renqguof (float nuner,
fl oat denom
int *quot);

Description

C Library User Guide

remquof computes the remainder of numer divided by denom and the quotient pointed by quot.

525

Embedded Studio Reference Manual

rint

Synopsis

doubl e rint(doubl e x);

Description

rint rounds x to an integral value.

526

C Library User Guide

Embedded Studio Reference Manual

rintf

Synopsis

float rintf(float x);

Description

rintf rounds x to an integral value.

527

C Library User Guide

Embedded Studio Reference Manual

round

Synopsis

doubl e round(doubl e x);

Description

round rounds x to an integral value, with halfway cases rounded away from zero.

528

C Library User Guide

Embedded Studio Reference Manual

roundf

Synopsis

float roundf(float x);

Description

roundf rounds x to an integral value, with halfway cases rounded away from zero.

529

C Library User Guide

Embedded Studio Reference Manual

scalbln

Synopsis

doubl e scal bl n(doubl e x,
I ong int exp);

Description

scalbln multiplies x by FLT_RADIX raised to the power exp.

530

C Library User Guide

Embedded Studio Reference Manual

scalblnf

Synopsis

float scal bl nf(float x,
I ong int exp);

Description

scalbInf multiplies x by FLT_RADIX raised to the power exp.

531

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

scalbn

Synopsis

doubl e scal bn(doubl e x,
int exp);

Description
scalbn multiplies a floating-point number by an integral power of DBL_RADIX.

As floating-point arithmetic conforms to IEC 60559, DBL_RADIX is 2 and scalbn is (in this implementation)
identical to Idexp.

scalbn returns x * DBL_RADIX/exp.
If the result overflows, errno is set to ERANGE and scalbn returns HUGE_VAL.

If x is or NaN, scalbn returns x.

If the result overflows, scalbn returns .

See Also

Idexp

532

Embedded Studio Reference Manual

scalbnf

Synopsis

float scal bnf(float x,
int exp);

Description

scalbnf multiplies a floating-point number by an integral power of FLT_RADIX.

C Library User Guide

As floating-point arithmetic conforms to IEC 60559, FLT_RADIX is 2 and scalbnf is (in this implementation)

identical to Idexpf.

scalbnf returns x * FLT_RADIX Aexp.

If the result overflows, errno is set to ERANGE and scalbnf returns HUGE_VALF.

If x is or NaN, scalbnf returns x. If the result overflows, scalbnf returns .

See Also

Idexpf

533

Embedded Studio Reference Manual C Library User Guide

signbit

Synopsis

#define signbit(x) (sizeof(x) == sizeof(float) ? _ float32 _signbit(x) : _ float64_signbit(x))

Description

signbit macro determines whether the sign of x is negative. signbit returns a non-zero value if and only if x is

negative.

534

Embedded Studio Reference Manual

Sin

Synopsis

doubl e sin(double x);

Description

sin returns the radian circular sine of x.

If |x| > 1019, errno is set to EDOM and sin returns HUGE_VAL.

sin returns x if x is NaN. sin returns NaN if |x| is .

535

C Library User Guide

Embedded Studio Reference Manual

sinf

Synopsis

float sinf(float x);

Description

sinf returns the radian circular sine of x.

If |x| > 1019, errno is set to EDOM and sinf returns HUGE_VALF.

sinf returns x if x is NaN. sinf returns NaN if |x| is .

536

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

sinh

Synopsis

doubl e si nh(doubl e x);

Description
sinh calculates the hyperbolic sine of x.
If |x| .782, errno is set to EDOM and sinh returns HUGE_VAL.

If xis +,, or NaN, sinh returns |x|. If [x| > ~709.782, sinh returns + or depending upon the sign of x.

537

Embedded Studio Reference Manual C Library User Guide

sinhf

Synopsis

float sinhf(float x);

Description
sinhf calculates the hyperbolic sine of x.
If |x| > ~88.7228, errno is set to EDOM and sinhf returns HUGE_VALF.

If xis +,, or NaN, sinhf returns |x]|. If |x| > ~88.7228, sinhf returns + or depending upon the sign of x.

538

Embedded Studio Reference Manual

sqrt

Synopsis

doubl e sqgrt (doubl e x);

Description

C Library User Guide

sqrt computes the nonnegative square root of x. C90 and C99 require that a domain error occurs if the argument

is less than zero sqrt deviates and always uses IEC 60559 semantics.

If x is +0, sqrt returns +0.

If xis O, sqrt returns 0.

If x is, sqrt returns .

If x <0, sqrt returns NaN.

If x is NaN, sqrt returns that NaN.

539

Embedded Studio Reference Manual

sqrtf

Synopsis

float sqrtf(float x);

Description

C Library User Guide

sqrtf computes the nonnegative square root of x. C90 and C99 require that a domain error occurs if the

argument is less than zero sqrtf deviates and always uses IEC 60559 semantics.

If x is +0, sqrtf returns +0.

If xis O, sqrtf returns 0.

If x is, sqrtf returns .

If x < 0, sqrtf returns NaN.

If x is NaN, sqrtf returns that NaN.

540

Embedded Studio Reference Manual

tan

Synopsis

doubl e tan(doubl e x);

Description

tan returns the radian circular tangent of x.

If |x| > 1019, errno is set to EDOM and tan returns HUGE_VAL.

If x is NaN, tan returns x. If [x| is , tan returns NaN.

541

C Library User Guide

Embedded Studio Reference Manual

tanf

Synopsis

float tanf(float x);

Description

tanf returns the radian circular tangent of x.

If |x| > 1019, errno is set to EDOM and tanf returns HUGE_VALF.

If x is NaN, tanf returns x. If |x| is, tanf returns NaN.

542

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

tanh

Synopsis

doubl e tanh(doubl e x);

Description
tanh calculates the hyperbolic tangent of x.

If x is NaN, tanh returns NaN.

543

Embedded Studio Reference Manual C Library User Guide

tanhf

Synopsis

float tanhf(float x);

Description
tanhf calculates the hyperbolic tangent of x.

If x is NaN, tanhf returns NaN.

544

Embedded Studio Reference Manual C Library User Guide

tgamma

Synopsis

doubl e t ganma(doubl e Xx);

Description

tgamma returns the gamma function for x.

545

Embedded Studio Reference Manual C Library User Guide

tgammaf

Synopsis

float tgammaf(float Xx);

Description

tgammaf returns the gamma function for x.

546

Embedded Studio Reference Manual

trunc

Synopsis

doubl e trunc(doubl e x);

Description

trunc rounds x to an integral value that is not larger in magnitude than x.

547

C Library User Guide

Embedded Studio Reference Manual

truncf

Synopsis

float truncf(float Xx);

Description

truncf rounds x to an integral value that is not larger in magnitude than x.

548

C Library User Guide

Embedded Studio Reference Manual

<setjmp.h>

APl Summary

Functions
longjmp

setjmp

C Library User Guide

Restores the saved environment

Save calling environment for non-local jump

549

Embedded Studio Reference Manual C Library User Guide

longjmp

Synopsis

voi d | ongj np(j np_buf env,
int val);

Description

longjmp restores the environment saved by setjmp in the corresponding env argument. If there has been no
such invocation, or if the function containing the invocation of setjmp has terminated execution in the interim,

the behavior of longjmp is undefined.

After longjmp is completed, program execution continues as if the corresponding invocation of setjmp had just
returned the value specified by val.

Note

longjmp cannot cause setjmp to return the value 0; if val is 0, setjmp returns the value 1.

Objects of automatic storage allocation that are local to the function containing the invocation of the
corresponding setjmp that do not have volatile qualified type and have been changed between the setjmp

invocation and this call are indeterminate.

550

Embedded Studio Reference Manual C Library User Guide

setjmp

Synopsis

int setjnp(jnp_buf env);

Description
setjmp saves its calling environment in the env for later use by the longjmp function.

On return from a direct invocation setjmp returns the value zero. On return from a call to the longjmp function,

the setjmp returns a nonzero value determined by the call to longjmp.

The environment saved by a call to setjmp consists of information sufficient for a call to the longjmp function to

return execution to the correct block and invocation of that block, were it called recursively.

551

Embedded Studio Reference Manual C Library User Guide

<stdarg.h>

APl Summary

Macros

va_arg Get variable argument value
va_copy Copy var args

va_end Finish access to variable arguments
va_start Start access to variable arguments

552

Embedded Studio Reference Manual C Library User Guide

va_arg

Synopsis

type va_arg(va_list ap,
type);

Description

va_arg expands to an expression that has the specified type and the value of the type argument. The ap
parameter must have been initialized by va_start or va_copy, without an intervening invocation of va_end. You
can create a pointer to a va_list and pass that pointer to another function, in which case the original function

may make further use of the original list after the other function returns.

Each invocation of the va_arg macro modifies ap so that the values of successive arguments are returned in
turn. The parameter type must be a type name such that the type of a pointer to an object that has the specified

type can be obtained simply by postfixing a * to type.

If there is no actual next argument, or if type is not compatible with the type of the actual next argument (as
promoted according to the default argument promotions), the behavior of va_arg is undefined, except for the

following cases:

one type is a signed integer type, the other type is the corresponding unsigned integer type, and the

value is representable in both types;
one type is pointer to void and the other is a pointer to a character type.

The first invocation of the va_arg macro after that of the va_start macro returns the value of the argument after

that specified by parmN. Successive invocations return the values of the remaining arguments in succession.

553

Embedded Studio Reference Manual

va_copy

Synopsis

voi d va_copy(va_list dest,
val list src);

Description

C Library User Guide

va_copy initializes dest as a copy of src, as if the va_start macro had been applied to dest followed by the same

sequence of uses of the va_arg macro as had previously been used to reach the present state of src. Neither

the va_copy nor va_start macro shall be invoked to reinitialize dest without an intervening invocation of the

va_end macro for the same dest.

554

Embedded Studio Reference Manual C Library User Guide

va_end

Synopsis

voi d va_end(va_list ap);

Description

va_end indicates a normal return from the function whose variable argument list ap was initialised by va_start
or va_copy. The va_end macro may modify ap so that it is no longer usable without being reinitialized by
va_start or va_copy. If there is no corresponding invocation of va_start or va_copy, or if va_end is not invoked

before the return, the behavior is undefined.

555

Embedded Studio Reference Manual C Library User Guide

va_start

Synopsis

void va_start(va_list ap,

par amN) ;

Description
va_start initializes ap for subsequent use by the va_arg and va_end macros.

The parameter parmN is the identifier of the last fixed parameter in the variable parameter list in the function

definition (the one just before the ', ...").

The behaviour of va_start and va_arg is undefined if the parameter parmN is declared with the register
storage class, with a function or array type, or with a type that is not compatible with the type that results after

application of the default argument promotions.
va_start must be invoked before any access to the unnamed arguments.

va_start and va_copy must not be invoked to reinitialize ap without an intervening invocation of the va_end

macro for the same ap.

556

Embedded Studio Reference Manual

<stddef.h>

APl Summary

Macros
NULL
offsetof
Types
ptrdiff_t

size t

NULL pointer

offsetof

ptrdiff_t type

size_t type

557

C Library User Guide

Embedded Studio Reference Manual

NULL

Synopsis

#define NULL O

Description

NULL is the null pointer constant.

558

C Library User Guide

Embedded Studio Reference Manual

offsetof

Synopsis

#defi ne of fsetof (type, nenber)

Description

C Library User Guide

offsetof returns the offset in bytes to the structure member, from the beginning of its structure type.

559

Embedded Studio Reference Manual C Library User Guide

ptrdiff_t

Synopsis

typedef _ RAL PTRDIFF_T ptrdiff_t;

Description

ptrdiff_t is the signed integral type of the result of subtracting two pointers.

560

Embedded Studio Reference Manual

size t

Synopsis

typedef _ RAL SIZE T size_ t;

Description

size_t is the unsigned integral type returned by the sizeof operator.

561

C Library User Guide

Embedded Studio Reference Manual

<stdio.h>

APl Summary

Character and string 1/0 functions
getchar

gets

putchar

puts

Formatted output functions
printf

snprintf

sprintf

vprintf

vsnprintf
vsprintf

Formatted input functions
scanf
sscanf

vscanf

vsscanf

C Library User Guide

Read a character from standard input
Read a string from standard input
Write a character to standard output

Write a string to standard output

Write formatted text to standard output
Write formatted text to a string with truncation
Write formatted text to a string

Write formatted text to standard output using variable
argument context

Write formatted text to a string with truncation using
variable argument context

Write formatted text to a string using variable
argument context

Read formatted text from standard input
Read formatted text from string

Read formatted text from standard using variable
argument context

Read formatted text from a string using variable
argument context

562

Embedded Studio Reference Manual

getchar

Synopsis

int getchar(void);

Description

getchar reads a single character from the standard input stream.

If the stream is at end-of-file or a read error occurs, getchar returns EOF.

563

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

gets

Synopsis

char *gets(char *s);

Description

gets reads characters from standard input into the array pointed to by s until end-of-file is encountered or a
new-line character is read. Any new-line character is discarded, and a null character is written immediately after

the last character read into the array.

gets returns s if successful. If end-of-file is encountered and no characters have been read into the array, the
contents of the array remain unchanged and gets returns a null pointer. If a read error occurs during the

operation, the array contents are indeterminate and gets returns a null pointer.

564

Embedded Studio Reference Manual C Library User Guide

printf

Synopsis

int printf(const char *format,

)i

Description

printf writes to the standard output stream using putchar, under control of the string pointed to by format that

specifies how subsequent arguments are converted for output.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

printf returns the number of characters transmitted, or a negative value if an output or encoding error occurred.

Formatted output control strings

The format is composed of zero or more directives: ordinary characters (not %, which are copied unchanged to
the output stream; and conversion specifications, each of which results in fetching zero or more subsequent
arguments, converting them, if applicable, according to the corresponding conversion specifier, and then

writing the result to the output stream.
Each conversion specification is introduced by the character %. After the % the following appear in sequence:

Zero or more flags (in any order) that modify the meaning of the conversion specification.

An optional minimum field width. If the converted value has fewer characters than the field width, it is
padded with spaces (by default) on the left (or right, if the left adjustment flag has been given) to the field
width. The field width takes the form of an asterisk * or a decimal integer.

An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x, and X
conversions, the number of digits to appear after the decimal-point character for e, E, f, and F conversions,
the maximum number of significant digits for the g and G conversions, or the maximum number of

bytes to be written for s conversions. The precision takes the form of a period . followed either by an
asterisk * or by an optional decimal integer; if only the period is specified, the precision is taken as zero. If
a precision appears with any other conversion specifier, the behavior is undefined.

An optional length modifier that specifies the size of the argument.

A conversion specifier character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this case, an int argument
supplies the field width or precision. The arguments specifying field width, or precision, or both, must appear
(in that order) before the argument (if any) to be converted. A negative field width argument is taken as a - flag

followed by a positive field width. A negative precision argument is taken as if the precision were omitted.

565

Embedded Studio Reference Manual C Library User Guide

Some library variants do not support width and precision specifiers in order to reduce code and data space
requirements; please ensure that you have selected the correct library in the Printf Width/Precision Support
property of the project if you use these.

Flag characters

The flag characters and their meanings are:

The result of the conversion is left-justified within the field. The default, if this flag is not specified, is that the

result of the conversion is left-justified within the field.

The result of a signed conversion always begins with a plus or minus sign. The default, if this flag is not

specified, is that it begins with a sign only when a negative value is converted.

space
If the first character of a signed conversion is not a sign, or if a signed conversion results in no characters, a
space is prefixed to the result. If the space and + flags both appear, the space flag is ignored.

The result is converted to an alternative form. For o conversion, it increases the precision, if and only

if necessary, to force the first digit of the result to be a zero (if the value and precision are both zero, a
single 0 is printed). For x or X conversion, a nonzero result has Ox or 0X prefixed to it. For e, E, f, F, g, and G
conversions, the result of converting a floating-point number always contains a decimal-point character,
even if no digits follow it. (Normally, a decimal-point character appears in the result of these conversions
only if a digit follows it.) For g and F conversions, trailing zeros are not removed from the result. As an
extension, when used in p conversion, the results has # prefixed to it. For other conversions, the behavior is
undefined.

Ford,i,0,u,x, X, e E, f,F, g,and G conversions, leading zeros (following any indication of sign or base) are
used to pad to the field width rather than performing space padding, except when converting an infinity or
NaN. If the 0 and - flags both appear, the 0 flag is ignored. For d, i, 0, u, x, and X conversions, if a precision is

specified, the 0 flag is ignored. For other conversions, the behavior is undefined.

Length modifiers
The length modifiers and their meanings are:

hh
Specifies that a following d, i, 0, u, x, or X conversion specifier applies to a signed char or unsigned char
argument (the argument will have been promoted according to the integer promotions, but its value will
be converted to signed char or unsigned char before printing); or that a following n conversion specifier

applies to a pointer to a signed char argument.

566

Embedded Studio Reference Manual C Library User Guide

Specifies that a following d, i, 0, u, x, or X conversion specifier applies to a short int or unsigned short int
argument (the argument will have been promoted according to the integer promotions, but its value is
converted to short int or unsigned short int before printing); or that a following n conversion specifier

applies to a pointer to a short int argument.

Specifies that a following d, i, 0, u, x, or X conversion specifier applies to a long int or unsigned long int
argument; that a following n conversion specifier applies to a pointer to a long int argument; or has no
effect on a following e, E, f, F, g, or G conversion specifier. Some library variants do not support the | length
modifier in order to reduce code and data space requirements; please ensure that you have selected the
correct library in the Printf Integer Support property of the project if you use this length modifier.

Specifies that a following d, i, 0, u, x, or X conversion specifier applies to a long long int or unsigned

long long int argument; that a following n conversion specifier applies to a pointer to a long long int
argument. Some library variants do not support the Il length modifier in order to reduce code and data
space requirements; please ensure that you have selected the correct library in the Printf Integer Support
property of the project if you use this length modifier.

If a length modifier appears with any conversion specifier other than as specified above, the behavior is

undefined. Note that the C99 length modifiers j, z, t, and L are not supported.

Conversion specifiers

The conversion specifiers and their meanings are:

d,i

The argument is converted to signed decimal in the style [-]dddd. The precision specifies the minimum
number of digits to appear; if the value being converted can be represented in fewer digits, it is expanded
with leading spaces. The default precision is one. The result of converting a zero value with a precision of

zero is no characters.

o,ux X

f, F

The unsigned argument is converted to unsigned octal for o, unsigned decimal for u, or unsigned
hexadecimal notation for x or X in the style dddd the letters abcdef are used for x conversion and the
letters ABCDEF for X conversion. The precision specifies the minimum number of digits to appear; if the
value being converted can be represented in fewer digits, it is expanded with leading spaces. The default

precision is one. The result of converting a zero value with a precision of zero is no characters.

A double argument representing a floating-point number is converted to decimal notation in the
style [-]ddd.ddd, where the number of digits after the decimal-point character is equal to the precision

specification. If the precision is missing, it is taken as 6; if the precision is zero and the # flag is not specified,

567

Embedded Studio Reference Manual C Library User Guide

no decimal-point character appears. If a decimal-point character appears, at least one digit appears before
it. The value is rounded to the appropriate number of digits. A double argument representing an infinity
is converted to inf. A double argument representing a NaN is converted to nan. The F conversion specifier
produces INF or NAN instead of inf or nan, respectively. Some library variants do not support the fand F
conversion specifiers in order to reduce code and data space requirements; please ensure that you have
selected the correct library in the Printf Floating Point Support property of the project if you use these

conversion specifiers.

e E
A double argument representing a floating-point number is converted in the style [-]d.dddedd, where
there is one digit (which is nonzero if the argument is nonzero) before the decimal-point character and the
number of digits after it is equal to the precision; if the precision is missing, it is taken as 6; if the precision
is zero and the # flag is not specified, no decimal-point character appears. The value is rounded to the
appropriate number of digits. The E conversion specifier produces a number with E instead of e introducing
the exponent. The exponent always contains at least two digits, and only as many more digits as necessary
to represent the exponent. If the value is zero, the exponent is zero. A double argument representing an
infinity is converted to inf. A double argument representing a NaN is converted to nan. The E conversion
specifier produces INF or NAN instead of inf or nan, respectively. Some library variants do not support the
f and F conversion specifiers in order to reduce code and data space requirements; please ensure that you
have selected the correct library in the Printf Floating Point Support} property of the project if you use

these conversion specifiers.

A double argument representing a floating-point number is converted in style f or e (or in style F or e in

the case of a G conversion specifier), with the precision specifying the number of significant digits. If the
precision is zero, it is taken as one. The style used depends on the value converted; style e (or E) is used only
if the exponent resulting from such a conversion is less than -4 or greater than or equal to the precision.
Trailing zeros are removed from the fractional portion of the result unless the # flag is specified; a decimal-
point character appears only if it is followed by a digit. A double argument representing an infinity is
converted to inf. A double argument representing a NaN is converted to nan. The G conversion specifier
produces INF or NAN instead of inf or nan, respectively. Some library variants do not support the fand F
conversion specifiers in order to reduce code and data space requirements; please ensure that you have
selected the correct library in the Printf Floating Point Support property of the project if you use these

conversion specifiers.

The argument is converted to an unsigned char, and the resulting character is written.

The argument is be a pointer to the initial element of an array of character type. Characters from the array
are written up to (but not including) the terminating null character. If the precision is specified, no more
than that many characters are written. If the precision is not specified or is greater than the size of the array,

the array must contain a null character.

568

Embedded Studio Reference Manual C Library User Guide

o]
The argument is a pointer to void. The value of the pointer is converted in the same format as the x
conversion specifier with a fixed precision of 2*sizeof(void *).

n
The argument is a pointer to a signed integer into which is written the number of characters written to the
output stream so far by the call to the formatting function. No argument is converted, but one is consumed.
If the conversion specification includes any flags, a field width, or a precision, the behavior is undefined.

%

A % character is written. No argument is converted.

Note that the C99 width modifier | used in conjunction with the c and s conversion specifiers is not supported

and nor are the conversion specifiers a and A.

569

Embedded Studio Reference Manual

putchar

Synopsis

int putchar(int c);

Description

putchar writes the character c to the standard output stream.

putchar returns the character written. If a write error occurs, putchar returns EOF.

570

C Library User Guide

Embedded Studio Reference Manual

puts

Synopsis

int puts(const char *s);

Description

C Library User Guide

puts writes the string pointed to by s to the standard output stream using putchar and appends a new-line

character to the output. The terminating null character is not written.

puts returns EOF if a write error occurs; otherwise it returns a nonnegative value.

571

Embedded Studio Reference Manual C Library User Guide

scanf

Synopsis

int scanf(const char *format,

)

Description

scanf reads input from the standard input stream under control of the string pointed to by format that specifies
the admissible input sequences and how they are to be converted for assignment, using subsequent arguments

as pointers to the objects to receive the converted input.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

scanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, scanf
returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

Formatted input control strings

The format is composed of zero or more directives: one or more white-space characters, an ordinary character

(neither % nor a white-space character), or a conversion specification.
Each conversion specification is introduced by the character %. After the %, the following appear in sequence:

An optional assignment-suppressing character *.

An optional nonzero decimal integer that specifies the maximum field width (in characters).
An optional length modifier that specifies the size of the receiving object.

A conversion specifier character that specifies the type of conversion to be applied.

The formatted input function executes each directive of the format in turn. If a directive fails, the function
returns. Failures are described as input failures (because of the occurrence of an encoding error or the

unavailability of input characters), or matching failures (because of inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the first non-white-space

character (which remains unread), or until no more characters can be read.

A directive that is an ordinary character is executed by reading the next characters of the stream. If any of those
characters differ from the ones composing the directive, the directive fails and the differing and subsequent
characters remain unread. Similarly, if end-of-file, an encoding error, or a read error prevents a character from

being read, the directive fails.

A directive that is a conversion specification defines a set of matching input sequences, as described below for

each specifier. A conversion specification is executed in the following steps:

572

Embedded Studio Reference Manual C Library User Guide

Input white-space characters (as specified by the isspace function) are skipped, unless the specification
includes a [, ¢, or n specifier.

An input item is read from the stream, unless the specification includes an n specifier. An input item is
defined as the longest sequence of input characters which does not exceed any specified field width

and which is, or is a prefix of, a matching input sequence. The first character, if any, after the input item
remains unread. If the length of the input item is zero, the execution of the directive fails; this condition is
a matching failure unless end-of-file, an encoding error, or a read error prevented input from the stream,
in which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count of input
characters) is converted to a type appropriate to the conversion specifier. If the input item is not a
matching sequence, the execution of the directive fails: this condition is a matching failure. Unless
assignment suppression was indicated by a *, the result of the conversion is placed in the object pointed
to by the first argument following the format argument that has not already received a conversion result.
If this object does not have an appropriate type, or if the result of the conversion cannot be represented

in the object, the behavior is undefined.

Length modifiers

The length modifiers and their meanings are:

hh

Specifies that a following d, i, 0, u, x, X, or n conversion specifier applies to an argument with type pointer to

signed char or pointer to unsigned char.

Specifies that a following d, i, 0, u, x, X, or n conversion specifier applies to an argument with type pointer to

short int or unsigned short int.

Specifies that a following d, i, 0, u, x, X, or n conversion specifier applies to an argument with type pointer to
long int or unsigned long int; that a following e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to double. Some library variants do not support the | length modifier in order to reduce
code and data space requirements; please ensure that you have selected the correct library in the Printf

Integer Support property of the project if you use this length modifier.

Specifies that a following d, i, 0, u, x, X, or n conversion specifier applies to an argument with type pointer to
long long int or unsigned long long int. Some library variants do not support the Il length modifier in order
to reduce code and data space requirements; please ensure that you have selected the correct library in the

Printf Integer Support property of the project if you use this length modifier.

If a length modifier appears with any conversion specifier other than as specified above, the behavior is

undefined. Note that the C99 length modifiers j, z, t, and L are not supported.

573

Embedded Studio Reference Manual C Library User Guide

Conversion specifiers

d

Matches an optionally signed decimal integer, whose format is the same as expected for the subject
sequence of the strtol function with the value 10 for the base argument. The corresponding argument
must be a pointer to signed integer.

Matches an optionally signed integer, whose format is the same as expected for the subject sequence of the
strtol function with the value zero for the base argument. The corresponding argument must be a pointer

to signed integer.

Matches an optionally signed octal integer, whose format is the same as expected for the subject sequence
of the strtol function with the value 18 for the base argument. The corresponding argument must be a

pointer to signed integer.

Matches an optionally signed decimal integer, whose format is the same as expected for the subject
sequence of the strtoul function with the value 10 for the base argument. The corresponding argument
must be a pointer to unsigned integer.

Matches an optionally signed hexadecimal integer, whose format is the same as expected for the subject
sequence of the strtoul function with the value 16 for the base argument. The corresponding argument

must be a pointer to unsigned integer.

ef,g

Matches an optionally signed floating-point number whose format is the same as expected for the

subject sequence of the strtod function. The corresponding argument shall be a pointer to floating. Some
library variants do not support the e, f and F conversion specifiers in order to reduce code and data space
requirements; please ensure that you have selected the correct library in the Scanf Floating Point Support
property of the project if you use these conversion specifiers.

Matches a sequence of characters of exactly the number specified by the field width (one if no field width
is present in the directive). The corresponding argument must be a pointer to the initial element of a

character array large enough to accept the sequence. No null character is added.

Matches a sequence of non-white-space characters The corresponding argument must be a pointer to the
initial element of a character array large enough to accept the sequence and a terminating null character,
which will be added automatically.

574

Embedded Studio Reference Manual C Library User Guide

%

Matches a nonempty sequence of characters from a set of expected characters (the scanset). The
corresponding argument must be a pointer to the initial element of a character array large enough to
accept the sequence and a terminating null character, which will be added automatically. The conversion
specifier includes all subsequent characters in the format string, up to and including the matching right
bracket]. The characters between the brackets (the scanlist) compose the scanset, unless the character after
the left bracket is a circumflex A, in which case the scanset contains all characters that do not appear in

the scanlist between the circumflex and the right bracket. If the conversion specifier begins with [] or[A],
the right bracket character is in the scanlist and the next following right bracket character is the matching
right bracket that ends the specification; otherwise the first following right bracket character is the one that
ends the specification. If a - character is in the scanlist and is not the first, nor the second where the first
characteris a A, nor the last character, it is treated as a member of the scanset. Some library variants do not
support the [conversion specifier in order to reduce code and data space requirements; please ensure that
you have selected the correct library in the Scanf Classes Supported property of the project if you use this

conversion specifier.

Reads a sequence output by the corresponding %p formatted output conversion. The corresponding

argument must be a pointer to a pointer to void.

No input is consumed. The corresponding argument shall be a pointer to signed integer into which is to

be written the number of characters read from the input stream so far by this call to the formatted input
function. Execution of a %n directive does not increment the assignment count returned at the completion
of execution of the fscanf function. No argument is converted, but one is consumed. If the conversion

specification includes an assignment-suppressing character or a field width, the behavior is undefined.

Matches a single % character; no conversion or assignment occurs.

Note that the C99 width modifier | used in conjunction with the ¢, s, and [conversion specifiers is not supported

and nor are the conversion specifiers a and A.

575

Embedded Studio Reference Manual C Library User Guide

snprintf

Synopsis

int snprintf(char *s,
size t n,
const char *format,

¥

Description

snprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how

subsequent arguments are converted for output.

If nis zero, nothing is written, and s can be a null pointer. Otherwise, output characters beyond the n1 tare
discarded rather than being written to the array, and a null character is written at the end of the characters
actually written into the array. A null character is written at the end of the conversion; it is not counted as part of

the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while
arguments remain, the excess arguments are evaluated but are otherwise ignored.

If copying takes place between objects that overlap, the behavior is undefined.

snprintf returns the number of characters that would have been written had n been sufficiently large, not
counting the terminating null character, or a negative value if an encoding error occurred. Thus, the null-
terminated output has been completely written if and only if the returned value is nonnegative and less than n>.

576

Embedded Studio Reference Manual C Library User Guide

sprintf

Synopsis

int sprintf(char *s,
const char *format,
)i

Description

sprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how
subsequent arguments are converted for output. A null character is written at the end of the characters written;

it is not counted as part of the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.
If copying takes place between objects that overlap, the behavior is undefined.

sprintf returns number of characters transmitted (not counting the terminating null), or a negative value if an

output or encoding error occurred.

577

Embedded Studio Reference Manual C Library User Guide

sscanf

Synopsis

int sscanf(const char *s,
const char *format,

DE

Description

sscanf reads input from the string s under control of the string pointed to by format that specifies the
admissible input sequences and how they are to be converted for assignment, using subsequent arguments as

pointers to the objects to receive the converted input.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

sscanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, sscanf
returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

578

Embedded Studio Reference Manual C Library User Guide

vprintf

Synopsis

int vprintf(const char *fornmat,
va list arg);

Description

vprintf writes to the standard output stream using putchar under control of the string pointed to by format that
specifies how subsequent arguments are converted for output. Before calling vprintf, arg must be initialized by

the va_start macro (and possibly subsequent va_arg calls). vprintf does not invoke the va_end macro.

vprintf returns the number of characters transmitted, or a negative value if an output or encoding error

occurred.

Note

vprintf is equivalent to printf with the variable argument list replaced by arg.

579

Embedded Studio Reference Manual C Library User Guide

vscanf

Synopsis

int vscanf(const char *format,
_va list arg);

Description

vscanf reads input from the standard input stream under control of the string pointed to by format that
specifies the admissible input sequences and how they are to be converted for assignment, using subsequent
arguments as pointers to the objects to receive the converted input. Before calling vscanf, arg must be
initialized by the va_start macro (and possibly subsequent va_arg calls). vscanf does not invoke the va_end

macro.
If there are insufficient arguments for the format, the behavior is undefined.

vscanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, vscanf
returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

Note

vscanf is equivalent to scanf with the variable argument list replaced arg.

580

Embedded Studio Reference Manual C Library User Guide

vsnprintf

Synopsis

int vsnprintf(char *s,
size t n,
const char *format,
_va_list arg);

Description

vsnprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how
subsequent arguments are converted for output. Before calling vsnprintf, arg must be initialized by the va_start
macro (and possibly subsequent va_arg calls). vsnprintf does not invoke the va_end macro.

If n is zero, nothing is written, and s can be a null pointer. Otherwise, output characters beyond the n1 tare
discarded rather than being written to the array, and a null character is written at the end of the characters
actually written into the array. A null character is written at the end of the conversion; it is not counted as part of

the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.
If copying takes place between objects that overlap, the behavior is undefined.

vsnprintf returns the number of characters that would have been written had n been sufficiently large, not
counting the terminating null character, or a negative value if an encoding error occurred. Thus, the null-

terminated output has been completely written if and only if the returned value is nonnegative and less than n.

Note

vsnprintf is equivalent to snprintf with the variable argument list replaced by arg.

581

Embedded Studio Reference Manual C Library User Guide

vsprintf

Synopsis

int vsprintf(char *s,
const char *fornmat,
__va_list arg);

Description

vsprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how
subsequent arguments are converted for output. Before calling vsprintf, arg must be initialized by the va_start
macro (and possibly subsequent va_arg calls). vsprintf does not invoke the va_end macro.

A null character is written at the end of the characters written; it is not counted as part of the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.
If copying takes place between objects that overlap, the behavior is undefined.

vsprintf returns number of characters transmitted (not counting the terminating null), or a negative value if an

output or encoding error occurred.

Note

vsprintf is equivalent to sprintf with the variable argument list replaced by arg.

582

Embedded Studio Reference Manual C Library User Guide

vsscanf

Synopsis

int vsscanf(const char *s,
const char *format,
__va_ list arg);

Description

vsscanf reads input from the string s under control of the string pointed to by format that specifies the
admissible input sequences and how they are to be converted for assignment, using subsequent arguments
as pointers to the objects to receive the converted input. Before calling vsscanf, arg must be initialized by the

va_start macro (and possibly subsequent va_arg calls). vsscanf does not invoke the va_end macro.
If there are insufficient arguments for the format, the behavior is undefined.

vsscanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, vsscanf
returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

Note

vsscanf is equivalent to sscanf with the variable argument list replaced by arg.

583

Embedded Studio Reference Manual

<stdlib.h>

APl Summary

Macros
EXIT_FAILURE
EXIT_SUCCESS
MB_CUR_MAX

RAND_MAX
Types
div_t

Idiv_t
lidiv_t

Integer arithmetic functions
abs

div

labs

Idiv

llabs

lidiv

Memory allocation functions

calloc

free
malloc

realloc

String to number conversions
atof
atoi
atol

atoll

C Library User Guide

EXIT_FAILURE
EXIT_SUCCESS

Maximum number of bytes in a multi-byte character in
the current locale

RAND_MAX

Structure containing quotient and remainder after
division of an int

Structure containing quotient and remainder after
division of a long

Structure containing quotient and remainder after
division of a long long

Return an integer absolute value

Divide two ints returning quotient and remainder
Return a long integer absolute value

Divide two longs returning quotient and remainder
Return a long long integer absolute value

Divide two long longs returning quotient and
remainder

Allocate space for an array of objects and initialize
them to zero

Frees allocated memory for reuse
Allocate space for a single object

Resizes allocated memory space or allocates memory
space

Convert string to double
Convert string to int
Convert string to long

Convert string to long long

584

Embedded Studio Reference Manual

strtod

strtof

strtol

strtoll

strtoul

strtoull

Pseudo-random sequence generation functions
rand

srand

Search and sort functions

bsearch

gsort

Environment

atexit

exit

Number to string conversions

itoa

litoa

Itoa

ulltoa

ultoa

utoa

Multi-byte/wide character conversion functions
mblen

mblen_|

Multi-byte/wide string conversion functions
mbstowcs

mbstowcs_|

mbtowc

mbtowc_|

C Library User Guide

Convert string to double
Convert string to float

Convert string to long

Convert string to long long
Convert string to unsigned long

Convert string to unsigned long long

Return next random number in sequence

Set seed of random number sequence

Search a sorted array

Sort an array

Set function to be execute on exit

Terminates the calling process

Convert int to string

Convert long long to string

Convert long to string

Convert unsigned long long to string
Convert unsigned long to string

Convert unsigned to string

Determine number of bytes in a multi-byte character

Determine number of bytes in a multi-byte character

Convert multi-byte string to wide string

Convert multi-byte string to wide string using
specified locale

Convert multi-byte character to wide character

Convert multi-byte character to wide character

585

Embedded Studio Reference Manual

EXIT_FAILURE

Synopsis

#def i ne EXI T_FAlI LURE 1

Description

EXIT_FAILURE pass to exit on unsuccessful termination.

586

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

EXIT_SUCCESS

Synopsis

#def i ne EXI T_SUCCESS 0

Description

EXIT_SUCCESS pass to exit on successful termination.

587

Embedded Studio Reference Manual C Library User Guide

MB_CUR_MAX

Synopsis

#define MB_CUR MAX _ RAL nb _max(& RAL_gl obal _| ocal e)

Description

MB_CUR_MAX expands to a positive integer expression with type size_t that is the maximum number of bytes
in a multi-byte character for the extended character set specified by the current locale (category LC_CTYPE).
MB_CUR_MAX is never greater than MB_LEN_MAX.

588

Embedded Studio Reference Manual

RAND_MAX

Synopsis

#def i ne RAND_MAX 32767

Description

C Library User Guide

RAND_MAX expands to an integer constant expression that is the maximum value returned by rand.

589

Embedded Studio Reference Manual

abs

Synopsis

int abs(int j);

Description

abs returns the absolute value of the integer argument j.

590

C Library User Guide

Embedded Studio Reference Manual

atexit

Synopsis

int atexit(void (*func)(void));

Description

C Library User Guide

atexit registers function to be called when the application has exited. The functions registered with atexit are

executed in reverse order of their registration. atexit returns 0 on success and non-zero on failure.

591

Embedded Studio Reference Manual

atof

Synopsis

doubl e at of (const char *nptr);

Description

atof converts the initial portion of the string pointed to by nptr to a double representation.

C Library User Guide

atof does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior

is undefined.

Except for the behavior on error, atof is equivalenttost rt od(nptr,

atof returns the converted value.

See Also

strtod

592

(char **)NULL).

Embedded Studio Reference Manual

atoi

Synopsis

int atoi(const char *nptr);

Description

atoi converts the initial portion of the string pointed to by nptr to an int representation.

C Library User Guide

atoi does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior

is undefined.

Except for the behavior on error, atoi is equivalentto (i nt) strtol (nptr,

atoi returns the converted value.

See Also

strtol

593

(char **)NULL, 10).

Embedded Studio Reference Manual C Library User Guide

atol

Synopsis

long int atol (const char *nptr);

Description
atol converts the initial portion of the string pointed to by nptr to a long int representation.

atol does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior

is undefined.
Except for the behavior on error, atol is equivalenttost rt ol (nptr, (char **)NULL, 10).

atol returns the converted value.

See Also

strtol

594

Embedded Studio Reference Manual C Library User Guide

atoll

Synopsis

long long int atoll (const char *nptr);

Description
atoll converts the initial portion of the string pointed to by nptr to a long long int representation.

atoll does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior

is undefined.
Except for the behavior on error, atoll is equivalenttostrtol | (nptr, (char **)NULL, 10).

atoll returns the converted value.

See Also

strtoll

595

Embedded Studio Reference Manual C Library User Guide

bsearch

Synopsis

voi d *bsearch(const void *key,
const void *buf,
size_ t num
size_t size,
int (*conpare)(const void *, const void *));

Description

bsearch searches the array *base for the specified *key and returns a pointer to the first entry that matches or
null if no match. The array should have num elements of size bytes and be sorted by the same algorithm as the

compare function.

The compare function should return a negative value if the first parameter is less than second parameter, zero if

the parameters are equal, and a positive value if the first parameter is greater than the second parameter.

596

Embedded Studio Reference Manual

calloc

Synopsis

voi d *cal | oc(size_t nobj,
size_t size);

Description

C Library User Guide

calloc allocates space for an array of nmemb objects, each of whose size is size. The space is initialized to all zero

bits.

calloc returns a null pointer if the space for the array of object cannot be allocated from free memory; if space for

the array can be allocated, calloc returns a pointer to the start of the allocated space.

597

Embedded Studio Reference Manual C Library User Guide

div

Synopsis

div_t div(int nuner,
int denom;

Description
div computes numer / denom and numer % denom in a single operation.

div returns a structure of type div_t comprising both the quotient and the remainder. The structures contain
the members quot (the quotient) and rem (the remainder), each of which has the same type as the arguments

numer and denom. If either part of the result cannot be represented, the behavior is undefined.

See Also

div_t

598

Embedded Studio Reference Manual C Library User Guide

div_t

Description

div_t stores the quotient and remainder returned by div.

599

Embedded Studio Reference Manual

exit

Synopsis

void exit(int exit_code);

Description

exit returns to the startup code and performs the appropriate cleanup process.

600

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

free

Synopsis

void free(void *p);

Description

free causes the space pointed to by ptr to be deallocated, that is, made available for further allocation. If ptr is a

null pointer, no action occurs.

If ptr does not match a pointer earlier returned by calloc, malloc, or realloc, or if the space has been deallocated

by a call to free or realloc, the behavior is undefined.

601

Embedded Studio Reference Manual C Library User Guide

Itoa

Synopsis

char *itoa(int val,
char *buf,
int radix);

Description

itoa converts val to a string in base radix and places the result in buf.

itoa returns buf as the result.

If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all other values of radix, value is
considered unsigned and never has a leading minus sign.

See Also

Itoa, lItoa, ultoa, ulltoa, utoa

602

Embedded Studio Reference Manual

labs

Synopsis

long int labs(long int j);

Description

labs returns the absolute value of the long integer argument j.

603

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

Idiv

Synopsis

Idiv_t Idiv(long int nuner,
| ong int denom;

Description
Idiv computes numer / denom and numer % denom in a single operation.

Idiv returns a structure of type Idiv_t comprising both the quotient and the remainder. The structures contain
the members quot (the quotient) and rem (the remainder), each of which has the same type as the arguments

numer and denom. If either part of the result cannot be represented, the behavior is undefined.

See Also

Idiv_t

604

Embedded Studio Reference Manual C Library User Guide

Idiv_t

Description

Idiv_t stores the quotient and remainder returned by Idiv.

605

Embedded Studio Reference Manual C Library User Guide

llabs

Synopsis

long long int Ilabs(long long int j);

Description

llabs returns the absolute value of the long long integer argument j.

606

Embedded Studio Reference Manual C Library User Guide

lldiv

Synopsis

Il1div_t Ildiv(long long int nuner,
I ong | ong int denonj;

lldiv computes numer / denom and numer % denom in a single operation.

lidiv returns a structure of type lldiv_t comprising both the quotient and the remainder. The structures contain
the members quot (the quotient) and rem (the remainder), each of which has the same type as the arguments

numer and denom. If either part of the result cannot be represented, the behavior is undefined.

See Also

lidiv_t

607

Embedded Studio Reference Manual C Library User Guide

lidiv_t

Description

lldiv_t stores the quotient and remainder returned by lldiv.

608

Embedded Studio Reference Manual C Library User Guide

litoa

Synopsis

char *lltoa(long |l ong val,
char *buf,
int radix);

Description

litoa converts val to a string in base radix and places the result in buf.

lItoa returns buf as the result.

If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all other values of radix, value is
considered unsigned and never has a leading minus sign.

See Also

itoa, Itoa, ultoa, ulltoa, utoa

609

Embedded Studio Reference Manual C Library User Guide

Itoa

Synopsis

char *ltoa(long val,
char *buf,
int radix);

Description

Itoa converts val to a string in base radix and places the result in buf.

Itoa returns buf as the result.

If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all other values of radix, value is
considered unsigned and never has a leading minus sign.

See Also

itoa, lltoa, ultoa, ulltoa, utoa

610

Embedded Studio Reference Manual

malloc

Synopsis

void *mal | oc(size_t size);

Description

C Library User Guide

malloc allocates space for an object whose size is specified by 'b size and whose value is indeterminate.

malloc returns a null pointer if the space for the object cannot be allocated from free memory; if space for the

object can be allocated, malloc returns a pointer to the start of the allocated space.

611

Embedded Studio Reference Manual C Library User Guide

mblen

Synopsis

int nbl en(const char *s,
size t n);

Description

mblen determines the number of bytes contained in the multi-byte character pointed to by s in the current
locale.

If s is a null pointer, mblen returns a nonzero or zero value, if multi-byte character encodings, respectively, do or

do not have state-dependent encodings

If s is not a null pointer, mblen either returns 0 (if s points to the null character), or returns the number of bytes
that are contained in the multi-byte character (if the next n or fewer bytes form a valid multi-byte character), or

returns 1 (if they do not form a valid multi-byte character).

Note

Except that the conversion state of the mbtowc function is not affected, it is equivalent to

nmbt owc((wchar _t *)0, s, n);

Note

It is guaranteed that no library function in the Standard C library calls mblen.

See Also

mblen_|, mbtowc

612

Embedded Studio Reference Manual C Library User Guide

mblen_|

Synopsis

int nblen_| (const char *s,
size t n,
__locale_s *loc);

Description
mblen_| determines the number of bytes contained in the multi-byte character pointed to by s in the locale loc.

If s is a null pointer, mblen_l returns a nonzero or zero value, if multi-byte character encodings, respectively, do

or do not have state-dependent encodings

If s is not a null pointer, mblen_| either returns 0O (if s points to the null character), or returns the number of bytes
that are contained in the multi-byte character (if the next n or fewer bytes form a valid multi-byte character), or

returns 1 (if they do not form a valid multi-byte character).

Note

Except that the conversion state of the mbtowc_I function is not affected, it is equivalent to

nbt owc((wchar _t *)0, s, n, loc);

Note

It is guaranteed that no library function in the Standard C library calls mblen_|.

See Also

mblen_I|, mbtowc_|

613

Embedded Studio Reference Manual C Library User Guide

mbstowcs

Synopsis

size_t nmbstowcs(wchar _t *pwcs,
const char *s,
size_t n);

Description

mbstowcs converts a sequence of multi-byte characters that begins in the initial shift state from the array
pointed to by s into a sequence of corresponding wide characters and stores not more than n wide characters

into the array pointed to by pwcs.

No multi-byte characters that follow a null character (which is converted into a null wide character) will be
examined or converted. Each multi-byte character is converted as if by a call to the mbtowc function, except that

the conversion state of the mbtowc function is not affected.

No more than n elements will be modified in the array pointed to by pwecs. If copying takes place between

objects that overlap, the behavior is undefined.

mbstowcs returns 1 if an invalid multi-byte character is encountered, otherwise mbstowcs returns the number

of array elements modified (if any), not including a terminating null wide character.

614

Embedded Studio Reference Manual C Library User Guide

mbstowcs_|

Synopsis

size_t nbstowcs_| (wchar _t *pwcs,
const char *s,
size_t n,
__locale_s *loc);

Description

mbstowcs_I is as mbstowcs except that the local loc is used for the conversion as opposed to the current locale.

See Also

mbstowcs.

615

Embedded Studio Reference Manual C Library User Guide

mbtowc

Synopsis

int nbtowc(wchar _t *pwc,
const char *s,
size_t n);

Description
mbtowc converts a single multi-byte character to a wide character in the current locale.

If s is a null pointer, mbtowc returns a nonzero value if multi-byte character encodings are state-dependent in

the current locale, and zero otherwise.
If s is not null and the object that s points to is a wide-character null character, mbtowc returns 0.

If s is not null and the object that points to forms a valid multi-byte character, mbtowc returns the length in

bytes of the multi-byte character.

If the object that points to does not form a valid multi-byte character within the first n characters, it returns 1.

See Also

mbtowc_|

616

Embedded Studio Reference Manual

mbtowc_|

Synopsis

int nbtowc_| (wchar _t *pwc,
const char *s,
size_ t n,
__locale_s *loc);

Description

mbtowc_| converts a single multi-byte character to a wide character in locale loc.

C Library User Guide

If s is a null pointer, mbtowc_I returns a nonzero value if multi-byte character encodings are state-dependent in

the locale loc, and zero otherwise.

If s is not null and the object that s points to is a wide-character null character, mbtowc_I returns 0.

If s is not null and the object that points to forms a valid multi-byte character, mbtowc_I returns the length in

bytes of the multi-byte character.

If the object that s points to does not form a valid multi-byte character within the first n characters, it returns 1.

See Also

mbtowc

617

Embedded Studio Reference Manual C Library User Guide

gsort

Synopsis

voi d gsort(void *buf,
size t num
size t size,
int (*conpare)(const void *, const void *));

gsort sorts the array *base using the compare function. The array should have num elements of size bytes. The
compare function should return a negative value if the first parameter is less than second parameter, zero if the

parameters are equal and a positive value if the first parameter is greater than the second parameter.

618

Embedded Studio Reference Manual C Library User Guide

rand

Synopsis

int rand(void);

Description
rand computes a sequence of pseudo-random integers in the range 0 to RAND_MAX.

rand returns the computed pseudo-random integer.

619

Embedded Studio Reference Manual C Library User Guide

realloc

Synopsis

void *realloc(void *p,
size t size);

Description

realloc deallocates the old object pointed to by ptr and returns a pointer to a new object that has the size
specified by size. The contents of the new object is identical to that of the old object prior to deallocation,
up to the lesser of the new and old sizes. Any bytes in the new object beyond the size of the old object have

indeterminate values.

If ptr is a null pointer, realloc behaves like realloc for the specified size. If memory for the new object cannot be

allocated, the old object is not deallocated and its value is unchanged.

realloc returns a pointer to the new object (which may have the same value as a pointer to the old object), or a

null pointer if the new object could not be allocated.

If ptr does not match a pointer earlier returned by calloc, malloc, or realloc, or if the space has been deallocated

by a call to free or realloc, the behavior is undefined.

620

Embedded Studio Reference Manual

srand

Synopsis

voi d srand(unsigned int seed);

Description

C Library User Guide

srand uses the argument seed as a seed for a new sequence of pseudo-random numbers to be returned by

subsequent calls to rand. If srand is called with the same seed value, the same sequence of pseudo-random

numbers is generated.

If rand is called before any calls to srand have been made, a sequence is generated as if srand is first called with

a seed value of 1.

See Also

rand

621

Embedded Studio Reference Manual C Library User Guide

strtod

Synopsis

doubl e strtod(const char *nptr,
char **endptr);

Description
strtod converts the initial portion of the string pointed to by nptr to a double representation.

First, strtod decomposes the input string into three parts: an initial, possibly empty, sequence of white-space
characters (as specified by isspace), a subject sequence resembling a floating-point constant, and a final string
of one or more unrecognized characters, including the terminating null character of the input string. strtod then

attempts to convert the subject sequence to a floating-point number, and return the result.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-
white-space character, that is of the expected form. The subject sequence contains no characters if the input
string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

The expected form of the subject sequence is an optional plus or minus sign followed by a nonempty sequence

of decimal digits optionally containing a decimal-point character, then an optional exponent part.
If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by strtod, provided that endptr is not a null

pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

strtod returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct
value is outside the range of representable values, HUGE_VAL is returned according to the sign of the value, if

any, and the value of the macro errno is stored in errno.

622

Embedded Studio Reference Manual C Library User Guide

strtof

Synopsis

float strtof(const char *nptr,
char **endptr);

Description
strtof converts the initial portion of the string pointed to by nptr to a double representation.

First, strtof decomposes the input string into three parts: an initial, possibly empty, sequence of white-space
characters (as specified by isspace), a subject sequence resembling a floating-point constant, and a final string
of one or more unrecognized characters, including the terminating null character of the input string. strtof then

attempts to convert the subject sequence to a floating-point number, and return the result.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-
white-space character, that is of the expected form. The subject sequence contains no characters if the input
string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

The expected form of the subject sequence is an optional plus or minus sign followed by a nonempty sequence

of decimal digits optionally containing a decimal-point character, then an optional exponent part.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated. A pointer
to the final string is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of
nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

strtof returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct
value is outside the range of representable values, HUGE_VALF is returned according to the sign of the value, if

any, and the value of the macro errno is stored in errno.

623

Embedded Studio Reference Manual C Library User Guide

strtol

Synopsis

long int strtol (const char *nptr,
char **endptr,
int base);

Description
strtol converts the initial portion of the string pointed to by nptr to a long int representation.

First, strtol decomposes the input string into three parts: an initial, possibly empty, sequence of white-space
characters (as specified by isspace), a subject sequence resembling an integer represented in some radix
determined by the value of base, and a final string of one or more unrecognized characters, including the
terminating null character of the input string. strtol then attempts to convert the subject sequence to an integer,

and return the result.
When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an optional plus or minus sign followed

by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is an optional
plus or minus sign followed by a sequence of letters and digits representing an integer with the radix specified
by base. The letters from a (or A) through z (or Z) represent the values 10 through 35; only letters and digits
whose ascribed values are less than that of base are permitted.

If the value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and digits,

following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-
white-space character, that is of the expected form. The subject sequence contains no characters if the input
string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters starting
with the first digit is interpreted as an integer constant. If the subject sequence has the expected form and the
value of base is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

624

Embedded Studio Reference Manual C Library User Guide

strtol returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct
value is outside the range of representable values, LONG_MIN or LONG_MAX is returned according to the sign

of the value, if any, and the value of the macro errno is stored in errno.

625

Embedded Studio Reference Manual C Library User Guide

strtoll

Synopsis

long long int strtoll (const char *nptr,
char **endptr,
int base);

Description
strtoll converts the initial portion of the string pointed to by nptr to a long int representation.

First, strtoll decomposes the input string into three parts: an initial, possibly empty, sequence of white-space
characters (as specified by isspace), a subject sequence resembling an integer represented in some radix
determined by the value of base, and a final string of one or more unrecognized characters, including the
terminating null character of the input string. strtoll then attempts to convert the subject sequence to an

integer, and return the result.
When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an optional plus or minus sign followed

by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is an optional
plus or minus sign followed by a sequence of letters and digits representing an integer with the radix specified
by base. The letters from a (or A) through z (or Z) represent the values 10 through 35; only letters and digits
whose ascribed values are less than that of base are permitted.

If the value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and digits,

following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-
white-space character, that is of the expected form. The subject sequence contains no characters if the input
string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters starting
with the first digit is interpreted as an integer constant. If the subject sequence has the expected form and the
value of base is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

626

Embedded Studio Reference Manual C Library User Guide

strtoll returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct
value is outside the range of representable values, LLONG_MIN or LLONG_MAX is returned according to the

sign of the value, if any, and the value of the macro ERANGE is stored in errno.

627

Embedded Studio Reference Manual C Library User Guide

strtoul

Synopsis

unsigned |long int strtoul (const char *nptr,
char **endptr,
int base);

Description
strtoul converts the initial portion of the string pointed to by nptr to a long int representation.

First, strtoul decomposes the input string into three parts: an initial, possibly empty, sequence of white-space
characters (as specified by isspace), a subject sequence resembling an integer represented in some radix
determined by the value of base, and a final string of one or more unrecognized characters, including the
terminating null character of the input string. strtoul then attempts to convert the subject sequence to an

integer, and return the result.
When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an optional plus or minus sign followed

by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is an optional
plus or minus sign followed by a sequence of letters and digits representing an integer with the radix specified
by base. The letters from a (or A) through z (or Z) represent the values 10 through 35; only letters and digits
whose ascribed values are less than that of base are permitted.

If the value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and digits,

following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-
white-space character, that is of the expected form. The subject sequence contains no characters if the input
string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters starting
with the first digit is interpreted as an integer constant. If the subject sequence has the expected form and the
value of base is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

628

Embedded Studio Reference Manual C Library User Guide

strtoul returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct
value is outside the range of representable values, LONG_MAX or ULONG_MAX is returned according to the

sign of the value, if any, and the value of the macro ERANGE is stored in errno.

629

Embedded Studio Reference Manual C Library User Guide

strtoull

Synopsis

unsigned long long int strtoull (const char *nptr,
char **endptr,
int base);

Description
strtoull converts the initial portion of the string pointed to by nptr to a long int representation.

First, strtoull decomposes the input string into three parts: an initial, possibly empty, sequence of white-space
characters (as specified by isspace), a subject sequence resembling an integer represented in some radix
determined by the value of base, and a final string of one or more unrecognized characters, including the
terminating null character of the input string. strtoull then attempts to convert the subject sequence to an

integer, and return the result.
When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an optional plus or minus sign followed

by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is an optional
plus or minus sign followed by a sequence of letters and digits representing an integer with the radix specified
by base. The letters from a (or A) through z (or Z) represent the values 10 through 35; only letters and digits
whose ascribed values are less than that of base are permitted.

If the value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and digits,

following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-
white-space character, that is of the expected form. The subject sequence contains no characters if the input
string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters starting
with the first digit is interpreted as an integer constant. If the subject sequence has the expected form and the
value of base is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

630

Embedded Studio Reference Manual C Library User Guide

strtoull returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct
value is outside the range of representable values, LLONG_MAX or ULLONG_MAX is returned according to the

sign of the value, if any, and the value of the macro ERANGE is stored in errno.

631

Embedded Studio Reference Manual

ulltoa

Synopsis

char *ulltoa(unsigned |ong | ong val,
char *buf,
int radix);

Description

ulltoa converts val to a string in base radix and places the result in buf.

ulltoa returns buf as the result.

If radix is greater than 36, the result is undefined.

See Also

itoa, Itoa, lltoa, ultoa, utoa

632

C Library User Guide

Embedded Studio Reference Manual

ultoa

Synopsis

char *ul toa(unsigned | ong val,
char *buf,
int radix);

Description

ultoa converts val to a string in base radix and places the result in buf.

ultoa returns buf as the result.

If radix is greater than 36, the result is undefined.

See Also

itoa, Itoa, lltoa, ulltoa, utoa

633

C Library User Guide

Embedded Studio Reference Manual

utoa

Synopsis

char *utoa(unsigned val,
char *buf,
int radix);

Description

utoa converts val to a string in base radix and places the result in buf.

utoa returns buf as the result.

If radix is greater than 36, the result is undefined.

See Also

itoa, Itoa, lltoa, ultoa, ulltoa

634

C Library User Guide

Embedded Studio Reference Manual

<string.h>

Overview

C Library User Guide

The header file <string.h> defines functions that operate on arrays that are interpreted as null-terminated

strings.

Various methods are used for determining the lengths of the arrays, but in all cases a char * or void * argument

points to the initial (lowest addressed) character of the array. If an array is accessed beyond the end of an object,

the behavior is undefined.

Where an argument declared as size_t n specifies the length of an array for a function, n can have the value zero

on a call to that function. Unless explicitly stated otherwise in the description of a particular function, pointer

arguments must have valid values on a call with a zero size. On such a call, a function that locates a character

finds no occurrence, a function that compares two character sequences returns zero, and a function that copies

characters copies zero characters.

APl Summary

Copying functions

memccpy

memcpy
memcpy_fast
memmove
mempcpy
strcat

strcpy

strdup

strlcat
stricpy

strncat

strncpy

strndup

Comparison functions
memcmp

strcasecmp

Copy memory with specified terminator (POSIX
extension)

Copy memory

Copy memory

Safely copy overlapping memory
Copy memory (GNU extension)
Concatenate strings

Copy string

Duplicate string (POSIX extension)

Copy string up to a maximum length with terminator
(BSD extension)

Copy string up to a maximum length with terminator
(BSD extension)

Concatenate strings up to maximum length
Copy string up to a maximum length

Duplicate string (POSIX extension)

Compare memory

Compare strings ignoring case (POSIX extension)

635

Embedded Studio Reference Manual

strcmp

strncasecmp

strncmp
Search functions
memchr

strcasestr

strchr

strcspn

strncasestr

strnchr

strnlen

strnstr

strpbrk
strrchr
strsep
strspn
strstr
strtok

strtok_r

Miscellaneous functions
memset
strerror

strlen

C Library User Guide

Compare strings

Compare strings up to a maximum length ignoring
case (POSIX extension)

Compare strings up to a maximum length

Search memory for a character

Find first case-insensitive occurrence of a string within
string

Find character within string

Compute size of string not prefixed by a set of
characters

Find first case-insensitive occurrence of a string within
length-limited string

Find character in a length-limited string

Calculate length of length-limited string (POSIX
extension)

Find first occurrence of a string within length-limited
string

Find first occurrence of characters within string

Find last occurrence of character within string

Break string into tokens (4.4BSD extension)

Compute size of string prefixed by a set of characters
Find first occurrence of a string within string

Break string into tokens

Break string into tokens, reentrant version (POSIX
extension)

Set memory to character
Decode error code

Calculate length of string

636

Embedded Studio Reference Manual C Library User Guide

memccpy

Synopsis

voi d *mentcpy(void *s1i,
const void *s2,
int c,
size_t n);

Description

memccpy copies at most n characters from the object pointed to by s2 into the object pointed to by s1. The
copying stops as soon as n characters are copied or the character c is copied into the destination object pointed
to by s1. The behavior of memccpy is undefined if copying takes place between objects that overlap.

memccpy returns a pointer to the character immediately following ciin s1, or NULL if ¢ was not found in the first
n characters of s2.

Note

memccpy conforms to POSIX.1-2008.

637

Embedded Studio Reference Manual

memchr

Synopsis

voi d *menthr (const void *s,
int c,
size_t n);

Description

C Library User Guide

memchr locates the first occurrence of ¢ (converted to an unsigned char) in the initial n characters (each

interpreted as unsigned char) of the object pointed to by s. Unlike strchr, memchr does not terminate a search

when a null character is found in the object pointed to by s.

memchr returns a pointer to the located character, or a null pointer if c does not occur in the object.

638

Embedded Studio Reference Manual

memcmp

Synopsis

int mencnp(const void *si,
const void *s2,
size_t n);

Description

C Library User Guide

memcmp compares the first n characters of the object pointed to by s1 to the first n characters of the object

pointed to by s2. memcmp returns an integer greater than, equal to, or less than zero as the object pointed to

by s1 is greater than, equal to, or less than the object pointed to by s2.

639

Embedded Studio Reference Manual

memcpy

Synopsis

voi d *mencpy(void *s1,
const void *s2,
size_t n);

Description

C Library User Guide

memcpy copies n characters from the object pointed to by s2 into the object pointed to by s1. The behavior of

memcpy is undefined if copying takes place between objects that overlap.

memcpy returns the value of s1.

640

Embedded Studio Reference Manual C Library User Guide

memcpy_fast

Synopsis

voi d *mentpy_fast(void *si,
const void *s2,
size_t n);

Description

memcpy_fast copies n characters from the object pointed to by s2 into the object pointed to by s1. The
behavior of memcpy_fast is undefined if copying takes place between objects that overlap. The implementation
of memcpy_fast is optimized for speed for all cases of memcpy and as such has a large code memory

requirement. This function is implemented for little-endian ARM and 32-bit Thumb-2 instruction sets only.

memcpy_fast returns the value of s1.

641

Embedded Studio Reference Manual C Library User Guide

memmove

Synopsis

voi d *memmove(voi d *s1i,
const void *s2,
size_t n);

Description

memmove copies n characters from the object pointed to by s2 into the object pointed to by s1 ensuring that
if s1 and s2 overlap, the copy works correctly. Copying takes place as if the n characters from the object pointed
to by s2 are first copied into a temporary array of n characters that does not overlap the objects pointed to by s1

and s2, and then the n characters from the temporary array are copied into the object pointed to by s1.

memmove returns the value of s1.

642

Embedded Studio Reference Manual C Library User Guide

mempcpy

Synopsis

voi d *menpcpy(void *s1i,
const void *s2,
size_t n);

Description

mempcpy copies n characters from the object pointed to by s2 into the object pointed to by s1. The behavior of
mempcpy is undefined if copying takes place between objects that overlap.

mempcpy returns a pointer to the byte following the last written byte.

Note

This is an extension found in GNU libc.

643

Embedded Studio Reference Manual

memset

Synopsis

voi d *menset (void *s,
int c,
size_t n);

Description

C Library User Guide

memset copies the value of ¢ (converted to an unsigned char) into each of the first n characters of the object

pointed to by s.

memset returns the value of s.

644

Embedded Studio Reference Manual C Library User Guide

strcasecmp

Synopsis

int strcasecnp(const char *si,
const char *s2);

Description

strcasecmp compares the string pointed to by s1 to the string pointed to by s2 ignoring differences in case.
strcasecmp returns an integer greater than, equal to, or less than zero if the string pointed to by s1 is greater

than, equal to, or less than the string pointed to by s2.

Note

strcasecmp conforms to POSIX.1-2008.

645

Embedded Studio Reference Manual C Library User Guide

strcasestr

Synopsis

char *strcasestr(const char *sl,
const char *s2);

Description

strcasestr locates the first occurrence in the string pointed to by s1 of the sequence of characters (excluding the

terminating null character) in the string pointed to by s2 without regard to character case.

strcasestr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a string

with zero length, strcasestr returns s1.

Note

strcasestr is an extension commonly found in Linux and BSD C libraries.

646

Embedded Studio Reference Manual

strcat

Synopsis

char *strcat (char *sli,
const char *s2);

Description

C Library User Guide

strcat appends a copy of the string pointed to by s2 (including the terminating null character) to the end of the

string pointed to by s1. The initial character of s2 overwrites the null character at the end of s1. The behavior of

strcat is undefined if copying takes place between objects that overlap.

strcat returns the value of s1.

647

Embedded Studio Reference Manual C Library User Guide

strchr

Synopsis

char *strchr(const char *s,
int c);

Description

strchr locates the first occurrence of ¢ (converted to a char) in the string pointed to by s. The terminating null

character is considered to be part of the string.

strchr returns a pointer to the located character, or a null pointer if c does not occur in the string.

648

Embedded Studio Reference Manual

strcamp

Synopsis

int strcnp(const char *si,
const char *s2);

Description

C Library User Guide

strcmp compares the string pointed to by s1 to the string pointed to by s2. strcmp returns an integer greater

than, equal to, or less than zero if the string pointed to by s1 is greater than, equal to, or less than the string

pointed to by s2.

649

Embedded Studio Reference Manual

strcpy

Synopsis

char *strcpy(char *sli,
const char *s2);

Description

C Library User Guide

strcpy copies the string pointed to by s2 (including the terminating null character) into the array pointed to by

s1. The behavior of strcpy is undefined if copying takes place between objects that overlap.

strcpy returns the value of s1.

650

Embedded Studio Reference Manual C Library User Guide

strcspn

Synopsis

size_t strcspn(const char *sl,
const char *s2);

Description

strcspn computes the length of the maximum initial segment of the string pointed to by s1 which consists

entirely of characters not from the string pointed to by s2.

strcspn returns the length of the segment.

651

Embedded Studio Reference Manual

strdup

Synopsis

char *strdup(const char *s1);

Description

C Library User Guide

strdup duplicates the string pointed to by s1 by using malloc to allocate memory for a copy of s and then

copying s, including the terminating null, to that memory strdup returns a pointer to the new string or a null

pointer if the new string cannot be created. The returned pointer can be passed to free.

Note

strdup conforms to POSIX.1-2008 and SC22 TR 24731-2.

652

Embedded Studio Reference Manual C Library User Guide

strerror

Synopsis

char *strerror(int num;

Description

strerror maps the number in num to a message string. Typically, the values for num come from errno, but

strerror can map any value of type int to a message.

strerror returns a pointer to the message string. The program must not modify the returned message string. The

message may be overwritten by a subsequent call to strerror.

653

Embedded Studio Reference Manual C Library User Guide

stricat

Synopsis

size_t strlcat(char *si,
const char *s2,
size_t n);

Description

strlcat appends no more than nstrlen(dst)1 characters pointed to by s2 into the array pointed to by s1 and
always terminates the result with a null character if n is greater than zero. Both the strings s1 and s2 must be
terminated with a null character on entry to strlcat and a byte for the terminating null should be included in n.

The behavior of strilcat is undefined if copying takes place between objects that overlap.

strlcat returns the number of characters it tried to copy, which is the sum of the lengths of the strings s1 and s2

or n, whichever is smaller.

Note

strlcat is commonly found in OpenBSD libraries.

654

Embedded Studio Reference Manual C Library User Guide

strlcpy

Synopsis

size_t strlcpy(char *si,
const char *s2,
size_t n);

Description

strlcpy copies up to n1 characters from the string pointed to by s2 into the array pointed to by s1 and always
terminates the result with a null character. The behavior of strlcpy is undefined if copying takes place between

objects that overlap.

strlcpy returns the number of characters it tried to copy, which is the length of the string s2 or n, whichever is
smaller.

Note

strlcpy is commonly found in OpenBSD libraries and contrasts with strncpy in that the resulting string is always

terminated with a null character.

655

Embedded Studio Reference Manual

strlen

Synopsis

size_t strlen(const char *s);

Description

C Library User Guide

strlen returns the length of the string pointed to by s, that is the number of characters that precede the

terminating null character.

656

Embedded Studio Reference Manual C Library User Guide

strncasecmp

Synopsis

int strncasecnp(const char *sl,
const char *s2,
size_t n);

Description

strncasecmp compares not more than n characters from the array pointed to by s1 to the array pointed to by s2
ignoring differences in case. Characters that follow a null character are not compared.

strncasecmp returns an integer greater than, equal to, or less than zero, if the possibly null-terminated array
pointed to by s1 is greater than, equal to, or less than the possibly null-terminated array pointed to by s2.

Note

strncasecmp conforms to POSIX.1-2008.

657

Embedded Studio Reference Manual C Library User Guide

strncasestr

Synopsis

char *strncasestr(const char *si,
const char *s2,
size_t n);

Description

strncasestr searches at most n characters to locate the first occurrence in the string pointed to by s1 of the
sequence of characters (excluding the terminating null character) in the string pointed to by s2 without regard

to character case.

strncasestr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a

string with zero length, strncasestr returns s1.

Note

strncasestr is an extension commonly found in Linux and BSD C libraries.

658

Embedded Studio Reference Manual C Library User Guide

strncat

Synopsis

char *strncat(char *sl1,
const char *s2,
size_t n);

Description

strncat appends not more than n characters from the array pointed to by s2 to the end of the string pointed to
by s1. A null character in s1 and characters that follow it are not appended. The initial character of s2 overwrites
the null character at the end of s1. A terminating null character is always appended to the result. The behavior of

strncat is undefined if copying takes place between objects that overlap.

strncat returns the value of s1.

659

Embedded Studio Reference Manual

strnchr

Synopsis

char *strnchr(const char *str,
size t n,
int ch);

Description

C Library User Guide

strnchr searches not more than n characters to locate the first occurrence of ¢ (converted to a char) in the string

pointed to by s. The terminating null character is considered to be part of the string.

strnchr returns a pointer to the located character, or a null pointer if ¢ does not occur in the string.

660

Embedded Studio Reference Manual

strncmp

Synopsis

int strncnp(const char *sli,
const char *s2,
size_t n);

Description

C Library User Guide

strncmp compares not more than n characters from the array pointed to by s1 to the array pointed to by s2.

Characters that follow a null character are not compared.

strncmp returns an integer greater than, equal to, or less than zero, if the possibly null-terminated array pointed

to by s1 is greater than, equal to, or less than the possibly null-terminated array pointed to by s2.

661

Embedded Studio Reference Manual C Library User Guide

strncpy

Synopsis

char *strncpy(char *s1,
const char *s2,
size_t n);

Description

strncpy copies not more than n characters from the array pointed to by s2 to the array pointed to by s1.
Characters that follow a null character in s2 are not copied. The behavior of strncpy is undefined if copying takes
place between objects that overlap. If the array pointed to by s2 is a string that is shorter than n characters, null

characters are appended to the copy in the array pointed to by s1, until n characters in all have been written.

strncpy returns the value of s1.

Note

No null character is implicitly appended to the end of s1, so s1 will only be terminated by a null character if the
length of the string pointed to by s2 is less than n.

662

Embedded Studio Reference Manual C Library User Guide

strndup

Synopsis

char *strndup(const char *si,
size_t n);

Description

strndup duplicates at most n characters from the the string pointed to by s1 by using malloc to allocate memory

for a copy of s1.

If the length of string pointed to by s1 is greater than n characters, only n characters will be duplicated. If n is
greater than the length of string pointed to by s1, all characters in the string are copied into the allocated array

including the terminating null character.

strndup returns a pointer to the new string or a null pointer if the new string cannot be created. The returned

pointer can be passed to free.

Note

strndup conforms to POSIX.1-2008 and SC22 TR 24731-2.

663

Embedded Studio Reference Manual

strnlen

Synopsis

size_t strnlen(const char *s,
size_t n);

Description

C Library User Guide

strnlen returns the length of the string pointed to by s, up to a maximum of n characters. strnlen only examines

the first n characters of the string s.

Note

strnlen conforms to POSIX.1-2008.

664

Embedded Studio Reference Manual

strnstr

Synopsis

char *strnstr(const char *si,
const char *s2,
size_t n);

Description

C Library User Guide

strnstr searches at most n characters to locate the first occurrence in the string pointed to by s1 of the sequence

of characters (excluding the terminating null character) in the string pointed to by s2.

strnstr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a string

with zero length, strnstr returns s1.

Note

strnstr is an extension commonly found in Linux and BSD C libraries.

665

Embedded Studio Reference Manual

strpbrk

Synopsis

char *strpbrk(const char *si,
const char *s2);

Description

C Library User Guide

strpbrk locates the first occurrence in the string pointed to by s1 of any character from the string pointed to by

s2.

strpbrk returns a pointer to the character, or a null pointer if no character from s2 occurs in s1.

666

Embedded Studio Reference Manual C Library User Guide

strrchr

Synopsis

char *strrchr(const char *s,
int c);

Description

strrchr locates the last occurrence of ¢ (converted to a char) in the string pointed to by s. The terminating null

character is considered to be part of the string.

strrchr returns a pointer to the character, or a null pointer if c does not occur in the string.

667

Embedded Studio Reference Manual C Library User Guide

strsep

Synopsis

char *strsep(char **stringp,
const char *delim;

Description

strsep locates, in the string referenced by *stringp, the first occurrence of any character in the string delim (or
the terminating null character) and replaces it with a null character. The location of the next character after the
delimiter character (or NULL, if the end of the string was reached) is stored in *stringp. The original value of

*stringp is returned.

An empty field (that is, a character in the string delim occurs as the first character of *stringp can be detected by

comparing the location referenced by the returned pointer to the null character.

If *stringp is initially null, strsep returns null.

Note

strsep is an extension commonly found in Linux and BSD C libraries.

668

Embedded Studio Reference Manual C Library User Guide

strspn

Synopsis

size_t strspn(const char *si,
const char *s2);

Description

strspn computes the length of the maximum initial segment of the string pointed to by s1 which consists

entirely of characters from the string pointed to by s2.

strspn returns the length of the segment.

669

Embedded Studio Reference Manual

strstr

Synopsis

char *strstr(const char *si,
const char *s2);

Description

C Library User Guide

strstr locates the first occurrence in the string pointed to by s1 of the sequence of characters (excluding the

terminating null character) in the string pointed to by s2.

strstr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a string with

zero length, strstr returns s1.

670

Embedded Studio Reference Manual C Library User Guide

strtok

Synopsis

char *strtok(char *sl1,
const char *s2);

Description

strtok A sequence of calls to strtok breaks the string pointed to by s1 into a sequence of tokens, each of which
is delimited by a character from the string pointed to by s2. The first call in the sequence has a non-null first
argument; subsequent calls in the sequence have a null first argument. The separator string pointed to by s2

may be different from call to call.

The first call in the sequence searches the string pointed to by s1 for the first character that is not contained in
the current separator string pointed to by s2. If no such character is found, then there are no tokens in the string

pointed to by s1 and strtok returns a null pointer. If such a character is found, it is the start of the first token.

strtok then searches from there for a character that is contained in the current separator string. If no such
character is found, the current token extends to the end of the string pointed to by s1, and subsequent searches
for a token will return a null pointer. If such a character is found, it is overwritten by a null character, which
terminates the current token. strtok saves a pointer to the following character, from which the next search for a

token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from the saved

pointer and behaves as described above.

Note

strtok maintains static state and is therefore not reentrant and not thread safe. See strtok_r for a thread-safe and

reentrant variant.

See Also

strsep, strtok_r.

671

Embedded Studio Reference Manual

strtok r

Synopsis

char *strtok_r(char *si,
const char *s2,
char **s3);

Description

C Library User Guide

strtok_r is a reentrant version of the function strtok where the state is maintained in the object of type char *

pointed to by s3.

Note

strtok_r conforms to POSIX.1-2008 and is commonly found in Linux and BSD C libraries.

See Also

strtok.

672

Embedded Studio Reference Manual

<time.h>

APl Summary

Types
clock_t
time_t

tm
Functions
asctime
asctime_r
ctime
ctime_r
difftime
gmtime
gmtime_r
localtime
localtime_r
mktime

strftime

Clock type
Time type

Time structure

Convert a struct tm to a string
Convert a struct tm to a string
Convert a time_t to a string

Convert a time_t to a string

C Library User Guide

Calculates the difference between two times

Convert a time_t to a struct tm
Convert a time_t to a struct tm
Convert a time_t to a struct tm
Convert a time_t to a struct tm
Convert a struct tm to time_t

Format a struct tm to a string

673

Embedded Studio Reference Manual

asctime

Synopsis

char *asctine(const tm *tp);

Description

C Library User Guide

asctime converts the *tp struct to a null terminated string of the form Sun Sep 16 01: 03:52 1973.The

returned string is held in a static buffer. asctime is not re-entrant.

674

Embedded Studio Reference Manual

asctime r

Synopsis

char *asctine_r(const tm*tp,
char *buf);

Description

C Library User Guide

asctime_r converts the *tp struct to a null terminated string of the form Sun Sep 16 01:03:52 1973 in buf and

returns buf. The buf must point to an array at least 26 bytes in length.

675

Embedded Studio Reference Manual C Library User Guide

clock t

Synopsis

typedef |ong clock_t;

Description

clock_t is the type returned by the clock function.

676

Embedded Studio Reference Manual

ctime

Synopsis

char *ctinme(const time_t *tp);

Description

C Library User Guide

ctime converts the *tp to a null terminated string. The returned string is held in a static buffer, this function is

not re-entrant.

677

Embedded Studio Reference Manual

ctime_r

Synopsis

char *ctime_r(const time_t *tp,

char *buf);

Description

C Library User Guide

ctime_r converts the *tp to a null terminated string in buf and returns buf. The buf must point to an array at

least 26 bytes in length.

678

Embedded Studio Reference Manual

difftime

Synopsis

double difftime(tinme_t time2,
time_t tinel);

Description

difftime returns time1 - time0 as a double precision number.

679

C Library User Guide

Embedded Studio Reference Manual

gmtime

Synopsis

gntinme(const tine_t *tp);

Description

C Library User Guide

gmtime converts the *tp time format to a struct tm time format. The returned value points to a static object -

this function is not re-entrant.

680

Embedded Studio Reference Manual

gmtime_r
Synopsis
gntime_r(const time_t *tp,

tm*result);

Description

C Library User Guide

gmtime_r converts the *tp time format to a struct tm time format in *result and returns result.

681

Embedded Studio Reference Manual C Library User Guide

localtime

Synopsis

localtine(const time_t *tp);

Description

localtime converts the *tp time format to a struct tm local time format. The returned value points to a static

object - this function is not re-entrant.

682

Embedded Studio Reference Manual

localtime r

Synopsis

localtine_r(const tinme_t *tp,
tm*result);

Description

C Library User Guide

localtime_r converts the *tp time format to a struct tm local time format in *result and returns result.

683

Embedded Studio Reference Manual

mktime

Synopsis

time_t nktime(tm *tp);

Description

C Library User Guide

mktime validates (and updates) the *tp struct to ensure that the tm_sec, tm_min, tm_hour, tm_mon fields

are within the supported integer ranges and the tm_mday, tm_mon and tm_year fields are consistent. The

validated *tp struct is converted to the number of seconds since UTC 1 January 1970 and returned.

684

Embedded Studio Reference Manual C Library User Guide

strftime

Synopsis

size_t strftinme(char *s,
size t smax,
const char *fnt,
const tm *tp);

Description

strftime formats the *tp struct to a null terminated string of maximum size smax-1 into the array at *s based
on the fmt format string. The format string consists of conversion specifications and ordinary characters.
Conversion specifications start with a % character followed by an optional # character. The following conversion

specifications are supported:

Specification Description

%S Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%cC Date and time representation appropriate for locale

%fc Date and time formatted as "%A, %B %#d, %Y, %H:%M:
%S" (Microsoft extension)

%C Century number

%d Day of month as a decimal number [01,31]

%#d Day of month without leading zero [1,31]

%D Date in the form %m/%d/%y (POSIX.1-2008 extension)

%e Day of month [1,31], single digit preceded by space

%F Date in the format %Y-%m-%d

%h Abbreviated month name as %b

%H Hour in 24-hour format [00,23]

%#H Hour in 24-hour format without leading zeros [0,23]

%I Hour in 12-hour format [01,12]

%f| Hour in 12-hour format without leading zeros [1,12]

%j Day of year as a decimal number [001,366]

%] Day of year as a decimal number without leading zeros
[1,366]

%k Hour in 24-hour clock format [0,23] (POSIX.1-2008
extension)

685

Embedded Studio Reference Manual

%l

%m

%#m

%M
%#M

%n
%p
%r
%R
%S
%t
%T
%#S

%U

%#U

%wW

%W

%#W

%x
%#x
%X
%y
%tty

%Y
%2z,%Z
%%

C Library User Guide

Hour in 12-hour clock format [0,12] (POSIX.1-2008
extension)

Month as a decimal number [01,12]

Month as a decimal number without leading zeros
[1,12]

Minute as a decimal number [00,59]

Minute as a decimal number without leading zeros
[0,59]

Insert newline character (POSIX.1-2008 extension)
Locale's a.m or p.m indicator for 12-hour clock
Time as %I:9%M:%s %p (POSIX.1-2008 extension)
Time as %H:%M (POSIX.1-2008 extension)

Second as a decimal number [00,59]

Insert tab character (POSIX.1-2008 extension)
Time as %H:%M:%S

Second as a decimal number without leading zeros
[0,59]

Week of year as a decimal number [00,53], Sunday is
first day of the week

Week of year as a decimal number without leading
zeros [0,53], Sunday is first day of the week

Weekday as a decimal number [0,6], Sunday is 0

Week number as a decimal number [00,53], Monday is
first day of the week

Week number as a decimal number without leading
zeros [0,53], Monday is first day of the week

Locale's date representation

Locale's long date representation

Locale's time representation

Year without century, as a decimal number [00,99]

Year without century, as a decimal number without
leading zeros [0,99]

Year with century, as decimal number
Timezone name or abbreviation

%

686

Embedded Studio Reference Manual C Library User Guide

time t

Synopsis

typedef long time_t;

Description

time_t is a long type that represents the time in number of seconds since UTC 1 January 1970, negative values

indicate time before UTC 1 January 1970.

687

Embedded Studio Reference Manual C Library User Guide

tm

Synopsis

typedef struct {
int tmsec;
nt tmmn;
nt tm_ hour;
nt tm nday;
nt tm.non;
nt tmyear;
nt tmwday;
nt tmyday;
nt tm.isdst;

i
i
i
i
i
i
i
i
i
tm

}

Description

tm structure has the following fields.

Member Description

tm_sec seconds after the minute - [0,59]
tm_min minutes after the hour - [0,59]
tm_hour hours since midnight - [0,23]
tm_mday day of the month - [1,31]
tm_mon months since January - [0,11]
tm_year years since 1900

tm_wday days since Sunday - [0,6]
tm_yday days since January 1 - [0,365]
tm_isdst daylight savings time flag

688

Embedded Studio Reference Manual

<wchar.h>

APl Summary

Character minimum and maximum values

WCHAR_MAX
WCHAR_MIN
Constants
WEOF

Types
wchar_t
wint_t
Copying functions
wcscat
wcscpy
wcsncat
wcsncpy

wmemccpy

wmemcpy
wmemmove
wmempcpy
Comparison functions
wcscmp

wcesncmp

wmemcmp

Search functions
wcschr

wcescspn

wcesnchr
wcsnlen

wcsnstr

wcspbrk

wcesrchr

C Library User Guide

Maximum value of a wide character

Minimum value of a wide character

End of file indication

Wide character type
Wide integer type

Concatenate strings

Copy string

Concatenate strings up to maximum length
Copy string up to a maximum length

Copy memory with specified terminator (POSIX
extension)

Copy memory
Safely copy overlapping memory

Copy memory (GNU extension)

Compare strings
Compare strings up to a maximum length

Compare memory

Find character within string

Compute size of string not prefixed by a set of
characters

Find character in a length-limited string
Calculate length of length-limited string

Find first occurrence of a string within length-limited
string

Find first occurrence of characters within string

Find last occurrence of character within string

689

Embedded Studio Reference Manual

wcsspn
wcsstr

wcstok

wcstok_r

wmemchr

wstrsep

Miscellaneous functions

wcesdup

wcslen

wmemset

Multi-byte/wide string conversion functions
mbrtowc

mbrtowc_|

msbinit

wcrtomb

wcrtomb_|

wctob

wctob |

Multi-byte to wide character conversions
mbrlen

mbrlen_|

mbsrtowcs

mbsrtowcs_|

Single-byte to wide character conversions
btowc

btowc_|

C Library User Guide

Compute size of string prefixed by a set of characters

Find first occurrence of a string within string
Break string into tokens

Break string into tokens (reentrant version)
Search memory for a wide character

Break string into tokens

Duplicate string
Calculate length of string

Set memory to wide character

Convert multi-byte character to wide character
Convert multi-byte character to wide character
Query conversion state

Convert wide character to multi-byte character
(restartable)

Convert wide character to multi-byte character
(restartable)

Convert wide character to single-byte character

Convert wide character to single-byte character

Determine number of bytes in a multi-byte character

Determine number of bytes in a multi-byte character

Convert multi-byte string to wide character string

Convert multi-byte string to wide character string

Convert single-byte character to wide character

Convert single-byte character to wide character

690

Embedded Studio Reference Manual C Library User Guide

WCHAR_MAX

Synopsis

#defi ne WCHAR_MAX

Description

WCHAR_MAX is the maximum value for an object of type wchar_t. Although capable of storing larger values,
the maximum value implemented by the conversion functions in the library is the value 0x10FFFF defined by ISO
10646.

691

Embedded Studio Reference Manual

WCHAR_MIN

Synopsis

#defi ne WCHAR_ M N

Description

WCHAR_MIN is the minimum value for an object of type wchar_t.

692

C Library User Guide

Embedded Studio Reference Manual C Library User Guide

WEOF

Synopsis

#define WEOF ((wint_t)~0U)

Description

WEOF expands to a constant value that does not correspond to any character in the wide character set. It is

typically used to indicate an end of file condition.

693

Embedded Studio Reference Manual

btowc

Synopsis

wint_t btowc(int c);

Description

C Library User Guide

btowc function determines whether c constitutes a valid single-byte character. If cis a valid single-byte

character, btowc returns the wide character representation of that character

btowc returns WEOF if ¢ has the value EOF or if (unsi gned char) ¢ does not constitute a valid single-byte

character in the initial shift state.

694

Embedded Studio Reference Manual

btowc_|

Synopsis

wint_t btowc_| (int c,
locale t loc);

Description

C Library User Guide

btowc_| function determines whether ¢ constitutes a valid single-byte character in the locale loc. If cis a valid

single-byte character, btowc_I returns the wide character representation of that character

btowc_| returns WEOF if c has the value EOF or if (unsi gned char) c does not constitute a valid single-byte

character in the initial shift state.

695

Embedded Studio Reference Manual C Library User Guide

mbrlen

Synopsis

size_t nbrlen(const char *s,
size t n,
nbstate_t *ps);

Note

mbrlen function is equivalent to the call:
nmbrtowc(NULL, s, n, ps != NULL ? ps : & nternal);

where internal is the mbstate_t object for the mbrlen function, except that the expression designated by ps is

evaluated only once.

696

Embedded Studio Reference Manual C Library User Guide

mbrlen_|

Synopsis

size_ t nbrlen_| (const char *s,
size t n,
nbstate_t *ps,
locale_t loc);

Note
mbrlen_I function is equivalent to the call:
nmbrtowc | (NULL, s, n, ps != NULL ? ps : & nternal, loc);

where internal is the mbstate_t object for the mbrlen function, except that the expression designated by ps is

evaluated only once.

697

Embedded Studio Reference Manual C Library User Guide

mbrtowc

Synopsis

size t nmbrtowc(wchar t *pwec,
const char *s,
size_ t n,
mbstate_t *ps);

Description
mbrtowc converts a single multi-byte character to a wide character in the current locale.
If s is a null pointer, mbrtowc is equivalent tonbrt owc(NULL, "", 1, ps),ignoring pwcand n.

If s is not null and the object that s points to is a wide-character null character, mbrtowc returns 0.

If s is not null and the object that points to forms a valid multi-byte character with a most n bytes, mbrtowc
returns the length in bytes of the multi-byte character and stores that wide character to the object pointed to by

pwc (if pwc is not null).

If the object that points to forms an incomplete, but possibly valid, multi-byte character, mbrtowc returns 2. If

the object that points to does not form a partial multi-byte character, mbrtowc returns 1.

See Also

mbtowc, mbrtowc_|

698

Embedded Studio Reference Manual C Library User Guide

mbrtowc_|

Synopsis

size t nmbrtowc_| (wchar_t *pwc,
const char *s,
size_ t n,
nbstate_t *ps,
locale_t loc);
Description
mbrtowc_| converts a single multi-byte character to a wide character in the locale loc.

If s is a null pointer, mbrtowc_l is equivalent to nbr t owc (NULL, , 1, ps),ignoring pwcand n.
If s is not null and the object that s points to is a wide-character null character, mbrtowc_| returns 0.

If s is not null and the object that points to forms a valid multi-byte character with a most n bytes, mbrtowc_|
returns the length in bytes of the multi-byte character and stores that wide character to the object pointed to by

pwc (if pwc is not null).

If the object that points to forms an incomplete, but possibly valid, multi-byte character, mbrtowc_I returns 2. If
the object that points to does not form a partial multi-byte character, mbrtowc_I returns 1.

See Also

mbrtowc, mbtowc_|

699

Embedded Studio Reference Manual C Library User Guide

mbsrtowcs

Synopsis

size_t nmbsrtowcs(wchar _t *dst,
const char **src,
size t len,
nbstate_t *ps);

Description

mbsrtowcs converts a sequence of multi-byte characters that begins in the conversion state described by the
object pointed to by ps, from the array indirectly pointed to by src into a sequence of corresponding wide
characters If dst is not a null pointer, the converted characters are stored into the array pointed to by dst.

Conversion continues up to and including a terminating null character, which is also stored.

Conversion stops earlier in two cases: when a sequence of bytes is encountered that does not form a valid multi-
byte character, or (if dst is not a null pointer) when len wide characters have been stored into the array pointed

to by dst. Each conversion takes place as if by a call to the mbrtowc function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if conversion
stopped due to reaching a terminating null character) or the address just past the last multi-byte character

converted (if any). If conversion stopped due to reaching a terminating null character and if dst is not a null
pointer, the resulting state described is the initial conversion state.

See Also

mbsrtowcs_I|, mbrtowc

700

Embedded Studio Reference Manual C Library User Guide

mbsrtowcs |

Synopsis

size t nbsrtowes_| (wchar _t *dst,
const char **src,
size t len,
mbstate_t *ps,
locale_t loc);

Description

mbsrtowcs_| converts a sequence of multi-byte characters that begins in the conversion state described by
the object pointed to by ps, from the array indirectly pointed to by src into a sequence of corresponding wide
characters If dst is not a null pointer, the converted characters are stored into the array pointed to by dst.

Conversion continues up to and including a terminating null character, which is also stored.

Conversion stops earlier in two cases: when a sequence of bytes is encountered that does not form a valid multi-
byte character, or (if dst is not a null pointer) when len wide characters have been stored into the array pointed
to by dst. Each conversion takes place as if by a call to the mbrtowc function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if conversion
stopped due to reaching a terminating null character) or the address just past the last multi-byte character

converted (if any). If conversion stopped due to reaching a terminating null character and if dst is not a null
pointer, the resulting state described is the initial conversion state.

See Also

mbsrtowcs_|, mbrtowc

701

Embedded Studio Reference Manual C Library User Guide

msbinit

Synopsis

int nebinit(const nmbstate_t *ps);

Description

msbinit function returns nonzero if ps is a null pointer or if the pointed-to object describes an initial conversion

state; otherwise, msbinit returns zero.

702

Embedded Studio Reference Manual C Library User Guide

wchar t

Synopsis

typedef _ RAL WCHAR T wchar _t;

Description
wchar_t holds a single wide character.

Depending on implementation you can control whether wchar_t is represented by a short 16-bit type or the
standard 32-bit type.

703

Embedded Studio Reference Manual C Library User Guide

wcrtomb

Synopsis

size_t wertonb(char *s,
wchar t wc,
nbstate_t *ps);

If s is a null pointer, wertomb function is equivalent to the callwer t omb(buf, L'\ 0', ps) where bufisan
internal buffer.

If s is not a null pointer, wertomb determines the number of bytes needed to represent the multibyte character
that corresponds to the wide character given by wc, and stores the multibyte character representation in
the array whose first element is pointed to by s. At most MB_CUR_MAX bytes are stored. If wc is a null wide

character, a null byte is stored; the resulting state described is the initial conversion state.

wcrtomb returns the number of bytes stored in the array object. When wc is not a valid wide character, an
encoding error occurs: wertomb stores the value of the macro EILSEQ in errno and returns (Si ze_t) (- 1) ; the

conversion state is unspecified.

704

Embedded Studio Reference Manual C Library User Guide

wcrtomb |

Synopsis

size_t wertonb_I| (char *s,
wchar _t wc,
nbstate_t *ps,
locale_t loc);

If s is a null pointer, wertomb_I function is equivalent to the callwer t onb_| (buf, L'\ 0', ps, |oc)

where buf is an internal buffer.

If s is not a null pointer, wcrtomb_I determines the number of bytes needed to represent the multibyte
character that corresponds to the wide character given by wc, and stores the multibyte character representation
in the array whose first element is pointed to by s. At most MB_CUR_MAX bytes are stored. If wc is a null wide

character, a null byte is stored; the resulting state described is the initial conversion state.

wcrtomb_I returns the number of bytes stored in the array object. When wc is not a valid wide character, an
encoding error occurs: wcrtomb_| stores the value of the macro EILSEQ in errno and returns (si ze_t) (- 1);

the conversion state is unspecified.

705

Embedded Studio Reference Manual C Library User Guide

wcscat

Synopsis

wchar t *wcscat (wechar _t *s1i,
const wchar_t *s2);

Description

wcscat appends a copy of the wide string pointed to by s2 (including the terminating null wide character) to the
end of the wide string pointed to by s1. The initial character of s2 overwrites the null wide character at the end

of s1. The behavior of wescat is undefined if copying takes place between objects that overlap.

wcscat returns the value of s1.

706

Embedded Studio Reference Manual C Library User Guide

wcschr

Synopsis

wchar _t *wcschr (const wchar _t *s,
wchar t c);

Description

wcschr locates the first occurrence of cin the wide string pointed to by s. The terminating wide null character is

considered to be part of the string.

wcschr returns a pointer to the located wide character, or a null pointer if c does not occur in the string.

707

Embedded Studio Reference Manual C Library User Guide

wcscmp

Synopsis

int wescnp(const wchar _t *si,
const wchar _t *s2);

Description

wcscmp compares the wide string pointed to by s1 to the wide string pointed to by s2. wescmp returns an
integer greater than, equal to, or less than zero if the wide string pointed to by s1 is greater than, equal to, or less

than the wide string pointed to by s2.

708

Embedded Studio Reference Manual C Library User Guide

wcscpy

Synopsis

wchar _t *wecscpy(wechar _t *s1i,
const wchar_t *s2);

Description

wcscpy copies the wide string pointed to by s2 (including the terminating null wide character) into the array

pointed to by s1. The behavior of wescpy is undefined if copying takes place between objects that overlap.

wcscpy returns the value of s1.

709

Embedded Studio Reference Manual C Library User Guide

wcscspn

Synopsis

size_t wescspn(const wchar _t *si,
const wchar _t *s2);

Description

wcescspn computes the length of the maximum initial segment of the wide string pointed to by s1 which

consists entirely of wide characters not from the wide string pointed to by s2.

wcscspn returns the length of the segment.

710

Embedded Studio Reference Manual C Library User Guide

wcsdup

Synopsis

wchar _t *wcsdup(const wchar _t *sl);

Description

wcesdup duplicates the wide string pointed to by s1 by using malloc to allocate memory for a copy of s and then
copying s, including the terminating wide null character, to that memory. The returned pointer can be passed to

free. wesdup returns a pointer to the new wide string or a null pointer if the new string cannot be created.

Note

wcesdup is an extension commonly found in Linux and BSD C libraries.

711

Embedded Studio Reference Manual C Library User Guide

wcslen

Synopsis

size_t weslen(const wchar _t *s);

Description

wcslen returns the length of the wide string pointed to by s, that is the number of wide characters that precede

the terminating null wide character.

712

Embedded Studio Reference Manual C Library User Guide

wcsncat

Synopsis
wchar _t *wcsncat (wchar _t *s1,

const wchar t *s2,
size_t n);

Description

wcsncat appends not more than n wude characters from the array pointed to by s2 to the end of the wide string
pointed to by s1. A null wide character in s1 and wide characters that follow it are not appended. The initial
wide character of s2 overwrites the null wide character at the end of s1. A terminating wide null character is
always appended to the result. The behavior of wesncat is undefined if copying takes place between objects

that overlap.

wcsncat returns the value of s1.

713

Embedded Studio Reference Manual C Library User Guide

wcesnchr

Synopsis

wchar _t *wcsnchr (const wchar _t *str,
size t n,
wchar _t ch);

Description

wcsnchr searches not more than n wide characters to locate the first occurrence of cin the wide string pointed

to by s. The terminating wide null character is considered to be part of the wide string.

wcesnchr returns a pointer to the located wide character, or a null pointer if c does not occur in the string.

714

Embedded Studio Reference Manual

wcshemp

Synopsis

int wesncnp(const wchar _t *si,
const wchar t *s2,
size_t n);

Description

C Library User Guide

wcsncmp compares not more than n wide characters from the array pointed to by s1 to the array pointed to by

s2. Characters that follow a null wide character are not compared.

wcsnemp returns an integer greater than, equal to, or less than zero, if the possibly null-terminated array

pointed to by s1 is greater than, equal to, or less than the possibly null-terminated array pointed to by s2.

715

Embedded Studio Reference Manual C Library User Guide

wcsncpy

Synopsis
wchar _t *wesncpy(wechar _t *s1,

const wchar t *s2,
size_t n);

Description

wcsncpy copies not more than n wide characters from the array pointed to by s2 to the array pointed to by s1.
Wide characters that follow a null wide character in s2 are not copied. The behavior of wcsncpy is undefined

if copying takes place between objects that overlap. If the array pointed to by s2 is a wide string that is shorter
than n wide characters, null wide characters are appended to the copy in the array pointed to by s1, until n

characters in all have been written.

wcesncpy returns the value of s1.

716

Embedded Studio Reference Manual C Library User Guide

wcsnlen

Synopsis

size_t wesnlen(const wchar _t *s,
size_t n);

Description

this returns the length of the wide string pointed to by s, up to a maximum of n wide characters. wesnlen only

examines the first n wide characters of the string s.

Note

wcsnlen is an extension commonly found in Linux and BSD C libraries.

717

Embedded Studio Reference Manual C Library User Guide

wcsnstr

Synopsis

wchar _t *wesnstr(const wchar _t *sl1,
const wchar t *s2,
size_t n);

Description

wcsnstr searches at most n wide characters to locate the first occurrence in the wide string pointed to by s1 of
the sequence of wide characters (excluding the terminating null wide character) in the wide string pointed to by
s2.

wcsnstr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a string

with zero length, wesnstr returns s1.

Note

wcsnstr is an extension commonly found in Linux and BSD C libraries.

718

Embedded Studio Reference Manual C Library User Guide

wcspbrk

Synopsis

wchar _t *wcspbrk(const wchar t *s1,
const wchar_t *s2);

Description

wcespbrk locates the first occurrence in the wide string pointed to by s1 of any wide character from the wide
string pointed to by s2.

wcspbrk returns a pointer to the wide character, or a null pointer if no wide character from s2 occurs in s1.

719

Embedded Studio Reference Manual C Library User Guide

wcsrchr

Synopsis

wchar _t *wcsrchr (const wchar _t *s,
wchar t c);

Description

wcsrchr locates the last occurrence of cin the wide string pointed to by s. The terminating wide null character is

considered to be part of the string.

wcsrchr returns a pointer to the wide character, or a null pointer if ¢ does not occur in the wide string.

720

Embedded Studio Reference Manual C Library User Guide

wcsspn

Synopsis

size_t wesspn(const wchar _t *s1,
const wchar_t *s2);

Description

wcesspn computes the length of the maximum initial segment of the wide string pointed to by s1 which consists

entirely of wide characters from the wide string pointed to by s2.

wcsspn returns the length of the segment.

721

Embedded Studio Reference Manual C Library User Guide

wcsstr

Synopsis

wchar t *wesstr(const wchar _t *sli,
const wchar_t *s2);

Description

wcsstr locates the first occurrence in the wide string pointed to by s1 of the sequence of wide characters

(excluding the terminating null wide character) in the wide string pointed to by s2.

wcsstr returns a pointer to the located wide string, or a null pointer if the wide string is not found. If s2 points to

a wide string with zero length, wcsstr returns s1.

722

Embedded Studio Reference Manual C Library User Guide

wcstok

Synopsis

wchar _t *west ok(wechar _t *s1i,
const wchar_t *s2);

Description

wcstok A sequence of calls to westok breaks the wide string pointed to by s1 into a sequence of tokens, each of
which is delimited by a wide character from the wide string pointed to by s2. The first call in the sequence has a
non-null first argument; subsequent calls in the sequence have a null first argument. The separator wide string

pointed to by s2 may be different from call to call.

The first call in the sequence searches the wide string pointed to by s1 for the first wide character that is not
contained in the current separator wide string pointed to by s2. If no such wide character is found, then there are
no tokens in the wide string pointed to by s1 and wcstok returns a null pointer. If such a wide character is found,
it is the start of the first token.

wcstok then searches from there for a wide character that is contained in the current wide separator string. If
no such wide character is found, the current token extends to the end of the wide string pointed to by s1, and
subsequent searches for a token will return a null pointer. If such a wude character is found, it is overwritten by a
wide null character, which terminates the current token. wcstok saves a pointer to the following wide character,

from which the next search for a token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from the saved

pointer and behaves as described above.

Note

wcestok maintains static state and is therefore not reentrant and not thread safe. See westok_r for a thread-safe

and reentrant variant.

723

Embedded Studio Reference Manual C Library User Guide

wcstok r

Synopsis

wchar t *westok _r(wchar _t *sli,
const wchar t *s2,
wchar _t **s3);

Description

wcstok_r is a reentrant version of the function wcstok where the state is maintained in the object of type

wchar_t * pointed to by s3.

Note

wcstok_r is an extension commonly found in Linux and BSD C libraries.

See Also

wcstok.

724

Embedded Studio Reference Manual C Library User Guide

wctob

Synopsis

int wetob(wint_t c);

Description

wctob determines whether c corresponds to a member of the extended character set whose multi-byte
character representation is a single byte when in the initial shift state in the current locale.
Description

this returns EOF if c does not correspond to a multi-byte character with length one in the initial shift state.

Otherwise, it returns the single-byte representation of that character as an unsigned char converted to an int.

725

Embedded Studio Reference Manual C Library User Guide

wctob |

Synopsis

int wetob_ | (wint_t c,
locale_t loc);

Description

wctob_| determines whether c corresponds to a member of the extended character set whose multi-byte
character representation is a single byte when in the initial shift state in locale loc.

Description

wctob_I returns EOF if ¢ does not correspond to a multi-byte character with length one in the initial shift state.

Otherwise, it returns the single-byte representation of that character as an unsigned char converted to an int.

726

Embedded Studio Reference Manual C Library User Guide

wint_t

Synopsis

typedef long wint_t;

Description

wint_t is an integer type that is unchanged by default argument promotions that can hold any value
corresponding to members of the extended character set, as well as at least one value that does not correspond

to any member of the extended character set (WEOF).

727

Embedded Studio Reference Manual C Library User Guide

wmemccpy

Synopsis

wchar _t *wnenccpy(wchar t *sl,
const wchar t *s2,
wchar _t c,
size_t n);

Description

wmemccpy copies at most n wide characters from the object pointed to by s2 into the object pointed to by s1.
The copying stops as soon as n wide characters are copied or the wide character c is copied into the destination
object pointed to by s1. The behavior of wmemccpy is undefined if copying takes place between objects that

overlap.

wmemccpy returns a pointer to the wide character immediately following cin s1, or NULL if ¢ was not found in

the first n wide characters of s2.

Note

wmemccpy conforms to POSIX.1-2008.

728

Embedded Studio Reference Manual C Library User Guide

wmemchr

Synopsis

wchar _t *wnenchr (const wchar _t *s,
wchar t c,
size_t n);

Description

wmemchr locates the first occurrence of cin the initial n characters of the object pointed to by s. Unlike wcschr,

wmemchr does not terminate a search when a null wide character is found in the object pointed to by s.

wmemchr returns a pointer to the located wide character, or a null pointer if ¢ does not occur in the object.

729

Embedded Studio Reference Manual

wmemcmp

Synopsis

i nt wrencnp(const wchar _t *si,
const wchar t *s2,
size_t n);

Description

C Library User Guide

wmemcmp compares the first n wide characters of the object pointed to by s1 to the first n wide characters of

the object pointed to by s2. wmemcmp returns an integer greater than, equal to, or less than zero as the object

pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.

730

Embedded Studio Reference Manual C Library User Guide

wmemcpy

Synopsis

wchar _t *wmencpy(wchar _t *sl1,
const wchar t *s2,
size_t n);

Description

wmemcpy copies n wide characters from the object pointed to by s2 into the object pointed to by s1. The
behavior of wmemcpy is undefined if copying takes place between objects that overlap.

wmemcpy returns the value of s1.

731

Embedded Studio Reference Manual C Library User Guide

wmemmoyve

Synopsis
wchar _t *wnemmove(wchar t *sli,

const wchar t *s2,
size_t n);

Description

wmemmove copies n wide characters from the object pointed to by s2 into the object pointed to by s1 ensuring
that if s1 and s2 overlap, the copy works correctly. Copying takes place as if the n wide characters from the
object pointed to by s2 are first copied into a temporary array of n wide characters that does not overlap the
objects pointed to by s1 and s2, and then the n wide characters from the temporary array are copied into the

object pointed to by s1.

wmemmove returns the value of s1.

732

Embedded Studio Reference Manual C Library User Guide

wmempcpy

Synopsis

wchar _t *wnenpcpy(wchar t *sli,
const wchar t *s2,
size_t n);

Description

wmempcpy copies n wide characters from the object pointed to by s2 into the object pointed to by s1. The
behavior of wmempcpy is undefined if copying takes place between objects that overlap.

wmempcpy returns it returns a pointer to the wide character following the last written wide character.

Note

This is an extension found in GNU libc.

733

Embedded Studio Reference Manual

wmemset

Synopsis

wchar _t *wnenset (wchar _t *s,
wchar t c,
size_t n);

Description

C Library User Guide

wmemset copies the value of ¢ into each of the first n wide characters of the object pointed to by s.

wmemset returns the value of s.

734

Embedded Studio Reference Manual C Library User Guide

wstrsep

Synopsis

wchar _t *wstrsep(wchar _t **stringp,
const wchar_t *delim;

Description

wstrsep locates, in the wide string referenced by *stringp, the first occurrence of any wide character in the wide
string delim (or the terminating wide null character) and replaces it with a wide null character. The location of
the next character after the delimiter wide character (or NULL, if the end of the string was reached) is stored in

*stringp. The original value of *stringp is returned.

An empty field (that is, a wide character in the string delim occurs as the first wide character of *stringp can be

detected by comparing the location referenced by the returned pointer to a wide null character.

If *stringp is initially null, wstrsep returns null.

Note

wstrsep is not an I1SO C function, but appears in BSD4.4 and Linux.

735

Embedded Studio Reference Manual

<wctype.h>

APl Summary

Classification functions
iswalnum

iswalpha

iswblank

iswentrl

iswctype

iswdigit

iswgraph

iswlower

iswprint

iswpunct

iswspace

iswupper

iswxdigit

wctype

Conversion functions
towctrans

towlower

towupper

wctrans
Classification functions (extended)
iswalnum_|
iswalpha_l
iswblank_|

iswentrl_|

iswctype_|

iswdigit_|

iswgraph_|
iswlower_|

iswprint_|

iswpunct_|

C Library User Guide

Is character alphanumeric?

Is character alphabetic?

Is character blank?

Is character a control?
Determine character type

Is character a decimal digit?

Is character a control?

Is character a lowercase letter?
Is character printable?

Is character punctuation?

Is character a whitespace character?
Is character an uppercase letter?
Is character a hexadecimal digit?

Construct character class

Translate character
Convert uppercase character to lowercase
Convert lowercase character to uppercase

Construct character mapping

Is character alphanumeric?

Is character alphabetic?

Is character blank?

Is character a control?
Determine character type

Is character a decimal digit?

Is character a control?

Is character a lowercase letter?
Is character printable?

Is character punctuation?

736

Embedded Studio Reference Manual C Library User Guide

iswspace_| Is character a whitespace character?
iswupper_| Is character an uppercase letter?
iswxdigit_| Is character a hexadecimal digit?

Conversion functions (extended)

towctrans_| Translate character

towlower_| Convert uppercase character to lowercase
towupper_| Convert lowercase character to uppercase
wctrans_| Construct character mapping

737

Embedded Studio Reference Manual

iswalnum

Synopsis

int iswal num(wint_t c);

Description

iswalnum tests for any wide character for which iswalpha or iswdigit is true.

738

C Library User Guide

Embedded Studio Reference Manual

iswalnum_|

Synopsis

int iswal numl (wint_t c,
locale t loc);

Description

C Library User Guide

iswalnum_| tests for any wide character for which iswalpha_l or iswdigit_l is true in the locale loc.

739

Embedded Studio Reference Manual C Library User Guide

iswalpha

Synopsis

int iswal pha(wint_t c);

Description

iswalpha returns true if the wide character c is alphabetic. Any character for which iswupper or iswlower returns
true is considered alphabetic in addition to any of the locale-specific set of alphabetic characters for which none

of iswentrl, iswdigit, iswpunct, or iswspace is true.

In the Clocale, iswalpha returns nonzero (true) if and only if iswupper or iswlower return true for the value of

the argument c.

740

Embedded Studio Reference Manual

iswalpha_l
Synopsis
int iswal pha_| (wint_t c,

locale t loc);

Description

C Library User Guide

iswalpha_l returns true if the wide character cis alphabetic in the locale loc. Any character for which iswupper_|

or iswlower_| returns true is considered alphabetic in addition to any of the locale-specific set of alphabetic

characters for which none of iswentrl_|, iswdigit_I, iswpunct_I, or iswspace_l is true.

741

Embedded Studio Reference Manual C Library User Guide

iswblank

Synopsis

int iswblank(wint_t c);

Description

iswblank tests for any wide character that is a standard blank wide character or is one of a locale-specific set of
wide characters for which iswspace is true and that is used to separate words within a line of text. The standard

blank wide are space and horizontal tab.

In the Clocale, iswblank returns true only for the standard blank characters.

742

Embedded Studio Reference Manual

iswblank_|

Synopsis

int iswblank | (wint_t c,
locale t loc);

Description

C Library User Guide

iswblank_I tests for any wide character that is a standard blank wide character in the locale loc or is one of a

locale-specific set of wide characters for which iswspace_l is true and that is used to separate words within a line

of text. The standard blank wide are space and horizontal tab.

743

Embedded Studio Reference Manual

iswentrl

Synopsis

int iswentrl(wint_t c);

Description

iswentrl tests for any wide character that is a control character.

744

C Library User Guide

Embedded Studio Reference Manual

iswentrl_|

Synopsis

int iswentrl | (wint_t c,
locale t loc);

Description

iswentrl_| tests for any wide character that is a control character in the locale loc.

745

C Library User Guide

Embedded Studio Reference Manual

iswctype
Synopsis
int iswtype(wint_t c,

wetype t t);

Description

C Library User Guide

iswctype determines whether the wide character c has the property described by t in the current locale.

746

Embedded Studio Reference Manual

iswctype_|

Synopsis

int iswtype | (wint_t c,
wetype_t t,
locale_t loc);

Description

C Library User Guide

iswctype_| determines whether the wide character ¢ has the property described by t in the locale loc.

747

Embedded Studio Reference Manual
iswdigit

Synopsis

int iswdigit(wint_t c);

Description

iswdigit tests for any wide character that corresponds to a decimal-digit character.

748

C Library User Guide

Embedded Studio Reference Manual

iswdigit_|
Synopsis
int iswdigit_|(wint_t c,

locale t loc);

Description

C Library User Guide

iswdigit_| tests for any wide character that corresponds to a decimal-digit character in the locale loc.

749

Embedded Studio Reference Manual

iswgraph

Synopsis

int iswgraph(wint_t c);

Description

iswgraph tests for any wide character for which iswprint is true and iswspace is false.

750

C Library User Guide

Embedded Studio Reference Manual

iswgraph_l|
Synopsis
int iswgraph_| (wint_t c,

locale t loc);

Description

C Library User Guide

iswgraph_| tests for any wide character for which iswprint is true and iswspace is false in the locale loc.

751

Embedded Studio Reference Manual

iswlower

Synopsis

int iswower(wint_t c);

Description

C Library User Guide

iswlower tests for any wide character that corresponds to a lowercase letter or is one of a locale-specific set of

wide characters for which none of iswentrl, iswdigit, iswpunct, or iswspace is true.

752

Embedded Studio Reference Manual

iswlower |

Synopsis

int iswower | (wint_t c,
locale t loc);

Description

C Library User Guide

iswlower_| tests for any wide character that corresponds to a lowercase letter in the locale loc or is one of a

locale-specific set of wide characters for which none of iswentrl_|, iswdigit_I, iswpunct_I, or iswspace_l is true.

753

Embedded Studio Reference Manual

iswprint

Synopsis

int iswprint(wint_t c);

Description

C Library User Guide

iswprint returns nonzero (true) if and only if the value of the argument c is any printing character.

754

Embedded Studio Reference Manual

iswprint_|
Synopsis
int iswprint_|(wint_t c,

locale t loc);

Description

C Library User Guide

iswprint_| returns nonzero (true) if and only if the value of the argument c is any printing character in the locale

loc.

755

Embedded Studio Reference Manual C Library User Guide

iswpunct

Synopsis

int iswpunct(wint_t c);

Description

iswpunct tests for any printing wide character that is one of a locale-specific set of punctuation wide characters

for which neither iswspace nor iswalnum is true.

756

Embedded Studio Reference Manual

iswpunct_|
Synopsis
int iswpunct | (wint_t c,

locale t loc);

Description

C Library User Guide

iswpunct_| tests for any printing wide character that is one of a locale-specific set of punctuation wide

characters in locale loc for which neither iswspace_I nor iswalnum_l is true.

757

Embedded Studio Reference Manual

iswspace

Synopsis

int iswspace(wint_t c);

Description

C Library User Guide

iswspace tests for any wide character that corresponds to a locale-specific set of white-space wide characters for

which none of iswalnum, iswgraph, or iswpunct is true.

758

Embedded Studio Reference Manual

iswspace_|
Synopsis
int iswspace_ | (wint_t c,

locale t loc);

Description

C Library User Guide

iswspace_| tests for any wide character that corresponds to a locale-specific set of white-space wide characters

in the locale loc for which none of iswalnum, iswgraph_l, or iswpunct_l is true.

759

Embedded Studio Reference Manual

iswupper

Synopsis

int i swpper(wint_t c);

Description

C Library User Guide

iswupper tests for any wide character that corresponds to an uppercase letter or is one of a locale-specific set of

wide characters for which none of iswentrl, iswdigit, iswpunct, or iswspace is true.

760

Embedded Studio Reference Manual

iswupper_|
Synopsis
int iswipper_ | (wint_t c,

locale t loc);

Description

C Library User Guide

iswupper_| tests for any wide character that corresponds to an uppercase letter or is one of a locale-specific set

of wide characters in the locale loc for which none of iswentrl_|, iswdigit_|, iswpunct_I, or iswspace_l is true.

761

Embedded Studio Reference Manual
iswxdigit

Synopsis

int iswdigit(wint_t c);

Description

iswxdigit tests for any wide character that corresponds to a hexadecimal digit.

762

C Library User Guide

Embedded Studio Reference Manual

iswxdigit_|
Synopsis
int iswdigit_ |I(wint_t c,

locale_t loc);

Description

C Library User Guide

iswxdigit_| tests for any wide character that corresponds to a hexadecimal digit in the locale loc.

763

Embedded Studio Reference Manual

towctrans

Synopsis

wint_t towtrans(wint_t c,
wctrans_t t);

Description

C Library User Guide

towctrans maps the wide character c using the mapping described by t in the current locale.

764

Embedded Studio Reference Manual C Library User Guide

towctrans_|

Synopsis

wint_t towtrans_ | (wint_t c,
wetrans_t t,
locale_t loc);

Description

towctrans_| maps the wide character c using the mapping described by t in the current locale.

765

Embedded Studio Reference Manual C Library User Guide

towlower

Synopsis

wint_t towl ower(wint_t c);

Description
towlower converts an uppercase letter to a corresponding lowercase letter.

If the argument c is a wide character for which iswupper is true and there are one or more corresponding wide
characters, in the current locale, for which iswlower is true, towlower returns one (and always the same one for

any given locale) of the corresponding wide characters; otherwise, c is returned unchanged.

766

Embedded Studio Reference Manual C Library User Guide

towlower |

Synopsis

wint_t towlower | (wint_t c,
locale_t loc);

Description
towlower_| converts an uppercase letter to a corresponding lowercase letter in locale loc.

If the argument c is a wide character for which iswupper_l is true and there are one or more corresponding wide
characters, in the locale loc, for which iswlower_l is true, towlower_| returns one (and always the same one for

any given locale) of the corresponding wide characters; otherwise, ¢ is returned unchanged.

767

Embedded Studio Reference Manual C Library User Guide

towupper

Synopsis

wint_t towupper(wint_t c);

Description
towupper converts a lowercase letter to a corresponding uppercase letter.

If the argument c is a wide character for which iswlower is true and there are one or more corresponding wide
characters, in the current current locale, for which iswupper is true, towupper returns one (and always the same

one for any given locale) of the corresponding wide characters; otherwise, c is returned unchanged.

768

Embedded Studio Reference Manual C Library User Guide

towupper_|

Synopsis

wint_t towupper | (wint_t c,
locale_t loc);

Description
towupper_| converts a lowercase letter to a corresponding uppercase letter in locale loc.

If the argument c is a wide character for which iswlower_l is true and there are one or more corresponding wide
characters, in the locale loc, for which iswupper_l is true, towupper_I returns one (and always the same one for

any given locale) of the corresponding wide characters; otherwise, ¢ is returned unchanged.

769

Embedded Studio Reference Manual C Library User Guide

wctrans

Synopsis

wetrans_t wectrans(const char *property);

Description

wctrans constructs a value of type wctrans_t that describes a mapping between wide characters identified by

the string argument property.

If property identifies a valid mapping of wide characters in the current locale, wctrans returns a nonzero value

that is valid as the second argument to towctrans; otherwise, it returns zero.

Note

The only mappings supported are "t ol ower " and "t oupper".

770

Embedded Studio Reference Manual C Library User Guide

wctrans_|

Synopsis

wetrans_t wctrans_| (const char *property,
locale_t loc);

Description

wctrans_| constructs a value of type wctrans_t that describes a mapping between wide characters identified by

the string argument property in locale loc.

If property identifies a valid mapping of wide characters in the locale loc, wctrans_I returns a nonzero value that

is valid as the second argument to towctrans_l; otherwise, it returns zero.

Note

The only mappings supported are "t ol ower " and "t oupper".

771

Embedded Studio Reference Manual C Library User Guide

wctype

Synopsis

wetype_t wetype(const char *property);

Description

wctype constructs a value of type wctype_t that describes a class of wide characters identified by the string

argument property.

If property identifies a valid class of wide characters in the current locale, wctype returns a nonzero value that is

valid as the second argument to iswctype; otherwise, it returns zero.

Note

The only mappings supported are " al nunt, " al pha"," bl ank”,"cntrl","digit","graph”,"l ower",
"print","punct","space","upper",and"xdigit".

772

Embedded Studio Reference Manual C Library User Guide

<xlocale.h>

APl Summary

Functions

duplocale Duplicate current locale data
freelocale Free a locale

localeconv_| Get locale data

newlocale Create a new locale

773

Embedded Studio Reference Manual C Library User Guide

duplocale

Synopsis

| ocal e_t duplocal e(locale_t |oc);

Description
duplocale duplicates the locale object referenced by loc.

If there is insufficient memory to duplicate loc, duplocale returns NULL and sets errno to ENOMEM as required
by POSIX.1-2008.

Duplicated locales must be freed with freelocale.
This is different behavior from the GNU glibc implementation which makes no mention of setting errno on

failure.

Note

This extension is derived from BSD, POSIX.1, and glibc.

774

Embedded Studio Reference Manual C Library User Guide

freelocale

Synopsis

int freelocale(locale_t |oc);

Description
freelocale frees the storage associated with loc.

freelocale zero on success, 1 on error.

775

Embedded Studio Reference Manual

localeconv |

Synopsis

| ocal econv_| (locale_t loc);

Description

C Library User Guide

localeconv_I returns a pointer to a structure of type lconv with the corresponding values for the locale loc filled

in.

776

Embedded Studio Reference Manual C Library User Guide

newlocale

Synopsis

| ocal e_t new ocal e(int category_nask,
const char *local e,
| ocal e_t base);

Description

newlocale creates a new locale object or modifies an existing one. If the base argument is NULL, a new locale
object is created.

category_mask specifies the locale categories to be set or modified. Values for category_mask are constructed
by a bitwise-inclusive OR of the symbolic constants LC_CTYPE_MASK, LC_NUMERIC_MASK, LC_TIME_MASK,
LC_COLLATE_MASK, LC_MONETARY_MASK, and LC_MESSAGES_MASK.

For each category with the corresponding bit set in category_mask, the data from the locale named by locale
is used. In the case of modifying an existing locale object, the data from the locale named by locale replaces the
existing data within the locale object. If a completely new locale object is created, the data for all sections not

requested by category_mask are taken from the default locale.

The locales C and POSIX are equivalent and defined for all settings of category_mask:

If locale is NULL, then the C locale is used. If locale is an empty string, newlocale will use the default locale.
If base is NULL, the current locale is used. If base is LC_GLOBAL_LOCALE, the global locale is used.

If mask is LC_ALL_MASK, base is ignored.

Note

POSIX.1-2008 does not specify whether the locale object pointed to by base is modified or whether it is freed

and a new locale object created.

Implementation

The category mask LC_MESSAGES_MASK is not implemented as POSIX messages are not implemented.

777

Embedded Studio Reference Manual C Library User Guide

778

Embedded Studio Reference Manual C++ Library User Guide

C++ Library User Guide

SEGGER Embedded Studio provides a limited C++ library suitable for use in an embedded application.

Standard library
The following C++ standard header files are provided in $(St udi oDi r) /i ncl ude:
File Description
<cassert> C++ wrapper on assert.h.
<cctype> C++ wrapper on ctype.h.
<cerrno> C++ wrapper on errno.h.
<cfloat> C++ wrapper on float.h.
<Cis0646> C++ wrapper on is0646.h.
<climits> C++ wrapper on limits.h.
<clocale> C++ wrapper on locale.h.
<cmath> C++ wrapper on math.h.
<csetjmp> C++ wrapper on setjmp.h.
<cstdarg> C++ wrapper on stdarg.h.
<cstddef> C++ wrapper on stddef.h.
<cstdio> C++ wrapper on stdio.h.
<cstdlib> C++ wrapper on stdlib.h.

779

Embedded Studio Reference Manual C++ Library User Guide

<cstring> C++ wrapper on string.h.

<ctime> C++ wrapper on time.h.

<cwchar> C++ wrapper on wchar.h.

<cwctype> C++ wrapper on wctype.h.

<exception> Definitions for exceptions.

<new> Types and definitions for placement new and delete.

<typeinfo> Definitions for RTTI. Note that this file is licensed under
the GPL.

It's worth mentioning again: to use exceptions or RTTI requires header files and or library code to be linked into

your application that is licensed under the GPL.

780

Embedded Studio Reference Manual C++ Library User Guide

Standard template library

The C++ STL functionality of STLPort 5.1.0 is provided in SEGGER Embedded Studio. To use STLPort you must
put$(St udi oDir) /i ncl ude/ stl port asthe first entry in the User Include Directories project property.
The STLPort is configured to not support long doubles and iostreams. The following STLPort header files are
supported (not including the above list of standard C++ header files)

<algorithm> <bitset> <deque>
<functional> <hash_map> <hash_set>
<iterator> <limits> <list>
<locale> <map> <memory>
<numeric> <queue> <set>
<stack> <stdexcept> <string>
<utility> <valarray> <vector>

781

Embedded Studio Reference Manual C++ Library User Guide

Subset API reference

This section contains a subset reference to the SEGGER Embedded Studio C++ library.

782

Embedded Studio Reference Manual C++ Library User Guide

<new> - memory allocation

The header file <new> defines functions for memory allocation.

Functions

set_new_handler Establish a function which is called when memory
allocation fails.

Operators

operator delete Heap storage deallocators operator.

operator new Heap storage allocators operator.

783

Embedded Studio Reference Manual C++ Library User Guide

operator delete

Synopsis
voi d operator delete(void *ptr) throw();

voi d operator delete[](void *ptr) throw();

Description
operator delete deallocates space of an object.

operator delete will do nothing if ptr is null. If ptr is not null then it should have been returned from a call to

operator new.

operator delete[] has the same behaviour as operator delete but is used for array deallocation.

Portability

Standard C++.

784

Embedded Studio Reference Manual C++ Library User Guide

operator new

Synopsis
voi d *operator new(size_ t size) throw();

void *operator new[] (size_t size) throw);

Description
operator new allocates space for an object whose size is specified by size and whose value is indeterminate.

operator new returns a null pointer if the space for the object cannot be allocated from free memory; if space for

the object can be allocated, operator new returns a pointer to the start of the allocated space.

operator new[] has the same behaviour as operator new but is used for array allocation.

Portability

The implementation is not standard. The standard C++ implementation should throw an exception if memory

allocation fails.

785

Embedded Studio Reference Manual C++ Library User Guide

set_new_handler

Synopsis
typedef void (*new_handler)();

new_handl er set_new_handl er (new_handl er) throw();

Description
set_new_handler establishes a new_handler function.

set_new_handler establishes a new_handler function that is called when operator new fails to allocate the
requested memory. If the new_handler function returns then operator new will attempt to allocate the memory
again. The new_handler function can throw an exception to implement standard C++ behaviour for memory
allocation failure.

Portability

Standard C++.

786

Embedded Studio Reference Manual Utilities Reference

Utilities Reference

787

Embedded Studio Reference Manual Utilities Reference

Compiler driver

This section describes the switches accepted by the compiler driver, cc. The compiler driver is capable of
controlling compilation by all supported language compilers and the final link by the linker. It can also construct

libraries automatically.

In contrast to many compilation and assembly language development systems, with you don't invoke the
assembler or compiler directly. Instead you'll normally use the compiler driver cc as it provides an easy way to
get files compiled, assembled, and linked. This section will introduce you to using the compiler driver to convert

your source files to object files, executables, or other formats.

We recommend that you use the compiler driver rather than use the assembler or compiler directly because
there the driver can assemble multiple files using one command line and can invoke the linker for you too. There
is no reason why you should not invoke the assembler or compiler directly yourself, but you'll find that typing in

all the required options is quite tedious-and why do that when cc will provide them for you automatically?

788

Embedded Studio Reference Manual Utilities Reference

File naming conventions

The compiler driver uses file extensions to distinguish the language the source file is written in. The compiler
driver recognizes the extension .c as C source files, .cpp, .cc or .cxx as C++ source files, .s and .asm as assembly

code files.

The compiler driver recognizes the extension .o as object files, .a as library files, .Id as linker script files and .xml

as special-purpose XML files.

We strongly recommend that you adopt these extensions for your source files and object files because you'll find
that using the tools is much easier if you do.

Clanguage files

When the compiler driver finds a file with a .c extension, it runs the C compiler to convert it to object code.

C++ language files

When the compiler driver finds a file with a .cpp extension, it runs the C++ compiler to convert it to object code.

Assembly language files

When the compiler driver finds a file with a .s or .asm extension, it runs the C preprocessor and then the

assembler to convert it to object code.

Object code files

When the compiler driver finds a file with a .0 or .a extension, it passes it to the linker to include it in the final

application.

789

Embedded Studio Reference Manual Utilities Reference

Command-line options

This section describes the command-line options accepted by the SEGGER Embedded Studio compiler driver.

790

Embedded Studio Reference Manual Utilities Reference

-ansi (Warn about potential ANSI problems)

Syntax

-ansi

Description

Warn about potential problems that conflict with the relevant ANSI or ISO standard for the files that are
compiled.

791

Embedded Studio Reference Manual Utilities Reference

-ar (Archive output)

Syntax

-ar

Description

This switch instructs the compiler driver to archive all output files into a library. Using -ar implies -c.

Example

The following command compiles file1.c, file2.asm, and file3.c to object code and archives them into the library

file libfunc.a together with the object file file4.o.

cc -ar filel.c file2.asmfile3.c filed4d.0 -0 libfunc.a

792

Embedded Studio Reference Manual Utilities Reference

-arch (Set ARM architecture)

Syntax

-arch=a

Description
Specifies the version of the instruction set to generate code for. The options are:

-arch=v4T ARM7TDMI and ARM920T
-arch=v5TE ARMOE, Feroceon and XScale
-arch=v6 ARM11

-arch=v6M Cortex-MO0 and Cortex-M1
-arch=v7A Cortex-A8 and Cortex-A9
-arch=v7M Cortex-M3

-arch=v7EM Cortex-M4

-arch=v7R Cortex-R4

Example

To force compilation for V7A architecture you would use:

cc -arch=v7A

793

Embedded Studio Reference Manual Utilities Reference

-be (Big Endian)

Syntax

-be

Description

Generate code for a big endian target.

794

Embedded Studio Reference Manual Utilities Reference

-c (Compile to object code, do not link)

Syntax

-C

Description

All named files are compiled to object code modules, but are not linked. You can use the -o option to name the

output if you just supply one input filename.

Example

The following command compiles file1.c and file4.c to produce the object files file1.0 and file4.o.
cc -c filel.c filed.c
The following command compiles file1.c and produces the object file obj/file1.o.

cc -c file.c -o obj/filel.o

795

Embedded Studio Reference Manual Utilities Reference

-d (Define linker symbol)

Syntax

-dname=value

Description

You can define linker symbols using the -d option. The symbol definitions are passed to linker.

Example

The following defines the symbol, STACK_SIZE with a value of 512.

- dSTACK_SI ZE=512

796

Embedded Studio Reference Manual Utilities Reference

-D (Define macro symbol)

Syntax
-Dname
-Dname=value
Description

You can define preprocessor macros using the -D option. The macro definitions are passed on to the respective
language compiler which is responsible for interpreting the definitions and providing them to the programmer

within the language.

The first form above defines the macro name but without an associated replacement value, and the second
defines the same macro with the replacement value value.

Example

The following defines two macros, SUPPORT_FLOAT with a value of 1 and LITTLE_ENDIAN with no replacement

value.

- DSUPPORT_FLOAT=1 - DLI TTLE_ENDI AN

797

Embedded Studio Reference Manual Utilities Reference

-e (Set entry point symbol)

Syntax

-ename

Description

Linker option to set the entry point symbol to be name. The debugger will start execution from this symbol.

798

Embedded Studio Reference Manual Utilities Reference

-E (Preprocess)

Syntax

-E

Description

This option preprocesses the supplied file and outputs the result to the standard output.

Example

The following preprocesses the file file.c supplying the macros, SUPPORT_FLOAT with a value of 1 and
LITTLE_ENDIAN.

-E - DSUPPORT_FLOAT=1 -DLI TTLE_ENDI AN file.c

799

Embedded Studio Reference Manual Utilities Reference

-exceptions (Enable C++ Exception Support)

Syntax

-exceptions

Description

Enables C++ exceptions to be compiled.

800

Embedded Studio Reference Manual Utilities Reference

-fabi (Floating Point Code Generation)

Syntax

-fabi=a

Description
Specifies the type of floating point code generation. The options are:

-fabi=SoftFP FPU instructions are generated, CPU registers are used for floating point parameters.

-fabi=Hard FPU instructions are generated, FPU registers are used for floating point parameters.

801

Embedded Studio Reference Manual Utilities Reference

-fpu (Set ARM FPU)

Syntax

-fpu=a

Description
Specifies the floating point unit to generate code for when the fpabi option has been supplied. The options are:

-fpu=VFP generate FPU instructions for ARM9 and ARM11
-fpu=VFPv3-D32 generate FPU instructions for CortexA
-fpu=VFPv3-D16 generate FPU instructions for CortexR
-fpu=FPv4-SP-D16 generate FPU instructions for CortexM4

802

Embedded Studio Reference Manual Utilities Reference

-F (Set output format)

Syntax

-Ffmt

Description

The -F option instructs the compiler driver to generate an additional output file in the format fmt. The compiler

driver supports the following formats:

-Fbin Create a .bin file
-Fhex Create a .hex file

-Fsrec Create a .srec file

The compiler driver will always output a .elf file as specified with the -o option. The name of the additional

output file is the same as the .elf file with the file extension changed.
For example
cc file.c -o file.elf -Fbin

will generate the files file.elf and file.bin.

803

Embedded Studio Reference Manual Utilities Reference

-g (Generate debugging information)

Syntax

-9

Description

The -g option instructs the compiler and assembler to generate source level debugging information for the

debugger to use.

804

Embedded Studio Reference Manual Utilities Reference

-g1 (Generate minimal debugging information)

Syntax

_g'l

Description

The -g1 option instructs the compiler to generate debugging information that enables the debugger to be able

to backtrace only.

805

Embedded Studio Reference Manual Utilities Reference

-help (Display help information)

Syntax

-help

Description

Displays a short summary of the options accepted by the compiler driver.

806

Embedded Studio Reference Manual Utilities Reference

-io (Select I/0O library implementation)

Syntax

-io=i

Description
This option specifies the I/O library implementation that is included in the linked image. The options are:

-io=d I/0 library is implemented using debuglO e.g calls to printf will call debug_printf.
-io=t /O library is implemented on the target, debuglO is not used.
-io=t+d /O library is implemented on the target, debuglO is not used but debuglO is enabled.

807

Embedded Studio Reference Manual Utilities Reference

- (Define user include directories)

Syntax

-ldirectory

Description

In order to find include files the compiler driver arranges for the compilers to search a number of standard
directories. You can add directories to the search path using the -l switch which is passed on to each of the

language processors.

You can specify more than one include directory by separating each directory component with either a comma

or semicolon.

808

Embedded Studio Reference Manual Utilities Reference

-I- (Exclude standard include directories)

Syntax

Description

Usually the compiler and assembler search for include files in the standard include directory created when the
product is installed. If for some reason you wish to exclude these system locations from being searched when

compiling a file, the -I- option will do this for you.

809

Embedded Studio Reference Manual Utilities Reference

-J (Define system include directories)

Syntax

-Jdirectory

Description

The -J option adds directory to the end of the list of directories to search for source files included (using

triangular brackets) by the #i ncl ude preprocessor command.

You can specify more than one include directory by separating each directory component with either a comma

or semicolon in the property

810

Embedded Studio Reference Manual Utilities Reference

-K (Keep linker symbol)

Syntax

-Kname

Description

The linker removes unused code and data from the output file. This process is called deadstripping. To prevent
the linker from deadstripping unreferenced code and data you wish to keep, you must use the -K command line
option to force inclusion of symbols.

Example

If you have a C function, contextSwitch that must be kept in the output file (and which the linker will normally

remove), you can force its inclusion using:

- Kcont ext Swi t ch

811

Embedded Studio Reference Manual Utilities Reference

-L (Set library directory path)

Syntax

-Ldir

Description

Sets the library directory to dir. If -L is not specified on the command line, the default location to search for
libraries is set to $(InstallDir)/lib.

812

Embedded Studio Reference Manual Utilities Reference

-I- (Do not link standard libraries)

Syntax

Description

The -l option instructs the compiler driver not to link standard libraries. If you use this option you must supply

your own library functions or libraries.

813

Embedded Studio Reference Manual Utilities Reference

-make (Make-style build)

Syntax

-make

Description

The -make option avoids build steps based on the modification date of the output file and modification date of

the input file and its dependencies.

814

Embedded Studio Reference Manual Utilities Reference

-M (Display linkage map)

Syntax

-M

Description

The -M option prints a linkage map named the same as the linker output file with the .map file extension.

815

Embedded Studio Reference Manual Utilities Reference

-n (Dry run, no execution)

Syntax

-n

Description

When -n is specified, the compiler driver processes options as usual, but does not execute any subprocesses to

compile, assemble, archive or link applications.

816

Embedded Studio Reference Manual Utilities Reference

-nostderr (No stderr output)

Syntax

-nostderr

Description

When -nostderr is specified, any stderr output of subprocesses is redirected to stdout.

817

Embedded Studio Reference Manual Utilities Reference

-0 (Set output file name)

Syntax

-o filename

Description

The -0 option instructs the compiler driver to write linker or archiver output to filename.

818

Embedded Studio Reference Manual Utilities Reference

-oabi (Use oabi compiler)

Syntax

-oabi

Description

The -oabi option instructs the compiler driver to generate code and link libraries for the legacy GCC ARM ABI.

819

Embedded Studio Reference Manual Utilities Reference

-O (Optimize output)

Syntax

-Ox

Description
Pass the optimization option -Ox to the compiler and select library variant. The following options are supported:

-00 No optimization, use libraries built with -O1.

-O1 Level 1 optimization, use libraries built with -O1.
-02 Level 2 optimization, use libraries built with -O1.
-03 Level 3 optimization, use libraries built with -O1.

-Os Optimize for size, use libraries built with -Os.

820

Embedded Studio Reference Manual Utilities Reference

-printf (Select printf capability)

Syntax

-printf=c

Description
The -printf option selects the printf capability for the linked executable. The options are:

-printf=i integer is supported

-printf=li long integer is supported
-printf=Il long long integer is supported
-printf=f floating point is supported
-printf=wp width and precision is supported

821

Embedded Studio Reference Manual Utilities Reference

-rtti (Enable C++ RTTI Support)

Syntax

-rtti

Description

Enables C++ run-time type information to be compiled.

822

Embedded Studio Reference Manual Utilities Reference

-R (Set section name)

Syntax

-R x name

Description

These options name the default name of the sections generated by the compiler/assembler to be name. The

options are:

-Rc name change the default name of the code section

-Rd name change the default name of the data section

-Rk name change the default name of the const section
-Rz name change the default name of the bss section

823

Embedded Studio Reference Manual Utilities Reference

-scanf (Select scanf capability)

Syntax

-scanf=c

Description
The -scanf option selects the scanf capability for the linked executable. The options are:

-scanf=i integer is supported

-scanf=li long integer is supported

-scanf=Il long long integer is supported

-scanf=f floating point is supported

-scanf=wp %|...] and %[A...] character class is supported

824

Embedded Studio Reference Manual Utilities Reference

-sd (Treat double as float)

Syntax

-sd

Description

The -sd option instructs the compiler to compile double as float and selects the appropriate library for linking.

825

Embedded Studio Reference Manual Utilities Reference

-Thumb (Generate Thumb code)

Syntax

-Thumb

Description

The -Thumb option instructs the compiler to generate Thumb code rather than ARM code and link in Thumb
libraries. This option is NOT needed for Cortex-M architectures.

826

Embedded Studio Reference Manual Utilities Reference

-v (Verbose execution)

Syntax

-V

Description

The -v switch displays command lines executed by the compiler driver.

827

Embedded Studio Reference Manual Utilities Reference

-w (Suppress warnings)

Syntax

-w

Description

This option instructs the compiler, assembler, and linker not to issue any warnings.

828

Embedded Studio Reference Manual Utilities Reference

-we (Treat warnings as errors)

Syntax

-we

Description

This option directs the compiler, assembler, and linker to treat all warnings as errors.

829

Embedded Studio Reference Manual Utilities Reference

-Wa (Pass option to tool)

Syntax

-Wtool option

Description
The -W command-line option passes option directly to the specified tool. Supported tools are

-Wa pass option to assembler
-Wc pass option to compiler

-WI pass option to linker

Example

The following example passes the (compiler specific) -version option to the compiler

cc -W-version

830

Embedded Studio Reference Manual Utilities Reference

-X (Specify file types)

Syntax

-X type

Description
The -x option causes the compiler driver to treat subsequent files to be of the following file type

-xa archives/libraries
-xasm assembly code files
-xc C code files

-xc++ C++ code files

-xld linker script files

-x0 object code files

Example

The following command line enables an assembly code file with the extension .arm to be assembled.

CC -XaSma. arm

831

Embedded Studio Reference Manual Utilities Reference

-y (Use project template)

Syntax

_yt

Description

If required this option must be the first option on the command line. It instantiates a project template type
from the installed packages. The files and common project properties of the project template are used by the
compiler driver. Project configurations are not supported by the compiler driver, use emBuild if you require
project configurations.

Example

The following command builds an executable based on the STM32_EXE project template.

cc -ySTMB2_EXE - zTar get =STM32F100C4 file.c -o file.elf

832

Embedded Studio Reference Manual Utilities Reference

-z (Set project property)

Syntax

-Zzp=v

Description

Sets the value of the project property p to the value v.

Example

The following command compiles the file arguments and puts the resulting object files into the directory

objects.

cc -c filel.c file2.c -zbuild_output_directory=objects

833

Embedded Studio Reference Manual Utilities Reference

Command-Line Project Builder

emBuild is a program used to build your software from the command line without using SEGGER Embedded

Studio. You can, for example, use emBuild for nightly (automated) builds, production builds, and batch builds.

834

Embedded Studio Reference Manual Utilities Reference

Building with a SEGGER Embedded Studio project file

You can specify a SEGGER Embedded Studio project file:

Syntax
emBuild [options] project-file
You must specify a configuration to build using -config. For instance:

enBuild -config "V5T Thunb LE Rel ease" arm enProj ect

The above example uses the configuration V5T Thumb LE Release to build all projects in the solution contained

in arm.emProject.
To build a specific project that is in a solution, you can specify it using the -project option. For example:
enBuild -config "V5T Thunb LE Rel ease" -project "libni |ibc.enProject

This example will use the configuration V5T Thumb LE Release to build the project libm that is contained in

libc.emProject.

If your project file imports other project files (using the <import> mechanism), when denoting projects you must

specify the solution names as a comma-separated list in parentheses after the project name:
enBuild -config "V5T Thunb LE Rel ease" -project "libc(C Library)" arm enProject

libc(C Library) specifies the libc project in the C Library solution that has been imported by the project file

arm.emProject.

To build a specific solution that has been imported from other project files, you can use the -solution option.

This option takes the solution names as a comma-separated list. For example:
enBuild -config "ARM Debug" -solution "ARM Targets, EB55" arm enProj ect

In this example, ARM Targets,EB55 specifies the EB55 solution imported by the ARM Targets solution, which

was itself imported by the project file arm.emProject.
You can do a batch build using the -batch option:
enBuild -config "ARM Debug" -batch |ibc. enProj ect
This will build the projects in libc.emProject that are marked for batch build in the configuration ARM Debug.

By default, a make-style build will be donei.e., the dates of input files are checked against the dates of output
files, and the build is avoided if the output is up to date. You can force a complete build by using the -rebuild

option. Alternatively, to remove all output files, use the -clean option.

835

Embedded Studio Reference Manual Utilities Reference

To see the commands being used in the build, use the -echo option. To also see why commands are being
executed, use the -verbose option. You can see what commands will be executed, without executing them, by

using the -show option.

836

Embedded Studio Reference Manual Utilities Reference

Building without a SEGGER Embedded Studio project
file

To use emBuild without a SEGGER Embedded Studio project, specify the name of an installed project template,
the name of the project, and the files to build. For example:

enBuild -config -tenplate LM3S _EXE -project nyproject -file nain.c
Or, instead of a template, you can specify a project type:

enBuild -config -type "Library" -project nyproject -file main.c
You can specify project properties with the -property option:

enBuild -property Target=LM3S811

837

Embedded Studio Reference Manual Utilities Reference

Command-line options

This section describes the command-line options accepted by emBuild.

838

Embedded Studio Reference Manual

-batch (Batch build)

Syntax

-batch

Description

Perform a batch build.

839

Utilities Reference

Embedded Studio Reference Manual Utilities Reference

-config (Select build configuration)

Syntax

-config name

Description

Specify the configuration for a build. If the configuration name can't be found, emBuild will list the available

configurations.

840

Embedded Studio Reference Manual Utilities Reference

-clean (Remove output files)

Syntax

-clean

Description

Remove all output files resulting from the build process.

841

Embedded Studio Reference Manual

-D (Define macro)

Syntax

-D macro=value

Description

Define a SEGGER Embedded Studio macro value for the build process.

842

Utilities Reference

Embedded Studio Reference Manual Utilities Reference

-echo (Show command lines)

Syntax

-echo

Description

Show the command lines as they are executed.

843

Embedded Studio Reference Manual

-file (Build a named file)

Syntax

-file name

Description

Build the file name. Use with -template or -type.

844

Utilities Reference

Embedded Studio Reference Manual Utilities Reference

-packagesdir (Specify packages directory)

Syntax

-packagesdir dir

Description

Override the default value of the $(PackagesDir) macro.

845

Embedded Studio Reference Manual Utilities Reference

-project (Specify project to build)

Syntax

-project name

Description

Specify the name of the project to build. When used with a project file, if emBuild can't find the specified project,

the names of available projects are listed.

846

Embedded Studio Reference Manual Utilities Reference

-property (Set project property)

Syntax

-project name=value

Description

Specify the value of a project property use with -template or -type. If emBuild cannot find the specified

property, a list of the properties is shown.

847

Embedded Studio Reference Manual

-rebuild (Always rebuild)

Syntax

-rebuild

Description

Always execute the build commands.

848

Utilities Reference

Embedded Studio Reference Manual Utilities Reference

-show (Dry run, don't execute)

Syntax

-show

Description

Show the command lines that would be executed, but do not execute them.

849

Embedded Studio Reference Manual Utilities Reference

-solution (Specify solution to build)

Syntax

-solution name

Description

Specify the name of the solution to build. If emBuild cannot find the given solution, the valid solution names are
listed.

850

Embedded Studio Reference Manual Utilities Reference

-studiodir (Specify SEGGER Embedded Studio
directory)

Syntax

-studiodir name

Description

Override the default value of the $(StudioDir) macro.

851

Embedded Studio Reference Manual Utilities Reference

-template (Specify project template)

Syntax

-template name

Description

Specify the project template to use. If emBuild cannot find the specified template then a list of template names

is shown.

852

Embedded Studio Reference Manual

-time (Time the build)

Syntax

-time

Description

Show the time taken for the build.

853

Utilities Reference

Embedded Studio Reference Manual Utilities Reference

-threadnum (Specify number of build threads)

Syntax

-threadnum n

Description

Specify the number of build threads to use for the build. The default is zero which will use the number of

processor cores on your machine.

854

Embedded Studio Reference Manual Utilities Reference

-type (Specify project type)

Syntax

-type name

Description

Specify the project type to use. If emBuild cannot find the specified project type then a list of project type names

is shown.

855

Embedded Studio Reference Manual Utilities Reference

-verbose (Show build information)

Syntax

-verbose

Description

Show extra information relating to the build process.

856

Embedded Studio Reference Manual Utilities Reference

Command-Line Scripting

emScript is a program that allows you to run SEGGER Embedded Studio's JavaScript (ECMAScript) interpreter

from the command line.

The primary purpose of emScript is to facilitate the creation of platform-independent build scripts.

Syntax

emScript [options] file

857

Embedded Studio Reference Manual Utilities Reference

Command-line options

This section describes the command-line options accepted by emScript.

858

Embedded Studio Reference Manual Utilities Reference

-define (Define global variable)

Syntax

-define variable=value

Description

859

Embedded Studio Reference Manual Utilities Reference

-help (Show usage)

Syntax

-help

Description

Display usage information and command line options.

860

Embedded Studio Reference Manual

-load (Load script file)

Syntax

-load path

Description

Loads the script file path.

861

Utilities Reference

Embedded Studio Reference Manual

-define (Verbose output)

Syntax

-verbose

Description

Produces verbose output.

862

Utilities Reference

Embedded Studio Reference Manual Utilities Reference

emScript classes

emScript provides the following predefined classes:

BinaryFile
CWSys
ElfFile
WScript

863

Embedded Studio Reference Manual Utilities Reference

Example uses

The following example demonstrates using emScript to increment a build number:
First, add a JavaScript file to your project called i ncbui | d. j s containing the following code:

function incbuild()

{
var file = "buil dnum h"
var text = "#define BU LDNUVBER "
var s = CWBys.readStringFronFile(file);
var n;
if (s == undefined)
n =1,
el se
n = eval (s.substring(text.length)) + 1;
CWBys. writeStringToFile(file, text + n);
}

/| Executed when script | oaded.
i ncbuild();

Add afile called get bui | dnum h to your project containing the following code:

#1 f ndef GETBUI LDNUM_H
#def i ne GETBUI LDNUM_H

unsi gned get Bui | dNunber () ;

#endi f

Add afile called get bui | dnum ¢ to your project containing the following code:

#i ncl ude "get buil dnum h"
#i ncl ude "bui |l dnum h"

unsi gned get Bui | dNunber ()
{

}

return BU LDNUMBER;

Now, to combine these:

Set the Build Options > Always Rebuild project property of get bui | dnum c to Yes.
Set the User Build Step Options > Pre-Compile Command project property of get bui | dnum ¢ to
"$(StudioDir)/bin/emScript" -load "$(ProjectDir)/incbuild.js".

864

Embedded Studio Reference Manual Utilities Reference

Embed

Embed is a program that converts a binary file into a C/C++ array definition.

The primary purpose of the Embed tool is to provide a simple method of embedding files into an application.
This may be useful if you want to include firmware images, bitmaps, etc. in your application without having to
read them first from an external source.

Syntax

embed variable_name input_file output _file

variable_name is the name of the C/C++ array to be initialised with the binary data.

input_file is the path to the binary input file.

output_file is the path to the C/C++ source file to generate.

Example

To convert a binary file image.bin to a C/C++ file called image.h:
enbed ing i mage. bi n i nage. h
This will generate the following output in image.h:

static const unsigned char ing[] = {
0x5B, 0x95, 0xA4, 0x56, 0x16, Ox5F, 0x2D, 0x47,
0xC5, 0x04, 0xD4, 0x8D, 0x73, 0x40, 0x31, 0x66,
Ox3E, 0x81, 0x90, 0x39, O0xA3, Ox8E, 0x22, 0x37,
0x3C, 0x63, 0xC8, 0x30, 0x90, 0xO0C, 0x54, OxA4,
OxA2, 0x74, 0xC2, 0x8C, 0x1D, 0x56, 0x57, 0xO05,
0x45, OxCE, 0x3B, 0x92, OxAD, 0x0B, 0x2C, 0x39,
0x92, 0x59, 0xB9, 0x9D, 0x01, 0x30, 0x59, Ox9F,
0xC5, OxEA, OxCE, 0x35, OxF6, 0x4B, 0x05, OxBF

865

Embedded Studio Reference Manual Utilities Reference

Header file generator

The command line program mkhdr generates a C or C++ header file from a SEGGER Embedded Studio memory
map file.

866

Embedded Studio Reference Manual Utilities Reference

Using the header generator

For each register definition in the memory map file a corresponding #define is generated in the header file. The

#define is named the same as the register name and is defined as a volatile pointer to the address.

The type of the pointer is derived from the size of the register. A four-byte register generates an unsigned long
pointer. A two-byte register generates an unsigned short pointer. A one-byte register will generates an unsigned

char pointer.

If a register definition in the memory map file has bitfields then preprocessor symbols are generated for each
bitfield. Each bitfield will have two preprocessor symbols generated, one representing the mask and one
defining the start bit position. The bitfield preprocessor symbol names are formed by prepending the register
name to the bitfield name. The mask definition has _MASK appended to it and the start definition has _BIT
appended to it.

For example consider the following definitions in the the file memorymap.xml.

< st art =" OxFFFFFO00" nane="Al C'>
< start="+0x00" size="4" nanme="Al C_SMRO" >
< size="3" nane="PRIOR' start="0" />
< si ze="2" nane="SRCTYPE' start="5" />
</ >

We can generate the header file associated with this file using:
nkhdr menorymap. xm nenorymap. h
This generates the following definitions in the file memorymap.h.

#define AIC_SMRO (*(volatile unsigned | ong *)OxFFFFFOO0O)
#define Al C_SMRO_PRI OR_MASK 0x7

#define AIC_SMRO_PRIOR BIT 0

#def i ne Al C_SMRO_SRCTYPE_MASK 0x60

#define AlC_SMRO_SRCTYPE BIT 5

These definitions can be used in the following way in a C/C++ program:
Reading a register

unsigned r = Al C_SMRO;
Writing a register

AIC_SMRO = (priority << AIC_SMRO_PRIOR BIT) | (srctype << Al C_SMRO_SRCTYPE BIT):
Reading a bitfield

unsi gned srctype = (AIC_SMR0O & Al C_SMRO_SRCTYPE_MASK) >> Al C_SMRO_SRCTYPE_BI T;
Writing a bitfield

AIC_SMRO = (Al C_SMRO & ~Al C_SMRO_SRCTYPE MASK) | ((srctype & Al C_SMRO_SRCTYPE MASK) << Al C_SMRO_SRCTYPE BI T)

867

Embedded Studio Reference Manual Utilities Reference

Command line options
This section describes the command line options accepted by the header file generator.
Syntax

mkhdr inputfile outputfile targetname [option]

inputfile is the name of the source SEGGER Embedded Studio memory map file. outputfile is the the name of

the file to write.

868

Embedded Studio Reference Manual Utilities Reference

-regbaseoffsets (Use offsets from peripheral base)

Syntax

-regbaseoffsets

Description

Instructs the header generator to include offsets of registers from the peripheral base.

869

Embedded Studio Reference Manual Utilities Reference

-nobitfields (Inhibit bitfield macros)

Syntax

-nobitfields

Description

Instructs the header generator not to generate any definitions for bitfields.

870

Embedded Studio Reference Manual Utilities Reference

Linker script file generator

The command line program mkld generates a GNU Id linker script from a SEGGER Embedded Studio memory
map or section placement file.

Syntax

mkld -memory-map-file inputfile outputfile [options]

inputfile is the name of the SEGGER Embedded Studio memory map file to generate the Id script from.

outputfile is the the name of the Id script file to write.

871

Embedded Studio Reference Manual Utilities Reference

Command-line options

This section describes the command-line options accepted by mkid.

872

Embedded Studio Reference Manual Utilities Reference

-check-segment-overflow

Syntax

-check-segment-overflow

Description

Add checks for memory segment overflow to the linker script.

873

Embedded Studio Reference Manual Utilities Reference

-memory-map-file

Syntax

-memory-map-file filename

Description

Generate a GNU Id linker script from the SEGGER Embedded Studio memory map file filename.

874

Embedded Studio Reference Manual Utilities Reference

-memory-map-macros

Syntax

-memory-map-macros macro=value[;macro=valuel

Description

Define SEGGER Embedded Studio macros to use when reading a memory map file.

875

Embedded Studio Reference Manual Utilities Reference

-section-placement-file

Syntax

-section-placement-file filename

Description

Generate a GNU Id linker script from the SEGGER Embedded Studio section placement file filename. If this option
is used, a memory map file should also be specified with the -memory-map-file option.

876

Embedded Studio Reference Manual Utilities Reference

-section-placement-macros

Syntax

-section-placement-macros macro=value;macro=value]

Description

Define SEGGER Embedded Studio macros to use when reading a section placement file.

877

Embedded Studio Reference Manual

-symbols

Syntax

-symbols symbol=value[;symbol=value]

Description

Add extra symbol definitions to the Id linker script.

878

Utilities Reference

Embedded Studio Reference Manual Utilities Reference

Package generator

To create a package the program mkpkg can be used. The set of files to put into the package should be

in the desired location in the $(PackagesDi r) directory. The mkpkg command should be run with

$(PackagesDi r) asthe working directory and all files to go into the package must be referred to using
relative paths. A package must have a package description file that is placed in the $(PackagesDir)/
packages directory. The package description file name must end with _package. xml . If a package is to

create entries in the new project wizard then it must have a file name pr oj ect _t enpl at es. xm .
For example, a package for the mythical FX150 processor would supply the following files:

A project template file called t ar get s/ FX150/ pr oj ect _t enpl at es. xni . The format of the
project templates file is described in Project Templates file format.

The $(PackagesDi r) -relative files that define the functionality of the package.

A package description file called packages/ FX150_package. xm . The format of the package

description file is described in Package Description file format.
The package file FX150. enPackage would be created using the following command line:

nkpkg -c packages/ FX150. enPackage t ar get s/ FX150/ proj ect _tenpl ates. xm packages/
FX150_package. xn

You can list the contents of the package using the -t option:
nkpkg -t packages/ FX150. enPackage
You can remove an entry from a package using the -d option:
nkpkg -d packages/ FX150. enPackage -d fil eNane
You can add or replace a file into an existing package using the -r option:
nmkpkg -r packages/ FX150. enPackage -r fil eNane
You can extract files from an existing package using the -x option:
nmkpkg -x packages/ FX150. enPackage out putDirectory
You can automate the package creation process using a Combining project type.

Using the new project wizard create a combining project in the directory $(PackagesDi r).

Set the Output File Path property to be $(PackagesDi r) / packages/ nypackage. enPackage.
Set the Combine command property to $(StudioDir)/bin/mkpkg -c $(CombiningOutputFilePath)
$(CombiningRellnputPaths).

Add the files you want to go into the package into the project using the Project Explorer.

Right-click the project node in the Project Explorer and choose Build.

When a package is installed, the files in the package are copied into the desired $(PackagesDi r) -relative
locations. When a file is copied into the $(PackagesDi r) / packages directory and its filename ends with

879

Embedded Studio Reference Manual Utilities Reference
_package. xml thefile $(PackagesDi r) / packages/ i nst al | ed_packages. xm is updated with an
entry:

<include filenane="FX150_package. xm " />

During development of a package you can manually edit this file. The same applies to the file
$(PackagesDir)/targets/project_tenpl ates. xm which will contain a reference to your
proj ect _tenpl ates. xm file.

Usage:

nkpkg [options] packageFileName file1 file2

Option Description

-C Create a new package.

-conpress| evel Change compression level (0 for none, 9 for
maximum).

-d Remove files from a package.

- f Output files to stdout.

-r Replace files in a package.

-readonly Force all files to have read only attribute.

-t List the contents of a package.

-V Be chatty.

-V Show version information.

- X Extract files from a package.

880

Embedded Studio Reference Manual Appendices

Appendices

881

Embedded Studio Reference Manual Appendices

File formats

This section describes the file formats SEGGER Embedded Studio uses:

Memory Map file format
Describes the memory map file format that defines memory regions and registers in a microcontroller.

Section Placement file format
Describes the section placement file format that maps program sections to memory areas in the target

microcontroller.

Project file format
Describes the format of SEGGER Embedded Studio project files.

Project Templates file format
Describes the format of project template files used by the New Project wizard.

Property Groups file format
Describes the format of the property groups file you can use to define meta-properties.

Package Description file format
Describes the format of the package description files you use to create packages other users can install in
SEGGER Embedded Studio.

External Tools file format
Describes the format of external tool configuration files you use to extend SEGGER Embedded Studio.

882

Embedded Studio Reference Manual Appendices

Memory Map file format

SEGGER Embedded Studio memory-map files are structured using XML syntax for its simple construction and

parsing.

The first entry of the project file defines the XML document type used to validate the file format.
< Board_Menory_Definition_File>

The next entry is the Root element. There can only be one Root element in a memory map file:
< nane="My/ Board">

A Root element has a nane attribute every element in a memory map file has a nane attribute. Names should
be unique within a hierarchy level. Within a Root element, there are Menor ySegnent elements that represent

regions within the memory map.

< name="My Board">
< nanme="Fl ash" start="0x1000" size="0x200" access="ReadOnly">

Menor ySegrent elements have the following attributes:

start:The start address of the memory segment. A simple expression, usually a hexadecimal number with
a Ox prefix.

size:The size of the memory segment. A simple expression, usually a hexadecimal number with a 0x prefix.
access:The permissible access types of the memory segment. One of ReadOnl y, Read/ Wi te,
WiteOnly,orNone.

address_symbol:A symbolic name for the start address of the memory segment.

size_symbol:A symbolic name for the size of the memory segment.

address_symbol:A symbolic name for the end address of the memory segment.

Regi st er G- oup elements are used to organize registers into groups. Regi st er elements are used to define

peripheral registers:

< nane="My Board" >
< nanme="System' start="0x2000" size="0x200" >
< nane="Peri pheral 1" start="0x2100" size="0x10" >
< name="Regi ster1" start="+0x8" size="4" >

Regi st er G oup elements have the same attributes as Menor ySegment elements. Regi st er elements

have the following attributes:

name:Register names should be valid C/C++ identifier names, i.e., alphanumeric characters and
underscores are allowed but names cannot start with a number.

start:The start address of the memory segment. Either a C-style hexadecimal number or, if given a + prefix,
an offset from the enclosing element's start address.

size:The size of the register in bytes, either 1, 2, or 4.

883

Embedded Studio Reference Manual Appendices

access:The same as the access attribute of the Menor ySegrent element.
address_symbol:The same as the addr ess_synbol attribute of the Menor ySegment element.

A Regi st er element can contain Bi t Fi el d elements that represent the bits in a peripheral register:

< name="My Board" >
< name="System' start="0x2000" size="0x200" >
< nane="Peri pheral 1" start="0x2100" size="0x10" >
< name="Regi ster1" start="+0x8" size="4" >
< nane="Bits 0 to_3" start="0" size="4" />

Bi t Fi el d elements have the following attributes:

name:The same as the nane attribute of the Regi st er G oup element.
start:The starting bit position, 031.
size:The total number of bits, 132.

ABi tfi el delementcan contain Enumelements:

< name="My Board" >
< name="Peri pheral 1" start="0x2100" size="0x10" >
< nanme="Regi ster1" start="+0x8" size="4" >
< nanme="Bits 0 to 3" start="0" size="4" />
< name="Enun8" start="3" />
< nane="Enunb" start="5" />

You can import CMSIS SVD files (see http://www.onarm.com/) into a memory map using the | mpor t SVD

element:

< filenane="$(TargetsDir)/targets/Manufacturerl1/ Processorl.svd. xm ">

Thef i | enan® attribute is an absolute filename which is macro-expanded using SEGGER Embedded Studio

system macros.

When a memory map file is loaded either for the memory map viewer or to be used for linking or debugging, it is
preprocessed using the (as yet undocumented) SEGGER Embedded Studio XML preprocessor.

884

http://www.onarm.com/

Embedded Studio Reference Manual Appendices

Section Placement file format

SEGGER Embedded Studio section-placement files are structured using XML syntax to enable simple

construction and parsing.

The first entry of the project file defines the XML document type used to validate the file format:
< Li nker Pl acenent _Fi | e>

The next entry is the Root element. There can only be one Root element in a memory map file:
< name="Fl ash Pl acement ">

A Root element has a hane attribute. Every element in a section-placement file has a nane attribute. Each
name should be unique within its hierarchy level. Within a Root element, there are Menor ySegnent elements.
These correspond to memory regions defined in a memory map file that will be used in conjunction with the

section-placement file when linking a program. For example:

< nane="Fl ash Pl acenent">
< name="FLASH' >

A Menor ySegnent contains Pr ogr anSect i on elements that represent program sections created by the C/
C++ compiler and assembler. The order of Pr ogr anfSect i on elements within a Menor ySegnent element
represents the order in which the sections will be placed when linking a program. The first Pr ogr anfsect i on

will be placed first and the last one will be placed last.

< name="My Board" >
< name="FLASH' >
< name=".text">

Pr ogr anSect i on elements have the following attributes:

address_symbol:A symbolic name for the start address of the section.

alignment.The required alignment of the program section; a decimal number specifying the byte
alignment.

end_symbol:A symbolic name for the end address of the section.

fill:The optional value used to fill unspecified regions of memory, a hexadecimal number with a 0x prefix.
inputsections:An expression describing the input sections to be placed in this section. If you omit this
(recommended) and the section name isn't one of .text, .dtors, .ctors, .data, .rodata, or .bss, then the
equivalent input section of *(.name .name.*) is supplied to the linker.

keep:If Yes, the section will be kept even if none of the symbols are referenced by the rest of the program.
loadIf Yes, the section is loaded. If No, the section isn't loaded.

place_from_segment_end:If Yes, this section and following sections will be placed at the end of the
segment. Please note that this will only succeed if the section and all following sections have a fixed size
specified with the size attribute.

runin:This specifies the name of the section to copy this section to.

885

Embedded Studio Reference Manual Appendices

runoffset:This specifies an offset from the load address that the section will be run from.
size:The optional size of the program section in bytes, a hexadecimal number with a Ox prefix.
size_symbol:A symbolic name for the size of the section.

start:The optional start address of the program section, a hexadecimal number with a Ox prefix.

When a section placement file is used for linking it is preprocessed using the (as yet undocumented) SEGGER

Embedded Studio XML preprocessor.

886

Embedded Studio Reference Manual Appendices

Project file format

SEGGER Embedded Studio project files are held in text files with the . enPr 0j ect extension. Because you may
want to edit project files, and perhaps generate them, they are structured using XML syntax to enable simple

construction and parsing.
The first entry of the project file defines the XML document type used to validate the file format:
< CrossStudi o_Project _File>

The next entry is the sol ut i on element; there can only be one sol ut i on element in a project file. This
specifies the solution name displayed in the Project Explorer and has a version attribute that defines the file-
format version of the project file. Solutions can contain projects, projects can contain folders and files, and

folders can contain folders and files. This hierarchy is reflected in the XML nestingfor example:

< versi on="1" Nane="sol uti onnanme">
< Nane="pr oj ect nane" >
< Nane="fil enane" />
< Nanme="f ol der nane" >
< Name="fi |l enane2" />
</ >
</ >
</ >

Note that each entry has a Nane attribute. Names of pr oj ect elements must be unique to the solution, and

names of f ol der elements must be unique to the project, but names of files do not need to unique.

Eachfi |l e element musthaveaf i | e_namne attribute that is unique to the project. Ideally, the f i | e_namne
is a file path relative to the project (or solution directory), but you can also specify a full file path, if you want to.
File paths are case-sensitive and use "/" as the directory separator. They may contain macro instantiations, so file

paths cannot contain the "$" character. For example
< file_nane="$(StudioDir)/source/crt0.s" Nanme="crt0.s" />
will be expanded using the value of $(StudioDir) when the file is referenced from SEGGER Embedded Studio.

Project properties are held in configuration elements with the Nane attribute of the configuration element
corresponding to the configuration name, e.g., "Debug". At a given project level (i.e., solution, project, folder),
there can only be one named configuration elementi.e., all properties defined for a configuration are in single

configuration element.

< Nanme="pr oj ect nane" >

< proj ect _type="Library" Nane="Conmon" />

< Narme="Rel ease" buil d_debug_i nf or mati on="No" />
</ >

You can use the i nport element to link projects:

< file_nanme="target/libc.enProject" />

887

Embedded Studio Reference Manual Appendices

Project Templates file format

The SEGGER Embedded Studio New Project dialog works from a file called pr oj ect _t enpl at es. xm in the
t ar get s subdirectory of the SEGGER Embedded Studio installation directory. Because you may want to add

your own new project types, they are structured using XML syntax to enable simple construction and parsing.
The first entry of the project file defines the XML document type used to validate the file format:
< Project Tenplates File>

The next entry is the pr 0] ect s element, which is used to group a set of new project entries into an XML

hierarchy.
< >
< >
</ >

Each entry has a pr oj ect element that contains the class of the project (attribute capt i on), the name of the
project (attribute nane), its type (attribute t ype) and a description (attribute descri pt i on). For example:

< capti on="ARM Eval uat or 7T" nane="Execut abl e"
description="An executable for an ARM Eval uator7T." type="Executable"/>

The project type can be one of these:

Executable: a fully linked executable.
Library: a static library.

Object file: an object file.

Staging: a staging project.
Combining: a combining project.

Externally Built Executable: an externally built executable.

The configurations to be created for the project are defined using the conf i gur at i on element, which must
have a nane attribute:

< nane="ARM RAM Rel ease"/ >

The property values to be created for the project are defined using the pr oper t y element. If you have a
defined value, you can specify this using the val ue attribute and, optionally, set the property in a defined
confi gurati on,such as:

< name="t arget _reset _script" configuration="RAM
val ue="Eval uat or 7T_Reset Wt hRamAt Zero()" />

Alternatively, you can include a property that will be shown to the user, prompting them to supply a value as

part of the new-project process.

< name="11i nker _out put_format"/>

888

Embedded Studio Reference Manual Appendices

The folders to be created are defined using the f ol der element. The f ol der element must have a hane
attribute and can also haveaf i | t er attribute. For example:

< nanme="Source Files" filter="c;cpp;cxx;cc;h;s;asminc" />

The files to be in the project are specified using the f i | e element. You can use build-system macros (see
Project macros) to specify files located in the SEGGER Embedded Studio installation directory. Files will be
copied to the project directory or just left as references, depending on the value of the expand attribute:

< nanme="$(St udi oDir)/source/crt0.s" expand="no"/>
You can define the set of configurations that can be referred to in the top-level conf i gur at i ons element:

< >
< >
</ >

This contains the set of all configurations that can be created when a project is created. Each configuration is
defined using a conf i gur at i on element, which can define the property values for that configuration. For

example:

< nanme="Debug" >
< name="bui | d_debug_i nf or mati on" val ue="Yes">

889

Embedded Studio Reference Manual Appendices

Property Groups file format

The SEGGER Embedded Studio project system provides a means to create new properties that change a number
of project property settings and can also set C pre-processor definitions when selected. Such properties are
called property groups and are defined in a property-groups file. The property-group file to use for a project

is defined by the Property Groups File property. These files usually define target-specific properties and are

structured using XML syntax to enable simple construction and parsing.

The first entry of the property groups file defines the XML document type, which is used to validate the file

format:
< CrossStudi o_G oup_Val ues>
The next entry is the pr oper t yG oups element, which is used to group a set of property groups entries into

an XML hierarchy:

<

<gr ouphdot s
</ propertyG oups>

Each group has the name of the group (attribute namne), the name of the options category (attribute gr oup),
short (attribute shor t) and long (attribute | ong) help descriptions, and a default value (attribute def aul t).

For example:

< short="Target Processor" group="Build Options" short="Target Processor"
| ong="Sel ect a set of target options" nane="Target" default="STRO12FWM4" />

Each group has a number of gr oupEnt r y elements that define the enumerations of the group.

Each gr oupEnt r y has the name of the entry (attribute nane), e.g.:
< nane="STRO10FWB2" >

A gr oupEnt ry has the property values and C pre-processor definitions that are set when the gr oupEnt ry is
selected; they are specified with pr oper t y and cdef i ne elements. For example:

< >
< >
< >
< >
</ >

890

Embedded Studio Reference Manual Appendices
A pr opert y element has the property's name (attribute nan®e), its value (attribute val ue), and an optional
configuration (attribute conf i gur at i on):

< nane="11inker_nenory_map_file"
val ue="$(Studi oDir)/targets/ST_STR91x/ ST_STRO10FMB2_Menor yMap. xm " />

A cdef i ne element has the C preprocessor name (attribute nane) and its value (attribute val ue):

< val ue="STR910FM32" nane="TARGET_PROCESSCR' />

891

Embedded Studio Reference Manual Appendices

Package Description file format

Package-description files are XML files used by SEGGER Embedded Studio to describe a support package, its
contents, and any dependencies it has on other packages.

Each package file must contain one package element that describes the package. Optionally, the package
element can contain a collection of f i | €, hi st ory, and docunent at i on elements to be used by SEGGER
Embedded Studio for documentation purposes.

The filename of the package-description file should match that of the package and end in "_package.xml".

Below is an example of two package-description files. The first is for a base chip-support package for the

LPC2000; the second is for a board-support package dependent on the first:

Philips_LPC2000_package.xml

< CrossSt udi o_Package_Descri ption_Fil e>
< cpu_manuf acturer="Philips" cpu_fam |y="LPC2000" version="1.1" ses_versions="8:1-"
aut hor =" SEGGER' >
< file_name="$(TargetsDir)/Philips_LPC210X/ arm target_Philips_LPC210X. ht ni
title="LPC2000 Support Package Docunentation” />
< file_nane="$(TargetsDir)/Philips_LPC210X/ Loader.enProject” title="LPC2000 Loader
Application Solution" />
< title="System Files">
< file_nane="$(TargetsDir)/Philips_LPC210X/ Philips_LPC210X_Startup.s" title="LPC2000
Startup Code" />
< file_nane="$(TargetsDir)/Philips_LPC210X/ Philips_LPC210X Target.js" title="LPC2000
Target Script" />
</ >
< >
< name="1.1" >
< >Corrected LPC21xx header files and nmenory nmaps to include GPIO ports 2
and 3. </ >
< >Modi fi ed | oader nmenory map so that .libmem sections will be placed
correctly. </ >
</ >
< nane="1.0" >
< >l nitial Release.</ >
</ >
</ >
< >
< nane="Supported Targets">
<p>Thi s CPU support package supports the follow ng LPC2000 targets:
< >
<l >LPC2103</| i >
<l 1 >LPC2104</ || >
<l >LPC2105</| | >
<l I >LPC2106</| | >
<l >LPC2131</ || >
<1 >LPC2132</ || >
<l 1 >LPC2134</ || >
<l >LPC2136</| | >
<l I >LPC2138</ || >
</ ul >
</ p>
</ >

892

Embedded Studio Reference Manual Appendices

</ >
</ >

CrossFire_LPC2138_package.xml

< CrossSt udi o_Package_Descri ption_Fil e>

< cpu_manuf acturer="Philips" cpu_fam |y="LPC2000" cpu_nane="LPC2138"
boar d_manuf act urer =" Rowl ey Associ ates" board_nane="CrossFire LPC2138"
dependenci es="Phi | i ps_LPC2000" version="1.0">

< file_nanme="$(Sanpl esDir)/CrossFire_LPC2138/ CrossFire_LPC2138. enProj ect”
title="CrossFire LPC2138 Sanpl es Sol ution" />
< file_name="$(Sanpl esDir)/CrossFire_LPC2138/ctl/ctl.enProject” title="CrossFire
LPC2138 CTL Sanpl es Sol ution" />
</ >

Package elements

The package element describes the support package, its contents, and any dependencies it has on other
packages. Valid attributes for this element are:

Attribute Description

aut hor The author of the package.

boar d_manuf act ur er The manufacturer of the board supported by the
package (if omitted, CPU manufacturer will be used).

board_nane The name of the specific board supported by the
package (only required for board-support packages).

cpu_famly The family name of the CPU supported by the package
(optional).

cpu_nmanuf act ur er The manufacturer of the CPU supported by the
package.

cpu_nane The name of the specific CPU supported by the

package (may be omitted if the CPU family is specified).

ses_versions A string describing which version of SEGGER
Embedded Studio supports the package
(optional). The format of the string is target_id_number:version_range_string</

a>.
description A description of the package (optional).
dependenci es A semicolon-separated list of packages the package

requires to be installed in order to work.

installation_directory The directory in which the package should be installed
(optional\--if undefined, defaults to "S(PackagesDir)").

title A short description of the package (optional).

893

Embedded Studio Reference Manual Appendices

versi on The package version number.

File elements

Thefi | e elementis used by SEGGER Embedded Studio for documentation purposes by adding links to files of

interest within the package such as example project files and documentation.

Attribute Description
file_name The file path of the file.
title A description of the file.

Optionally, f i | e elements can be grouped into categories using the gr oup element.

Group elements

The gr oup element is used for categorizing files described by f i | e elements into a particular group.

Attribute Description
title Title of the group.
History elements

The hi st or y element is used to hold a description of the package's version history.

The hi st or y element should contain a collection of ver si on elements.

Version element
The ver si on element is used to hold the description of a particular version of the package.

Attribute Description

name The name of the version being described.

The ver si on element should contain a collection of descri pt i on elements.

Description elements

Each descri pt i on element contains text that describes a feature of the package version.

894

Embedded Studio Reference Manual Appendices

Documentation elements

The docunent at i on element is used to provide arbitrary documentation for the package.

The docunent at i on element should contain a collection of one or more sect i on elements.

Section elements
The sect i on element contains package documentation in XHTML format.

Attribute Description

nane The title of the documentation section.

target_id_number

The following table lists the possible target ID numbers:

Target ID
AVR 4
ARM 8
MSP430 9
MAXQ20 18
MAXQ30 19

version_range_string
Thever si on_r ange_stri ng can be any of the following:

version_number:The package will only work on version_number.

version_number-:The package will work on version_number or any future version.
-version_number:The package will work on version_number or any earlier version.
low_version_number-high_version_number:The package will work on low_version_number,

high_version_number or any version in between.

895

Embedded Studio Reference Manual Appendices

External Tools file format

SEGGER Embedded Studio external-tool configuration files are structured using XML syntax for its simple

construction and parsing.

Tool configuration files

The SEGGER Embedded Studio application will read the tool configuration file when it starts up. By default,
SEGGER Embedded Studio will read the file $(StudioUserDir)/tools.xml.

Structure
All tools are wrapped in a tools element:
< >
</ >
Inside the tools element are item elements that define each tool:

< >
< nanme="1 ogi cal nane">

</ >
</ >

The item element requires an name attribute, which is an internal name for the tool, and has an optional wait
element. When SEGGER Embedded Studio invokes the tool on a file or project, it uses the wait element to
determine whether it should wait for the external tool to complete before continuing. If the wait attribute is not

provided or is set to yes, SEGGER Embedded Studio will wait for external tool to complete.
The way that the tool is presented in SEGGER Embedded Studio is configured by elements inside the

element.

menu

The menu element defines the wording used inside menus. You can place a shortcut to the menu using an

ampersand, which must be escaped using & in XML, before the shortcut letter. For instance:

< > PC-1int (Unit Check)</ >

text

The optional text element defines the wording used in contexts other than menus, for instance when the tool
appears as a tool button with a label. If text is not provided, the tool's textual appearance outside the menuis

taken from the menu element (and is presented without an shortcut underline). For instance:

896

Embedded Studio Reference Manual Appendices

< >PC-lint (Unit Check)</ >

tip
The optional tip element defines the status tip, shown on the status line, when moving over the tool inside
SEGGER Embedded Studio:

< >Run a PC-lint unit checkout on the selected file or folder</ >

key

The optional key element defines the accelerator key, or key chord, to use to invoke the tool using the keyboard.
You can construct the key sequence using modifiers Ctrl, Shift, and Alt, and can specify more than one key in a

sequence (note: Windows and Linux only; OS X does not provide key chords). For instance:

< >Crl+L, Crl+l </ >

message

The optional message element defines the text shown in the tool log in SEGGER Embedded Studio when

running the tool. For example:

< >Linti ng</ >

match

The optional match element defines which documents the tool will operator on. The match is performed using
the file extension of the document. If the file extension of the document matches one of the wildcards provided,

the tool will run on that document. If there is no match element, the tool will run on all documents. For instance:

< >* . c;*. cpp</ >

commands

The commands element defines the command line to run to invoke the tool. The command line is expanded
using macros applicable to the file derived from the current build configuration and the project settings. Most

importantly, the standard $(InputPath) macro expands to a full pathname for the target file.
Additional macros constructed by SEGGER Embedded Studio are:

$(DEFINES) is the set of -D options applicable to the current file, derived from the current configuration
and project settings.
S(INCLUDES) is the set of -1 options applicable to the current file, derived from the current configuration

and project settings.

For instance:

897

Embedded Studio Reference Manual Appendices

< >
$(LINTDIR)/ | i nt-nt -i$(LINTDIR) /I nt $(LINTDIR)/ | nt/co-gcc. | nt
$(DEFINES) $(INCLUDES) -D_GNUC__ -u -b +macros -w2 -e537 +fie +ffn -wi dth(0,4) -hFl
-format =% : % : %C:. s% : s%n $(| nput Pat h)
</ >

In this example we intend $(LINTDIR) to point to the directly where PC-lint is installed and for
$(LINTDIR) to be defined as a SEGGER Embedded Studio global macro. You can set global macros using

ide_environment_options_dialog.

Note that additional " entities are placed around pathnames in the commands sectionthis is to ensure

that paths that contain spaces are correctly interpreted when the command is executed by SEGGER Embedded
Studio.

898

Embedded Studio Reference Manual

Appendices

Building Environment Options

Build

Property

Automatically Build Before Debug
Envi ronment /Bui | d/ Bui | d Before
DebugBoolean

Build Macros

Envi ronnent / Macr os/ G obal Macr osStringList

Confirm Debugger Stop
Envi r onnent / Bui | d/ Conf i r m Debugger
St opBoolean

Display ETA
Envi ronnent / Bui | d/ Di spl ay ETABoolean

Display Progress Bar
Envi ronnent / Bui | d/ Di spl ay Progress
Bar Boolean

Echo Build Command Lines
Envi r onnent / Bui | d/ Show Command
Li nesBoolean

Echo Raw Error/Warning Output
Envi r onnent / Bui | d/ Show Unpar sed Error
Qut put Boolean

Find Error After Building
Envi ronnent/ Bui | d/ Fi nd Error After
Bui | dBoolean

Keep Going On Error
Envi ronnent / Bui | d/ Keep Goi ng On
Er r or Boolean

Save Project File Before Building
Envi ronnent / Bui | d/ Save Project File On
Bui | dBoolean

Show Build Information
Envi r onnent / Bui | d/ Show Bui | d
| nf or mat i onBoolean

Toolchain Root Directory
Envi ronnent / Bui | d/ Tool Chai n Root
Di r ect or yString

Description

Enables auto-building of a project before downloading
if it is out of date.

Build macros that are shared across all solutions and
projects e.g. paths to library files.

Present a warning when you start to build that requires
the debugger to stop.

Selects whether to attempt to compute and display
the ETA on building.

Selects whether to display progress bar on building.

Selects whether build command lines are written to
the build log.

Selects whether the unprocessed error and warning
output from tools is displayed in the build log.

Moves the cursor to the first diagnostic after a build
completes with errors.

Build doesn't stop on error.

Selects whether to save the project file prior to build.

Show build information.

Specifies where to find the toolchain (compilers etc).

899

Embedded Studio Reference Manual

Build Acceleration

Property

Disable Unity Build
Envi ronnent / Bui | d/ Di sabl e Unity
Bui | dBoolean

Parallel Building Threads
Envi ronnent / Bui | d/ Bui | di ng
Thr eadsIntegerRange

Compatibility

Property

Compiler Supports Section Renaming
ARM Bui | d/ Conpi | er Can Renane
Sect i onsBoolean

Default Assembler Variant
ARM Bui | d/ Assenbl er Vari ant
Def aul t Enumeration

Default Compiler Variant
ARM Bui | d/ Conpi | er Vari ant
Def aul t Enumeration

Installation Directory
ARM Bui | d/ St udi oDi r Di r ect or yDirPath

Use External GCC
ARM Bui | d/ Use Ext ernal GCCBoolean

Window

Property

Show Build Log On Build
Envi ronnent / Show Transcript On
Bui | dBoolean

Appendices

Description

Ignore Unity Build project properties and always build
individual project components.

The number of threads to launch when building.

Description

Compiler supports the -mtext=t, -mdata=d, -mbss=Db, -
mrodata=r section renaming options.

Specifies the default assembler variant to use.

Specifies the default linker variant to use.

The installation directory to be used for building - the
value $(StudioDir) is set to.

Use an external GCC toolchain for the build.

Description

Show the build log when a build starts.

900

Embedded Studio Reference Manual Appendices

Debugging Environment Options

Breakpoint

Property Description

Clear Disassembly Breakpoints On Debug Stop
Envi ronment / Debugger/ Cl ear Di sassenbly Clear Disassembly Breakpoints On Debug Stop
Br eakpoi nt Boolean

Display

Property Description

Close Disassembly On Mode Switch
Envi ronment / Debugger/ O ose Di sassenbly On Close Disassembly On Mode Switch
Mbde Swi t chBoolean

Data Tips Display a Maximum Of
Envi r onnent / Debugger / Maxi mum Ar r ay
El ement s Di spl ayedintegerRange

Selects the maximum number of array elements
displayed in a datatip.

Default Display Mode
Envi r onment / Debugger/ Def aul t Vari abl e Selects the format that data values are shown in.
Di spl ay ModeEnumeration

Display Floating Point Number In
Envi r onnent / Debugger / Fl oati ng Poi nt
Format Di spl ayCustom

The printf format directive used to display floating
point numbers.

Maximum Backtrace Calls
Envi r onnent / Debugger / Maxi mum Backtr ace
Cal | sintegerRange

Selects the maximum number of calls when
backtracing.

Prompt To Display If More Than
Envi ronment / Debugger/ Array El ements The array size to display with prompt.
Pronmpt Si zelntegerRange

Show Data Tips In Text Editor

. . Show Data Tips In Text Editor
Envi r onment / Debugger / Show Dat a Ti psBoolean

Show Labels In Disassembly
Envi r onment / Debugger / Di sassenbl y Show Show Labels In Disassembly
Label sBoolean

Show Source In Disassembly
Envi r onment / Debugger / Di sassenbl y Show Show Source In Disassembly
Sour ceBoolean

Show char * As Null Terminated String
Envi ronment / Debugger/ Di spl ay Char Ptr As Display char * as null terminated string.
St ri ngBoolean

901

Embedded Studio Reference Manual

Source Path
Envi r onnent / Debugger / Sour ce Pat hStringList

Extended Data Tips

Property

ASCII
Envi ronnent / Debugger / Ext ended Tool tip
Di spl ay Mode/ ASCl | Boolean

Binary
Envi ronnent / Debugger / Ext ended Tool tip
Di spl ay Mbde/ Bi nar yBoolean

Decimal
Envi r onnent / Debugger / Ext ended Tool tip
Di spl ay Mode/ Deci mal Boolean

Hexadecimal
Envi r onnent / Debugger / Ext ended Tool tip
Di spl ay Mbde/ Hexadeci mal Boolean

Octal
Envi r onnent / Debugger / Ext ended Tool tip
Di spl ay Mbde/ Cct al Boolean

Unsigned Decimal
Envi r onnent / Debugger / Ext ended Tool tip
Di spl ay Mbde/ Unsi gned Deci mal Boolean

Window

Property

Clear Debug Terminal On Run
Envi ronnent/ Cl ear Debug Termi nal On
RunBoolean

Hide Output Window On Successful Load
Debuggi ng/ Hi de Transcript On Successf ul
LoadBoolean

Show Target Log On Load
Debuggi ng/ Show Transcri pt On LoadBoolean

Appendices

Global search path to find source files.

Description

Selects ASCIl extended datatips.

Selects Binary extended datatips.

Selects Decimal extended datatips.

Selects Hexadecimal extended datatips.

Selects Octal extended datatips.

Selects Unsigned Decimal extended datatips.

Description

Clear the debug terminal automatically when a
programis run.

Hide the Output window when a load completes
without error.

Show the target log when a load starts.

902

Embedded Studio Reference Manual

IDE Environment Options

Browser

Property

Text Size
Envi ronnent / Browser/ Text Si zeEnumeration

Underline Hyperlinks In Browser
Envi ronment / Browser/ Under | i ne Wb
Li nksBoolean

File Extension

Property

ELF Executable File Extensions
El f Dwar f / Envi ronnent / Execut abl e Fil e
Ext ensi onsStringList

ELF Object File Extensions
El f Dwar f / Envi ronment / Cbj ect Fil e
Ext ensi onsStringlList

File Search

Property

Files To Search
Find In Files/File TypeStringList

Find History
Find In Files/Find Hi storyStringList

Folder History

Find In Files/Fol der Hi st orysStringlList

Match Case
Find In Files/Match CaseBoolean
Match Whole Word

Find In Files/Match Wol e Wr dBoolean

Replace History
Find In Files/Replace Hi storyStringList

Appendices

Description

Sets the text size of the integrated HTML and help
browser.

Enables underlining of hypertext links in the
integrated HTML and help browser.

Description

The file extensions used for ELF executable files.

The file extensions used for ELF object files.

Description

The wildcard used to match files in Find In Files
searches.

The list of strings recently used in searches.

The set of folders recently used in file searches.

Whether the case of letters must match exactly when
searching.

Whether the whole word must match when searching.

The list of strings recently used in searches.

903

Embedded Studio Reference Manual

Search Dependencies
Find In Files/Search Dependenci esBoolean

Search In
Find In Files/ Context Enumeration

Use Regular Expressions
Find In Files/Use RegExpBoolean

Internet

Property

Automatically Check For Packages
Envi ronnent /| nt er net/ Check PackagesBoolean

Automatically Check For Updates
Envi ronnent /| nt er net/ Check Updat esBoolean

Check For Latest News
Envi ronnent /I nt er net / RSS Updat eBoolean

Enable Connection Debugging
Envi ronnent /| nt er net/ Enabl e
Debuggi ngBoolean

External Web Browser

Envi ronnent / Ext er nal Web Br owser FileName

HTTP Proxy Host
Envi ronnent /| nt er net/ HTTP Proxy
Ser ver String

HTTP Proxy Port
Envi ronnent/ | nt er net/ HTTP Proxy
Por t IntegerRange

Maximum Download History Items
Envi ronnent/ | nt er net/ Max Downl oad Hi story
| t ensintegerRange

Use Content Delivery Network
Envi ronnent / Package/ Use Content Delivery
Net wor kBoolean

Package Manager

Property

Check Solution Package Dependencies
Envi r onnent / Package/ Check Sol uti on
Package Dependenci esBoolean

Appendices

Controls searching of dependent files.

Where to look to find files.

Whether to use a regular expression or plain text
search.

Description

Specifies whether to enable downloading of the list of
available packages.

Specifies whether to enable checking for software
updates.

Specifies whether to enable downloading of the Latest
News RSS feeds.

Controls debugging traces of internet connections and
downloads.

The path to the external web browser to use when
accessing non-local files.

Specifies the IP address or hostname of the HTTP proxy
server. If empty, no HTTP proxy server will be used.

Specifies the HTTP proxy server's port number.

The maximum amount of download history kept in the
downloads window.

Specifies whether to use content delivery network to
deliver packages.

Description

Specifies whether to check package dependencies
when a solution is loaded.

904

Embedded Studio Reference Manual

Package Directory
Envi r onnent / Package/ Dest i nati on
Di r ect or yString

Show Check For Packages Dialog
Envi r onnent / Package/ Show Check For
Packages Di al ogBoolean

Show Logos
Envi r onment / Package/ Show LogosEnumeration

Print

Property

Bottom Margin
Envi ronnment / Pri nt i
Mar gi nintegerRange

ng/ Bott om

Left Margin

Envi ronment / Pri nting/ Left Mar gi nintegerRange

Page Orientation

Envi ronnent/ Printing/ Ori ent ati onEnumeration

Page Size

Envi ronnent/ Pri nti ng/ Page Si zeEnumeration

Right Margin
Envi ronnment / Pri nti
Mar gi nintegerRange

ng/ Ri ght

Top Margin

Envi ronnent/ Pri nti ng/ Top Mar gi nintegerRange

Startup

Property

Allow Multiple SEGGER Embedded Studios
Envi ronnent/Pernmit Multiple Studio
I nst ancesBoolean

Load Last Project On Startup
Envi ronnent/ Load Last Project On
St ar t upBoolean

New Project Directory
Envi ronment / Gener al / Sol uti on
Di r ect or yString

Splash Screen
Envi ronment / Spl ash Scr eenEnumeration

Appendices

Specifies the directory packages are installed to.

Specifies whether the package manager should
prompt for a package list refresh.

Specifies whether the package manager should display
company logos.

Description

The page's bottom margin in millimetres.

The page's left margin in millimetres.

The page's orientation.

The page's size.

The page's right margin in millimetres.

The page's top margin in millimetres.

Description

Allow more than one SEGGER Embedded Studio to run
at the same time.

Specifies whether to load the last project the next time
SEGGER Embedded Studio runs.

The directory where projects are created.

How to display the splash screen on startup.

905

Embedded Studio Reference Manual

Status Bar

Property

(Visible)
Envi ronnent / St at us Bar Boolean
Show Build Status Pane

Envi ronnent / Gener al / St at us Bar/ Show
St at usBoolean

Bui | d

Show Caret Position Pane
Envi ronnent / Gener al / St at us Bar/ Show
PosBoolean

Car et

Show Insert/Overwrite Status Pane
Envi ronnent / Gener al / St at us Bar/ Show
I nsert ModeBoolean

Show Read-Only Status Pane
Envi ronnent / Gener al / St at us Bar/ Show
Onl yBoolean

Read

Show Size Grip
Envi ronnent / Gener al / St at us Bar/ Show
G i pBoolean

Si ze

Show Target Pane
Envi ronnent / Gener al / St at us Bar/ Show
Tar get Boolean

Show Time Pane
Envi ronnent / Gener al / St at us Bar/ Show
Ti meBoolean

User Interface

Property

Application Main Font
Envi ronnent / Appl i cati on Mai n Font Font

Application Monospace Font
Envi ronnment / Appl i cati on Monospace
Font FixedPitchFont

Error Display Timeout
Envi ronment / Err or
Ti meout IntegerRange

Di spl ay

Errors Are Displayed

Envi ronnent/ Error Di spl ay ModeEnumeration

Appendices

Description

Show or hide the status bar.

Show or hide the Build pane in the status bar.

Show or hide the Caret Position pane in the status bar.

Show or hide the Insert/Overwrite pane in the status
bar.

Show or hide the Read Only pane in the status bar.

Show or hide the status bar size grip.

Show or hide the Target pane in the status bar.

Show or hide the Time pane in the status bar.

Description

The font to use for the user interface as a whole.

The fixed-size font to use for the user interface as a
whole.

The minimum time, in seconds, that errors are shown
for in the status bar.

How errors are reported in SEGGER Embedded Studio.

906

Embedded Studio Reference Manual

File Size Display Units
Envi ronnent/ Si ze Di spl ay Unit Enumeration

Number File Names in Menus
Envi ronnent / Nunber MenusBoolean

Show Large Icons In Toolbars
Envi r onnent / Gener al / Lar ge | consBoolean

Show Ribbon
Envi r onment / Gener al / R bbon/ ShowBoolean

Show Window Selector On Ctrl+Tab
Envi ronnent / Show Sel ect or Boolean

User Interface Theme
Envi ronnent / Gener al / Ski nEnumeration

Window Menu Contains At Most
Envi ronnent / Max W ndow Menu
| t ensintegerRange

Appendices

How to display sizes of items in the user interface. Sl
defines 1kB=1000 bytes, IEC defines 1kiB=1024 bytes,
Alternate S| defines 1kB=1024 bytes.

Number the first nine file names in menus for quick
keyboard access.

Show large or small icons on toolbars.

Show or hide the ribbon.

Present the Window Selector on Next Window and
Previous Window commands activated from the
keyboard.

The theme that SEGGER Embedded Studio uses.

The maximum number of windows appearing in the
Windows menu.

907

Embedded Studio Reference Manual

Appendices

Programming Language Environment Options

Assembly Language

Property

Column Guide Columns
Text Editor/Indent/Assenbly
Col utm Gui desString

Language/

Indent Closing Brace
Text Editor/Indent/Assenbly
Cl ose BraceBoolean

Language/

Indent Context
Text Editor/Indent/Assenbly
Cont ext Li nesintegerRange

Language/

Indent Mode
Text Editor/Indent/Assenbly
| ndent ModeEnumeration

Language/

Indent Opening Brace
Text Editor/|ndent/Assenbly
Br aceBoolean

Language/ Qpen

Indent Size
Text Editor/Indent/Assenbly
Si zelntegerRange

Tab Size
Text Editor/Indent/Assenbly
Si zelntegerRange

Use Tabs
Text Editor/Indent/Assenbly
TabsBoolean

Language/

Language/ Tab

Language/ Use

User-Defined Keywords
Text Editor/Indent/Assenbly
Keywor dsStringList

Language/

Cand C++

Property

Column Guide Columns
Text Editor/Indent/C and
Gui desString

C++/ Col um

Description

The columns that guides are drawn for.

Indent the closing brace of compound statements.

The number of lines to use for context when indenting.

How to indent when a new line is inserted.

Indent the opening brace of compound statements.

The number of columns to indent a code block.

The number of columns between tabstops.

Insert tabs when indenting.

Additional identifiers to highlight as keywords.

Description

The columns that guides are drawn for.

908

Embedded Studio Reference Manual

Indent Closing Brace
Text Editor/Indent/C and C++/ Cl ose
Br aceBoolean

Indent Context
Text Editor/I|Indent/C and C++/ Cont ext
Li nesIntegerRange

Indent Mode
Text Editor/Indent/C and C++/ 1 ndent
ModeEnumeration

Indent Opening Brace
Text Editor/Indent/C and C++/ Qpen
Br aceBoolean

Indent Size
Text Editor/Indent/C and C++/
Si zelntegerRange

Tab Size
Text Editor/Indent/C and C++/ Tab
Si zelntegerRange

Use Tabs
Text Editor/Indent/C and C++/ Use
TabsBoolean

User-Defined Keywords
Text Editor/Indent/C and C++/
Keywor dsStringList

Default

Property

Column Guide Columns
Text Editor/|ndent/Default/Colum
QGui desString

Indent Closing Brace
Text Editor/|ndent/Default/d ose
Br aceBoolean

Indent Context
Text Editor/|ndent/ Def aul t/ Cont ext
Li nesIntegerRange

Indent Mode
Text Editor/|ndent/Default/Indent
ModeEnumeration

Appendices

Indent the closing brace of compound statements.

The number of lines to use for context when indenting.

How to indent when a new line is inserted.

Indent the opening brace of compound statements.

The number of columns to indent a code block.

The number of columns between tabstops.

Insert tabs when indenting.

Additional identifiers to highlight as keywords.

Description

The columns that guides are drawn for.

Indent the closing brace of compound statements.

The number of lines to use for context when indenting.

How to indent when a new line is inserted.

909

Embedded Studio Reference Manual

Indent Opening Brace
Text Editor/|ndent/ Defaul t/ Open
Br aceBoolean

Indent Size
Text Editor/|ndent/Defaul t/Si zelntegerRange

Tab Size
Text Editor/|ndent/ Defaul t/ Tab
Si zelntegerRange

Use Tabs
Text Editor/Indent/Defaul t/Use TabsBoolean

User-Defined Keywords
Text Editor/Indent/Default/
Keywor dsStringList

Java

Property

Column Guide Columns
Text Editor/|ndent/Java/ Col uim Cui desString

Indent Closing Brace
Text Editor/Indent/Javal/ d ose BraceBoolean

Indent Context
Text Editor/|ndent/Java/ Cont ext
Li neslntegerRange

Indent Mode
Text Editor/|ndent/Java/l ndent
ModeEnumeration

Indent Opening Brace
Text Editor/Indent/Java/ Open BraceBoolean

Indent Size
Text Editor/Indent/Java/ Si zelntegerRange

Tab Size
Text Editor/Indent/Javal/ Tab Si zelntegerRange

Use Tabs
Text Editor/|ndent/Javal/ Use TabsBoolean

User-Defined Keywords
Text Editor/Indent/Javal/ Keywor dsStringList

Appendices

Indent the opening brace of compound statements.

The number of columns to indent a code block.

The number of columns between tabstops.

Insert tabs when indenting.

Additional identifiers to highlight as keywords.

Description

The columns that guides are drawn for.

Indent the closing brace of compound statements.

The number of lines to use for context when indenting.

How to indent when a new line is inserted.

Indent the opening brace of compound statements.

The number of columns to indent a code block.

The number of columns between tabstops.

Insert tabs when indenting.

Additional identifiers to highlight as keywords.

910

Embedded Studio Reference Manual

Appendices

Source Control Environment Options

External Tools

Property

Diff Command Line
Envi ronnent / Sour ce Code Control/
Di f f CommandStringlList

Merge Command Line
Envi ronnent / Sour ce Code Control /
Mer geConmandStringList

Preference

Property

Add Immediately
Envi ronnent / Sour ce Code Control /| medi
AddBoolean

Commit Immediately
Envi ronnent / Source Code Control /| nmedi
Comni t Boolean

Lock Immediately
Envi ronnent / Source Code Control /| nmedi
LockBoolean

Remove Immediately
Envi ronnent / Source Code Control /| nredi
RenpveBoolean

Resolved Immediately
Envi ronnent / Source Code Control /| nmredi
Resol vedBoolean

Revert Immediately
Envi ronnent / Source Code Control /| nmredi
Rever t Boolean

Unlock Immediately
Envi ronnent / Source Code Control /| nredi
Unl ockBoolean

Update Immediately
Envi ronnent / Sour ce Code Control /| nredi
Updat eBoolean

ate

ate

ate

ate

ate

ate

ate

ate

Description

The diff command line

The merge command line

Description

Bypasses the confirmation dialog and immediately
adds items to source control.

Bypasses the confirmation dialog and immediately
commits items.

Bypasses the confirmation dialog and immediately
locks items.

Bypasses the confirmation dialog and immediately
removes items source control.

Bypasses the confirmation dialog and immediately
mark items resolved.

Bypasses the confirmation dialog and immediately
revert items.

Bypasses the confirmation dialog and immediately
unlocks items.

Bypasses the confirmation dialog and immediately
updates items.

911

Embedded Studio Reference Manual

Appendices

Text Editor Environment Options

Auto Recovery

Property

Auto Recovery Backup Time
Text Editor/Auto Recovery Backup
Ti nelntegerRange

Auto Recovery Keep Time
Text Editor/Auto Recovery Keep
Ti meIntegerRange

Cursor Fence

Property

Bottom Margin
Text Editor/ Margi ns/ Bot t omintegerRange

Keep Cursor Within Fence
Text Editor/ Margi ns/ Enabl edBoolean

Left Margin
Text Editor/ Margi ns/ Lef t IntegerRange

Right Margin
Text Editor/ Margi ns/ Ri ght IntegerRange

Top Margin
Text Editor/ Margi ns/ ToplntegerRange

Editing
Property

Allow Drag and Drop Editing
Text Editor/Drag Drop EditingBoolean

Bold Popup Diagnostic Messages

Text Editor/Bold Popup Di agnosti csBoolean

Column-mode Tab
Text Editor/Col utmm Mbde TabBoolean

Confirm Modified File Reload
Text Editor/Confirm Mdified File
Rel oadBoolean

Description

The time in minutes between saving of auto recovery
backups files or 0 to disable generation of backup files.

The time in days to keep unrecovered backup files or 0
to disable deletion of unrecovered backup files.

Description

The number of lines in the bottom margin.

Enable margins to fence and scroll around the cursor.

The number of characters in the left margin.

The number of characters in the right margin.

The number of lines in the right margin.

Description

Enables dragging and dropping of selections in the
text editor.

Displays popup diagnostic messages in bold for easier
reading.

Tab key moves to the next textual column using the

line above.

Display a confirmation prompt before reloading a file
that has been modified on disk.

912

Embedded Studio Reference Manual

Copy Action When Nothing Selected
Text Editor/ Copy Acti onEnumeration

Cut Action When Nothing Selected
Text Editor/Cut Acti onEnumeration

Cut Single Blank Line
Text Editor/Cut Bl ank Li nesBoolean

Diagnostic Cycle Mode
Text Editor/Di agnostic Cycle
MbdeEnumeration

Edit Read-Only Files
Text Editor/Edit Read Onl yBoolean

Enable Virtual Space

Text Editor/Enable Virtual SpaceBoolean

Numeric Keypad Editing
Text Editor/Nuneric Keypad Enabl edBoolean

Undo And Redo Behavior
Text Editor/Undo MbdeEnumeration

Find And Replace

Property

Case Sensitive Matching
Text Editor/Find/ Match CaseBoolean

Find History
Text Edi t or/ Fi nd/ H st or yStringList

Regular Expression Matching
Text Editor/Find/ Use RegExpBoolean

Replace History
Text Editor/ Repl ace/ Hi st or yStringList

Whole Word Matching
Text Editor/Find/ Match Whol e Wor dBoolean

Formatting

Property

Access Modifier Offset
Text Editor/Formatting/
AccessModi fi er O f set Integer

Appendices

What Copy copies when nothing is selected.

What Cut cuts when nothing is selected.

Selects whether to place text on the clipboard when a
single blank line is cut. When set to

Iterates through diagnostics either from most severe
to least severe or in reported order.

Allow editing of read-only files.
Permit the cursor to move into locations that do not
currently contain text.

Selects whether the numeric keypad plus and minus
buttons copy and cut text.

How Undo and Redo group your typing when it is
undone and redone.

Description

Enables or disables the case sensitivity of letters when
searching.

The list of strings recently used in searches.

Enables regular expression matching rather than plain
text matching.

The list of strings recently used in replaces.

Enables or disables whole word matching when
searching.

Description

The extra indent or outdent of access modifiers, e.g.
public:.

913

Embedded Studio Reference Manual

Align After Open Bracket
Text Editor/Formatting/
Al'i gnAft er OQpenBr acket Boolean

Align Escaped Newlines Left
Text Editor/Formatting/
Al i gnEscapedNew i nesLef t Boolean

Align Operands
Text Editor/Formatting/
Al'i gnOper andsBoolean

Align Trailing Comments
Text Editor/Formatting/
Al'i gnTr ai | i ngComent sBoolean

Allow All Parameters Of Declaration On Next Line
Text Editor/Formatting/

Appendices

If enabled, horizontally aligns arguments after an open
bracket.

If enabled, aligns escaped newlines as far left as
possible otherwise puts them into the right-most
column.

If enabled, horizontally align operands of binary and
ternary expressions.

If enabled, aligns trailing comments.

Allow putting all parameters of a function declaration
onto the next line even if Bin-pack Parameters is

Al | owAl | Par anet er sOf Decl ar at i onOnNext Li neB disabled.

Allow Short 'if' Statements On A Single Line
Text Editor/Formatting/
Al'l owShort | f St at ement sOnASi ngl eLi neBoolean

Allow Short Blocks On A Single Line
Text Editor/Formatting/
Al | owShor t Bl ocksOnASi ngl eLi neBoolean

Allow Short Case Labels On A Single Line
Text Editor/Formatting/
Al | owShort CaselLabel sOnASi ngl eLi neBoolean

Allow Short Functions On A Single Line
Text Editor/Formatting/
Al | owShor t Funct i onsOnASi ngl eLi neEnumeration

Allow Short Loop Statements On A Single Line
Text Editor/Formatting/
Al | owshor t LoopsOnASi ngl eLi neBoolean

Always Break Before Multiline Strings
Text Editor/Formatting/
Al waysBr eakAf t er Def i ni ti onRet ur nTypeBoolean

Always Break Before Multiline Strings
Text Editor/Formatting/
Al waysBr eakBef oreMul tilineStringsBoolean

Always Break Template Declarations
Text Editor/Formatting/
Al waysBr eakTenpl at eDecl ar at i onsBoolean

Bin-Pack Arguments
Text Editor/Formatting/
Bi nPackAr gurmrent sBoolean

If enabled, short 'if statements are put on a single line.

If enabled, allows contracting simple braced
statements to a single line.

If enabled, short case labels will be contracted to a
single line.

Optionally compress small functions to a single line.

If enabled, short loop statements are put on a single
line.

If enabled, always break after function definition return
types.

If enabled, always break before multiline strings.

If enabled, always break after the 'template<...>' of a
template declaration.

If disabled, a function call?s arguments will either be all
on the same line or will have one line each.

914

Embedded Studio Reference Manual Appendices

Bin-Pack Parameters If disabled, a function call's or function definition's
Text Editor/Formatting/ parameters will either all be on the same line or will
Bi nPackPar anet er sBoolean have one line each.

Break Before Binary Operators
Text Editor/Formatting/ The way to wrap binary operators.
Br eakBef or eBi nar yOper at or sBoolean

Break Before Braces
Text Editor/Formatting/ The brace breaking style to use.
Br eakBef or eBr acesEnumeration

Break Before Ternary Operators
Text Editor/Formatting/
Br eakBef or eTer nar yOper at or sBoolean

If enabled, ternary operators will be placed after line
breaks.

Break Constructor Initializers Before Comma
Text Editor/Formatting/
BreakConstructorlnitializersBeforeCommaBool

If enabled, always break constructor initializers before
commas and align the commas with the colon.

C++11 Braced List Style

) . If enabled, format braced lists as best suited for C++11
Text Editor/Formatting/

_ braced lists.
Cppl1BracedLi st St yl eBoolean
Column Limit The column limit which limits the width of formatted
Text Editor/Formatting/ Col umLi m t Integer lines.

A regular expression that describes comments with
special meaning, which should not be split into lines or
otherwise changed.

Comment Pragmas
Text Editor/Formatting/ Corment PragnasString

Constructor Initializer All On One Line Or One Per Line
Text Editor/Formatting/
ConstructorlnitializerA | OnOneLi neO OnePer

If enabled and the constructor initializers don't fit on a
line, put each initializer on its own line.

Constructor Initializer Indent Width
Text Editor/Formatting/
ConstructorlnitializerlndentW dt hinteger

The number of characters to use for indentation of
constructor initializer lists.

Continuation Indent Width
Text Editor/Formatting/ Indent width for line continuations.
Cont i nuat i onl ndent W dt hinteger

For-Each Macros
Text Editor/Formatting/
For EachMacr os StringList

A list of macros that should be interpreted as foreach
loops rather than function calls.

Formatting Style Select a set formatting options based on a named
Text Editor/FormattingStyl eEnumeration standard.

Indent Case Labels
Text Editor/Formatting/
| ndent CaselLabel sBoolean

If enabled, indent case labels one level from the switch
statement.

Indent Width

. .) The number of columns to use for indentation.
Text Editor/Formatting/ | ndent W dt hinteger

915

Embedded Studio Reference Manual

Indent Wrappend Function Names
Text Editor/Formatting/
I ndent W appedFunct i onNanmesBoolean

Keep Empty Lines At The Start Of Blocks
Text Editor/Formatting/
KeepEnpt yLi nesAt TheSt art O Bl ocksBoolean

Maximum Empty Lines To Keep
Text Editor/Formatting/
MaxEnpt yLi nesToKeepinteger

Namespace Indentation
Text Editor/Formatting/
Namespacel ndent at i onEnumeration

Penalty Break Before First Call Parameter
Text Editor/Formatting/

Penal t yBr eakBef or eFi r st Cal | Par anet er IntegerR

Penalty Break Before First Less-Less
Text Editor/Formatting/
Penal t yBr eakFi r st LessLesslIntegerRange

Penalty Break Comment
Text Editor/Formatting/
Penal t yBr eak Conment IntegerRange

Penalty Break String
Text Editor/Formatting/
Penal t yBr eakSt ri ngintegerRange

Penalty Excess Character
Text Editor/Formatting/
Penal t yExcessChar act er IntegerRange

Penalty Return Type On Its Own Line
Text Editor/Formatting/
Penal t yRet ur nTypeOnl t sOawnLi nelntegerRange

Pointer Alignment
Text Editor/Formatting/
Poi nt er Al i gnment Enumeration

Space After C Style Cast
Text Editor/Formatting/
SpaceAft er CSt yl eCast Boolean

Space Before Assignment Operators
Text Editor/Formatting/
SpaceBef or eAssi gnment Qper at or sBoolean

Space Before Parentheses
Text Editor/Formatting/
SpaceBef or ePar ensEnumeration

Appendices

If enabled, Indent if a function definition or declaration
is wrapped after the type.

If enabled, empty lines at the start of blocks are kept.

The maximum number of consecutive empty lines to
keep.

The indentation used for namespaces.

The penalty for breaking a function call after 'call('.

The penalty for breaking before the first less-less.

The penalty for each line break introduced inside a
comment.

The penalty for each line break introduced inside a
string literal.

The penalty for each character outside of the column
limit.

Penalty for putting the return type of a function onto
its own line.

Pointer and reference alignment style.

If enabled, a space may be inserted after C style casts.

If disabled spaces will be removed before assignment
operators.

Defines in which cases to put a space before opening
parentheses.

916

Embedded Studio Reference Manual

Space In Empty Parentheses
Text Editor/Formatting/
Spacel nEnpt yPar ent hesesBoolean

Spaces Before Trailing Comments
Text Editor/Formatting/
SpacesBef or eTr ai | i ngComent sintegerRange

Spaces In Angles
Text Editor/Formatting/
Spacesl| nAngl esBoolean

Spaces In C-style Cast Parentheses
Text Editor/Formatting/
Spacesl| nCSt yl eCast Par ent hesesBoolean

Spaces In Container Literals
Text Editor/Formatting/
Spacesl| nCont ai ner Li t er al sBoolean

Spaces In Parentheses
Text Editor/Formatting/
Spacesl nPar ent hesesBoolean

Spaces In Square Brackets
Text Editor/Formatting/
Spacesl| nSquar eBr acket sBoolean

Standard
Text Editor/Formatting/ St andar dEnumeration

Tab Style
Text Edi tor/ Formatting/ UseTabEnumeration

Tab Width
Text Editor/Formatting/ TabW dt hintegerRange

International

Property

Default Text File Encoding
Text Editor/Default CodecEnumeration

Mouse

Property

Alt+Left Click Action
Envi ronnent/ Proj ect Explorer/Alt+Left
Click Acti onEnumeration

Appendices

If enabled, spaces may be inserted into '()".

The number of spaces before trailing line comments.

If enabled, spaces will be inserted around the angle
brackets in template argument lists.

If enabled, spaces may be inserted into C style casts.

If enabled, spaces are inserted inside container literals.

If true, spaces will be inserted after (' and before ')".

If true, spaces will be inserted after '[' and before '7".

Format compatible with this standard

The way to use hard tab characters in the resulting file.

The number of columns used for tab stops.

Description

The encoding to use if not overridden by a project
property or file is not in a known format.

Description

The action the editor performs on Alt+Left Click

917

Embedded Studio Reference Manual

Alt+Middle Click Action
Envi ronnent/ Proj ect Explorer/ A t+M ddl e
Cl i ck Acti onEnumeration

Alt+Right Click Action
Envi ronnent/ Proj ect Expl orer/ Al t+Ri ght
Click Acti onEnumeration

Copy On Mouse Select
Text Editor/Copy On Muuse Sel ect Boolean

Ctrl+Left Click Action
Envi ronnent/ Proj ect Explorer/Ctrl +Left
Cick Acti onEnumeration

Ctrl+Middle Click Action
Envi ronnent/ Proj ect Explorer/Cirl+M ddl e
Cick Acti onEnumeration

Ctrl+Right Click Action
Envi ronnent / Proj ect Explorer/Crl +Ri ght
Cl i ck Acti onEnumeration

Middle Click Action
Envi ronnent/ Proj ect Explorer/Mddle dick
Act i onEnumeration

Mouse Wheel Adjusts Font Size
Text Editor/ Muse Weel
Si zeBoolean

Shift+Middle Click Action
Envi ronment / Proj ect Expl orer/ Shift+M ddl e
Click Acti onEnumeration

Shift+Right Click Action
Envi ronnent / Proj ect Expl orer/ Shi ft +Ri ght
Click Acti onEnumeration

Adj ust s Font

Programmer Assistance

Property

ATTENTION Tag List
Text Editor/ATTENTI ON TagsStringList

Ask For Index

Text Editor/Ask For | ndexBoolean

Auto-Comment Text
Text Editor/Aut o Comment Boolean

Appendices

The action the editor performs on Alt+Middle Click

The action the editor performs on Alt+Right Click

Automatically copy text to clipboard when marking a
selection with the mouse.

The action the editor performs on Ctrl+Left Click

The action the editor performs on Ctrl+Middle Click

The action the editor performs on Ctrl+Right Click

The action the editor performs on Middle Click

Enable or disable resizing of font by mouse wheel
when CTRL key pressed.

The action the editor performs on Shift+Middle Click

The action the editor performs on Shift+Right Click

Description
Set the tags to display as ATTENTION comments.
Ask to index the project if goto symbol fails in current

editor context.

Enable or disable automatically swapping
commenting on source lines by typing '/* with an
active selection.

918

Embedded Studio Reference Manual Appendices

Enable or disable automatically surrounding selected
text when typing triangular brackets, quotation marks,
parentheses, brackets, or braces.

Auto-Surround Text
Text Editor/Auto SurroundBoolean

Check Spelling

Enable spell checking in comments.
Text Editor/Spell Checki ngBoolean P 9

Display Code Completion Suggestions While Typing
Text Editor/Suggest Conpletion Wile
Typi ngBoolean

Enable code completion as you type without needing
to use the show suggestions key (Ctrl+J).

Enable Popup Diagnostics
Text Editor/Enabl e Popup Enables on-screen diagnostics in the text editor.
Di agnost i csBoolean

FIXME Tag List

Set the tags to display as FIXME comments.
Text Editor/Fl XVE TagsStringList € EE DB EplE A n

Include Preprocessor Definitions in Suggestions
Text Editor/Preprocessor Definition
Suggest i onsBoolean

Include or exclude preprocessor definitions in code
completion suggestions.

Include Templates in Suggestions Include or exclude templates in code completion
Text Editor/ Tenpl ate Suggesti onsBoolean suggestions.
Lint Tag List

. — Set the tags to display as Lint directives.
Text Editor/LlINT TagsStringList

Template Characters To Match

. : The number of characters to match before suggesting
Text Editor/ Tenpl ate Suggesti ons

Char act er sintegerRange a template.

Save

Property Description

Backup File History Depth The number of backup files to keep when saving an

Text Editor/Backup Fil e Dept hintegerRange existing file.

Delete Trailing Space On Save
Text Editor/Delete Trailing Space On
SaveBoolean

Deletes trailing whitespace from each line when a file
is saved.

Tab Cleanup On Save

.) Cleans up tabs when afile is saved.
Text Editor/C eanup Tabs On SaveEnumeration

Visual Appearance

Property Description

Font

. . . The font to use for text editors.
Text Editor/ Font FixedPitchFont

919

Embedded Studio Reference Manual

Font Smoothing Threshold
Text Editor/Antialias Threshol dintegerRange

Hide Cursor When Typing
Text Editor/H de Cursor When Typi ngBoolean

Highlight Cursor Line
Text Editor/Highlight Cursor LineBoolean

Horizontal Scroll Bar

Text Editor/HScroll BarEnumeration

Insert Caret Style
Text Editor/Insert Caret Styl eEnumeration

Line Numbers

Text Editor/Li ne Nunber MbdeEnumeration

Mate Matching Mode
Text Editor/Mate Matchi ng ModeEnumeration

Overwrite Caret Style
Text Editor/Overwite Caret
St yl eEnumeration

Show Diagnostic Icons In Gutter
Text Editor/Di agnostic | consBoolean

Show Icon Gutter
Text Editor/|con CutterBoolean

Show Mini Toolbar

Text Editor/M ni Tool bar Boolean

Use I-beam Cursor
Text Editor/|beam cur sor Boolean

Vertical Scroll Bar

Text Editor/VScroll BarEnumeration

Appendices

The minimum size for font smoothing: font sizes
smaller than this will have antialiasing turned off.

Hide or show the I-beam cursor when you start to type.

Enable or disable visually highlighting the cursor line.

Show or hide the horizontal scroll bar.

How the caret is displayed with the editor in insert
mode.

How often line numbers are displayed in the margin.

Controls when braces, brackets, and parentheses are
matched.

How the caret is displayed with the editor in overwrite
mode.

Enables display of diagnostic icons in the icon gutter.

Show or hide the left-hand gutter containing
breakpoint, bookmark, and optional diagnostic icons.

Show the mini toolbar when selecting text with the
mouse.

Show an I-beam or arrow cursor in the text editor.

Show or hide the vertical scroll bar.

920

Embedded Studio Reference Manual

Appendices

Windows Environment Options

Call Stack

Property

Execution Frame at Top
Envi ronnent/ Cal | Stack/ Most Recent At
TopBoolean

Show Call Address
Envi ronnent/ Cal | St ack/ Show Cal |
Addr essBoolean

Show Call Source Location
Envi ronnent/ Cal | St ack/ Show Cal |
Locat i onBoolean

Show Frame Size
Envi ronnent/ Cal | St ack/ Show St ack
UsageBoolean

Show Frame Size In Bytes

Envi ronnent/ Cal | Stack/ Show Stack Usage

I n Byt esBoolean

Show Parameter Names
Envi ronnent/ Cal | St ack/ Show Par anet er
NanesBoolean

Show Parameter Types
Envi ronnent/ Cal | Stack/ Show Par anet er
TypesBoolean

Show Parameter Values
Envi ronnment/ Cal | St ack/ Show Par anet er
Val uesBoolean

Show Stack Pointer
Envi ronnent/ Cal | St ack/ Show St ack
Poi nt er Boolean

Show Stack Usage
Envi ronnment / Cal | St ack/ Show Cunul ati ve
St ack UsageBoolean

Show Stack Usage In Bytes
Envi ronnent/ Cal | Stack/ Show Cunul ati ve
Stack Usage | n Byt esBoolean

Description
Controls whether the most recent call is at the top or
the bottom of the list.

Enables the display of the call address in the call stack.

Enables the display of the call source location in the
call stack.

Enables the display of the amount of stack used by the
call.

Display the stack usage in bytes rather than words.

Enables the display of parameter names in the call
stack.

Enables the display of parameter types in the call stack.

Enables the display of parameter values in the call
stack.

Enables the display of the stack pointer in the call
stack.

Enables the display of the amount of stack used.

Display the stack usage in bytes rather than words.

921

Embedded Studio Reference Manual

Clipboard Ring

Property

Maximum Items Held In Ring
Envi ronnent/ d i pboard Ri ng/ Max
Ent ri esIntegerRange

Preserve Contents Between Runs
Envi ronnent / Cl i pboard Ri ng/ SaveBoolean

Outline Window

Property

Group #define Directives
W ndows/ Qut | i ne/ G- oup Defi nesBoolean

Group #if Directives
W ndows/ Qut | i ne/ Group | f sBoolean

Group #include Directives
W ndows/ Qut | i ne/ Group | ncl udesBoolean

Group Top-Level Declarations

W ndows/ Qut | i ne/ Group Top Level

| t emsBoolean

Group Visibility

W ndows/ Qut | i ne/ Group Vi si bilityBoolean

Hide #region Prefix

W ndows/ Qut | i ne/ H de Regi on Prefi xBoolean

Refresh Outline and Preview
W ndows/ Qut | i ne/ Previ ew Refresh
ModeEnumeration

Project Explorer

Property

Add Filename Replace Macros
Envi ronnent / Proj ect Expl orer/Fil enanme
Repl ace Macr osStringlList

Color Project Nodes
Envi ronnent / Proj ect Expl orer/ Col or
NodesBoolean

Confirm Configuration Folder Delete
Proj ect Expl orer/ Confirm Configuration
Fol der Del et eBoolean

Appendices

Description

The maximum number of items held on the clipboard
ring before they are recycled.

Save the clipboard ring across SEGGER Embedded
Studio runs.

Description

Group consecutive #define and #undef preprocessor
directives.

Group lines contained betwen #if, #else, and #endif
preprocessor directives.

Group consecutive #include preprocessor directives.

Group consecutive top-level variable and type
declarations.

Group class members by public, protected, and private
visibility.

Hides the '#region' prefix from groups and shows only
the group name.

How the Preview pane refreshes its contects.

Description

Macros (system and global) used to replace the start of
a filename on project file addition.

Show the project nodes colored for identification in
the Project Explorer.

Display a confirmation prompt before deleting a
configuration folder cotaining properties.

922

Embedded Studio Reference Manual

Confirm Forget Modified Options
Proj ect Explorer/Confirm Rej ect Property
ChangesBoolean

Context Menu Edit Options At Top
Envi ronnent / Proj ect Expl orer/ Cont ext Menu
Properties PositionBoolean

Context Menu Uses Common Folder
Envi ronment / Proj ect Expl orer/ Cont ext Menu
Comon Fol der Boolean

External Editor
Envi r onnent / Pr oj ect
Edi t or FileName

Expl or er/ Ext er nal

Favorite Properties
Envi r onnent / Pr oj ect
Pr operti esStringList

Expl orer/ Favorite

Highlight Dynamic Items
Envi ronnent / Pr oj ect
Over | ayBoolean

Expl or er/ Show Dynami c

Highlight External Items
Envi ronnent / Pr oj ect
Local Overl ayBoolean

Expl or er/ Show Non-

Output Files Folder
Envi ronnent / Pr oj ect
Fi | esBoolean

Expl or er/ Show Qut put

Read-Only Data In Code
Envi ronnent / Proj ect Explorer/Statistics
Read- Onl y Data Handl i ngBoolean

Show Dependencies
Envi ronnent/ Proj ect Expl orer/ Dependenci es
Di spl ayEnumeration

Show Favorite Properties
Envi ronnent / Proj ect Expl orer/ Cont ext Menu
Show Favori t esBoolean

Show File Count on Folder
Envi ronnent / Pr oj ect Expl orer/ Count
Fi | esBoolean

Show Modified Options on Folder/File
Envi ronnent / Pr oj ect Expl or er/ Show
Modi fi ed Properti esBoolean

Show Options
Envi ronnent / Proj ect Expl orer/Properties
Di spl ayEnumeration

Appendices

Display a confirmation prompt before forgetting
option modifications.

Controls where Edit Options are displayed by the
Project Explorer's context menu.

Controls how common options are displayed by the
Project Explorer's context menu.

The file name of the application to use as the external
text editor

The favorite list of properties that are displayed starred
and before other properties in the Project Explorer.

Show an overlay on an item if it is populated from a
dynamic folder.

Show an overlay on an item if it is not held within the
project directory.

Show the build output files in an Output Files folder in
the project explorer.

Configures whether read-only data contributes to the
Code or Data statistic.

Controls how the dependencies are displayed.

Controls if favorite properties are displayed by the
Project Explorer's context menu.

Show the number of files contained in a folder as a
badge in the Project Explorer.

Show if a folder or file has modified options as a badge
in the Project Explorer.

Controls how the options are displayed.

923

Embedded Studio Reference Manual

Show Project Count on Solution
Envi ronnent / Pr oj ect Expl orer/ Count
Pr oj ect sBoolean

Show Source Control Annotation
Envi ronnent / Proj ect Expl orer/ Show Sour ce
Control Annot ati onBoolean

Show Statistics Rounded
Envi ronnment / Proj ect Explorer/Statistics
For mat Boolean

Source Control Status Column
Envi ronment / Proj ect Expl or er/ Show Sour ce
Control Col utmBoolean

Starred Files Names
Envi ronment / Proj ect Explorer/Starred File
Nanmes StringList

Statistics Column
Envi ronnent/ Proj ect Explorer/Statistics
Di spl ayBoolean

Synchronize Explorer With Editor
Envi ronnent / Proj ect Expl orer/ Sync
Edi t or Boolean

Use Common Options Folder
Envi ronnent / Proj ect Expl orer/ Conmon
Properties Di spl ayBoolean

Variable Window

Property

Show Variable Address Column
Envi ronnent / Vari abl e W ndow Show Addr ess
Col utmBoolean

Show Variable Size Column
Envi ronnent/ Vari abl e W ndow Show Si ze
Col ummBoolean

Show Variable Type Column
Envi ronnent/ Vari abl e W ndow Show Type
Col urmBoolean

Windows Window

Property

Appendices

Show the number of projects contained in a solution
as a badge in the Project Explorer.

Annotate items in the project explorer with their
source control status.

Show exact or rounded sizes in the project explorer.
Show the source control status column in the project
explorer.

The list of wildcard-matched file names that are
highligted with stars, to bring attention to themselves,
in the Project Explorer.

Show the code and data size columns in the Project
Explorer.

Synchronizes the Project Explorer with the document
being edited.

Controls how common options are displayed.

Description
Controls whether the variable address column is
displayed.

Controls whether the variable size column is displayed.

Controls whether the variable type column is
displayed.

Description

924

Embedded Studio Reference Manual Appendices

Buffer Grouping How the files are grouped or listed in the Windows
Envi r onnent / W ndows/ Gr oupi ngEnumeration window.

Show File Path as Tooltip
Envi ronnent / W ndows/ Show Fi | enane
Tool ti psBoolean

Show the full file name as a tooltip when hovering
over files in the Windows window.

Show Line Count and File Size Show the number of lines and size of each file in the
Envi r onnent / W ndows/ Show Si zesBoolean windows list.

925

Embedded Studio Reference Manual

General Build Options

Build

Property

Always Rebuild
bui | d_al ways_r ebui | dBoolean

Batch Build Configurations
bat ch_bui | d_confi gur at i onsStringList

Build Quietly
bui | d_qui et | yBoolean

Enable Unused Symbol Removal
bui | d_renmove_unused_synbol sBoolean

Exclude From Build
bui | d_excl ude_f r om bui | dBoolean

Include Debug Information

bui | d_debug_i nf or mat i onBoolean

Intermediate Directory
bui | d_i nt er medi at e_di r ect or yDirPath

Memory Map File
I'i nker _menory_map_fi | eProjFileName

Memory Map Macros
| i nker _nmenory_map_nmacr os StringList

Output Directory
bui | d_out put _di r ect or yDirPath

Project Can Build In Parallel
proj ect _can_buil d_i n_paral | el Enumeration

Project Dependencies
pr oj ect _dependenci esStringList

Project Directory
proj ect _di rect or yString

Appendices

Description

Specifies whether or not to always rebuild the project/
folder/file.

The set of configurations to batch build.

Suppress the display of startup banners and
information messages.

Enable the removal of unused symbols from the
executable.

Specifies whether or not to exclude the project/folder/
file from the build.

Specifies whether symbolic debug information is
generated.

Specifies a relative path to the intermediate file
directory. This property will have macro expansion
applied to it. The macro $(IntDir) is set to this value.

The name of the file containing the memory map
description.

Macro values to substitue in memory map nodes. Each
macro is defined as name=value and are seperated by
Specifies a relative path to the output file directory.
This property will have macro expansion applied

to it. The macro $(OutDir) is set to this value. The
macro $(RootRelativeOutDir) is set relative to the Root
Output Directory if specified.

Specifies that dependent projects can be built in
parallel. Default is No for Staging and Combining
project types, Yes for all other project types.

Specifies the projects the current project depends
upon.

Path of the project directory relative to the directory
containing the project file. The macro $(ProjectDir) is
set to the absolute path of this property.

926

Embedded Studio Reference Manual

Project Macros
macr osStringList

Project Type
pr oj ect _t ypeEnumeration

Property Groups File
property_groups_fil e_pat hProjFileName

Root Output Directory
bui | d_r oot _out put _di r ect or yDirPath

Suppress Warnings
bui | d_suppr ess_war ni ngsBoolean

Tool Chain Directory
bui | d_t ool chai n_di r ect or yDirPath

Treat Warnings as Errors
bui | d_treat_warni ngs_as_err or sBoolean

Combining

Property

Combine Command
conbi ne_conmandUnknown

Combine Command Working Directory
conbi ne_commrand_wdString

Output File Path
conbi ne_out put _fi | epat hString

Set To Read-only
conbi ne_set _r eadonl yEnumeration

External Build

Property

Appendices

Specifies macro values which are expanded in
project properties and for file names in Common
configuration only. Each macro is defined as
name=value and are seperated by ;.

Specifies the type of project to build. The options are
Executable, Library, Object file, Staging, Combining,
Externally Built Executable, Externally Built Library.

The file containing the property groups for this project.
This is applicable to Executable and Externally Built
Executable project types only.

Allows a common root output directory to be specified
that can be referenced using the $(RootOutDir) macro.

Don't report warnings.

Specify the root of the toolchain directory. This
property will have macro expansion applied to it. The
macro $(ToolChainDir) is set to this value.

Treat all warnings as errors.

Description

The command to execute. This property will have
macro expansion applied to it with the macro
$(CombiningOutputFilePath) set to the output
filepath of the combine command and the macro
$(CombiningRellnputPaths) is set to the (project
relative) names of all of the files in the project.

The working directory in which the combine command
is run. This property will have macro expansion applied
toit.

The output file path the stage command will create.
This property will have macro expansion applied to it.

Set the output file to read only or read/write.

Description

927

Embedded Studio Reference Manual Appendices

The command line to archive object files. This property
will have macro expansion applied to it with the
additional macros:

$(TargetPath) contains the full file name of the
Library File Name property

Archive CommanFj $(RelTargePath) contains the project directory
external _archi ve_commandUnknown relative file name of the Object File Name
property.

$(Objects) a space seperated list of files to archive,
generated from the source files of the project OR.
$(ObjectsFilePath) contains the full file name of
the file containing the list of files to link

The command line to assemble an assembly source
file. This property will have macro expansion applied
to it with the additional macros:

$(TargetPath) contains the full file name of the
Object File Name property.

$(RelTargePath) contains the project directory
relative file name of the Object File Name

property.

$(AsmOptions) contains a space seperated list
Assemble Command of options as set in the Additional Assembler
ext er nal _assenbl e_commandUnknown Options property.

$(DependencyPath) contains the filename of

the .d file that is required to be output by the
compilation for dependency support.

$(Defines) contains a space seperated list

of preprocessor definitions as set in the
Preprocessor Definitions propety.

$(Includes) contains a space seperated list of
user include directories as set in the User Include
Directories property.

Build Command The command line to build the executable e.g. make.
ext ernal _bui | d_commandUnknown This property will have macro expansion applied to it.

928

Embedded Studio Reference Manual Appendices

The command line to compile a C source file. This
property will have macro expansion applied to it with
the additional macros:

$(TargetPath) contains the full file name of the
Object File Name property.

$(RelTargePath) contains the project directory
relative file name of the Object File Name
property.

$(COptions) contains a space seperated list of
options as set in the C Additional C/C++ Compiler

C Compile Command Options property.

external _c_conpi | e_commandUnknown $(COnlyOptions) contains a space seperated list
of options as set in the C Additional C Compiler
Only Options property.

$(DependencyPath) contains the filename of

the .d file that is required to be output by the
compilation for dependency support.

$(Defines) contains a space seperated list

of preprocessor definitions as set in the
Preprocessor Definitions propety.

$(Includes) contains a space seperated list of
user include directories as set in the User Include
Directories property.

The command line to compile a C++ source file. This
property will have macro expansion applied to it with
the additional macros:

$(TargetPath) contains the full file name of the

Object File Name property.

$(RelTargePath) contains the project directory

relative file name of the Object File Name

property.

$(COptions) contains a space seperated list of

options as set in the C Additional C/C++ Compiler
C++ Compile Command Options property.

external _cpp_conpi | e_commandUnknown $(CppOnlyOptions) contains a space seperated
list of options as set in the C Additional C++

Compiler Only Options property.
$(DependencyPath) contains the filename of

the .d file that is required to be output by the
compilation for dependency support.

$(Defines) contains a space seperated list

of preprocessor definitions as set in the
Preprocessor Definitions propety

$(Includes) contains a space seperated list of
user include directories as set in the User Include
Directories property.

929

Embedded Studio Reference Manual

Clean Command
ext ernal _cl ean_commandUnknown

Link Command
ext ernal _| i nk_comrmandUnknown

Objects File
ext ernal _obj ects_fil e_naneUnknown

File

Property

File Encoding
fil e_codecEnumeration

File Name
fil e_nameString

File Open Action
fil e_open_wi t hEnumeration

File Type
fil e_t ypeEnumeration

Appendices

The command line to clean the executable e.g. make
clean. This property will have macro expansion applied
toit.

The command line to link an executable. This property
will have macro expansion applied to it with the
additional macros:

$(TargetPath) contains the full file name of the
Executable File Name property.
$(RelTargePath) contains the project directory
relative file name of the Executable File Name
property.

$(LinkOptions) contains a space seperated list of
options as set in the Additional Linker Options
property.

$(Objects) a space seperated list of files to link,
generated from the source files of the project and
the outputs of any dependent projects OR.
$(ObjectsFilePath) contains the full file name of
the file containing the list of files to link

The name of the file containing the list of files to
archive or link, generated from the source files of

the project.This property will have macro expansion
applied to it. The macro $(ObjectsFilePath) is set to this
value.

Description

Specifies the encoding to use when reading and
writing the file.

The name of the file. This property will have global
macro expansion applied to it. The following macros
are set based on the value: $(InputDir) relative
directory of file, $(InputName) file name without
directory or extension, $(InputFileName) file name,
S(InputExt) file name extension, $(InputPath) absolute
path to the file name, $(RellnputPath) relative path
from project directory to the file name.

Specifies how to open the file when it is double
clicked.

The type of file. Default setting uses the file extension
to determine file type.

930

Embedded Studio Reference Manual

Flag
fil e_fl agEnumeration

Folder

Property

Dynamic Folder Directory
pat hDirPath

Dynamic Folder Exclude
excl udeStringlList

Dynamic Folder Filter
filterString

Dynamic Folder Recurse
r ecur seBoolean

Unity Build Exclude Filter
uni ty_bui |l d_excl ude_fil ter String

Unity Build File Name
unity_buil d_fil e_nameFileName

General

Property

Inherited Configurations
i nherited_configurationsStringList

Library

Property

Library File Name
bui | d_out put _fi | e_naneFileName

Use Indirect File
arm archi ver i ndirect fil eBoolean

Package

Property

Package Dependencies
package_dependenci esStringList

Appendices

Flag which you can use to draw attention to important
files in your project.

Description

Dynamic folder directory specification.

Dynamic folder exclude specification - ; seperated
wildcards.

Dynamic folder filter specification - ; seperated
wildcards.

Dynamic folder recurse into subdirectories.

The filter specification to exclude from the unity build

- ; seperated wildcards.

The file name created that #includes all files in the
folder for the unity build.

Description

The list of configurations that are inherited by this
configuration.

Description
Specifies a name to override the default library file

name.

Create indirect file for input files.

Description

Specifies the packages the current project depends
upon.

931

Embedded Studio Reference Manual

Project

Property

Flag
proj ect _f | agEnumeration

Solution

Property

Flag
sol uti on_f | agEnumeration

Source Code

Property

Inhibit Source Indexing
proj ect _i nhi bi t _i ndexi ngBoolean

Staging

Property

Output File Path
st age_out put _fi | epat hString

Set To Read-only
st age_set _r eadonl yEnumeration

Stage Command
st age_commandUnknown

Stage Command Working Directory
st age_conmand_wdString

Stage Post-Build Command
st age_post _bui | d_comandUnknown

Stage Post-Build Command Working Directory
st age_post _bui | d_command_wdString

Appendices

Description

Flag which you can use to draw attention to important
projects in your solution.

Description

Flag which you can use to draw attention to important
projects in your solution.

Description

Disable source indexing for projects that would
normally be indexed (executable and library projects).

Description

The output file path the stage command will create.
This property will have macro expansion applied to it.

Set the output file permissions to read only or read/
write.

The command to execute. This property will have
macro expansion applied to it with the additional
$(StageOutputFilePath) macro set to the output
filepath of the stage command.

The working directory in which the stage command is
run. This property will have macro expansion applied
toit.

The command to execute after staging commands
have executed. This property will have macro
expansion applied to it.

The working directory where the post build command
runs. This property will have macro expansion applied
toit.

932

Embedded Studio Reference Manual

Compilation Options

Assembler

Property

Additional Assembler Options
asm addi ti onal _opti onsStringList

Additional Assembler Options From File
asm addi ti onal _opti ons_from fil eProjFileName

Assembler
arm assenbl er _vari ant Enumeration

Code Generation

Property

ARM Advanced SIMD Type
arm advanced_SI MD_t ypeEnumeration

Appendices

Description

Enables additional options to be supplied to the
assembler. This property will have macro expansion
applied to it.

Enables additional options to be supplied to the
assembler from a file. This property will have macro
expansion applied to it.

Specifies which assembler to use.

Description

Specifies the Advanced SIMD type to generate code
for. The options are:

NEON - Cortex-A based processors

933

Embedded Studio Reference Manual Appendices

Specifies the version of the instruction set to generate
code for. The options are:

v4T - ARM7TDMI and ARM920T processors
v5TE - ARMOE, Feroceon and XScale processors
v6 - ARM11 processors

v6M - Cortex-MO and Cortex-M1 processors
v7M - Cortex-M3 processors

V7EM - Cortex-M4 and Cortex-M7 processors
V7R - Cortex-R processors

v7A - Cortex-A processors

v8M_Baseline

. v8M_Mainline
ARM Architecture

arm_ ar chi t ect ur eEnumeration The corresponding preprocessor definitions:

__ARM_ARCH_4T__
__ARM_ARCH_5TE__

_ ARM_ARCH_6__

__ ARM_ARCH_6M__
__ARM_ARCH_7M__

__ ARM_ARCH_7EM__
__ARM_ARCH_7R__

__ ARM_ARCH_7A__
__ARM_ARCH_8M_BASELINE__
__ARM_ARCH_8M_MAINLINE__

are defined.

Specifies the core to generate code for. The options
are:

ARM7TDMI, ARM7TDMI-S, ARM720T
ARM920T, ARM946E-S, ARM966E-S, ARMO6SE-S,
ARM926EJ-S
ARM1136J-S, ARM1136JF-S, ARM1176JZ-S,
ARM1176JZF-S
ARM Core Type Cortex-MO, Cortex-M0O+, Cortex-M1, Cortex-
arm cor e_t ypeEnumeration M3, Cortex-M4, Cortex-M7, v8M_Baseline,
v8M_Mainline
Cortex-R4, Cortex-R4F, Cortex-R5
Cortex-A5, Cortex-A7, Cortex-A8, Cortex-A9
XScale
None

If this property is set to None then the architecture
property is used

934

Embedded Studio Reference Manual

Appendices

Specifies the FP ABI type to generate code for. The
options are:

ARM FP ABI Type
ar m _f p_abi Enumeration

Soft generate calls to the C library to implement
floating point operations.

SoftFP generate VFP code to implement floating
point operations.

Hard generate VFP code to implement floating
point operations and use VFP registers to pass
floating point parameters on function calls.
None will not specify the FP ABI or the FPU.

Specifies the FPU type to generate code for. The
options are:

ARM FPU Type
arm f pu_t ypeEnumeration

VFP - ARM9/ARM11 based processors

VFP9 - the same as VFP

VFPv3-D32 - Cortex-A/Cortex-R based processors
VFPv3-D16 - Cortex-A/Cortex-R based processors
VFPv4-D32 - Cortex-A/Cortex-R based processors
VFPv4-D16 - Cortex-A/Cortex-R based processors
FPv4-SP-D16 - Cortex-M4 processors
FPv5-SP-D16 - Cortex-M7 processors

FPv5-D16 - Cortex-M7 processors

The corresponding preprocessor definitions:

_ ARM_ARCH_VFP__
__ARM_ARCH_VFP3_D32__
__ARM_ARCH_VFP3_D16__
__ARM_ARCH_VFP4_D32__

_ ARM_ARCH_VFP4_D16__
__ARM_ARCH_FPV4_SP_D16__
__ARM_ARCH_FPV5_SP_D16__
_ ARM_ARCH_FPV5_D16__

are defined.

Specifies whether ARM/Thumb interworking code
ARM/Thumb Interworking should be generated. Setting this property to No
ar m_i nt er wor kEnumeration may result in smaller code sizes when compiling for
architecture v4T.

Byte Order
ar m_endi anEnumeration

CMO0/CM0+/CM1 Has Small Multiplier
arm cnD_has_smal | _mul ti pli er Boolean

Specify the byte order of the target processor.

The CM0/CMO0+/CM1 core has the small multiplier.

Debugging Level Specifies the level of debugging information to
gcc_debuggi ng_| evel Enumeration generate.

Dwarf Version Specifies the version of Dwarf debugging information
gcc_dwar f _ver si onEnumeration to generate.

935

Embedded Studio Reference Manual

Emit Assembler CFI
gcc_enmit_assenbl er _cfi Boolean

Enable All Warnings
gcc_enabl e_al | _war ni ngsBoolean

Enable Exception Support
cpp_enabl e_except i onsBoolean

Enable RTTI Support
cpp_enabl e_rtti Boolean

Enumeration Size
gcc_short _enunEnumeration

Instruction Set
arm i nstructi on_set Enumeration

Instrument Functions
arm.i nstrunment _functi onsBoolean

Long Calls
arm | ong_cal | sBoolean

Merge Globals [clang]
cl ang_ner ge_gl obal sBoolean

No COMMON
gcc_no_conmonBoolean

Omit Frame Pointer
gcc_omi t_frame_poi nt er Boolean

Optimization Level
gcc_optim zati on_| evel Enumeration

Treat 'double’ as 'float’
doubl e_i s_f I oat Boolean

Use Builtins
arm use_bui | ti nsBoolean

V7A/V7R Has Integer Divide Instructions

arm v7_has_divide_ instructionsBoolean

Wide Character Size
gcc_wchar _si zeEnumeration

Appendices

Emit DWARF 2 unwind info using GAS .cfi_* directives
rather than a compiler generated .eh_frame section.

Enables all the warnings about constructions that
some users consider questionable, and that are easy
to avoid (or modify to prevent the warning), even in
conjunction with macros.

Specifies whether exception support is enabled for C+
+ programs.

Specifies whether RTTI support is enabled for C++
programs.

Select between minimal container sized enumerations
and int sized enumerations.

Specifies the instruction set to generate code for.

Specifies whether instrumentation calls are generated
for function entry and exit.

Specifies whether function calls are made using
absolute addresses.

Select whether global declarations are merged. This
may reduce code size and increase execution speed
for some applications. However, if functions are not
used in an application and are eliminated by the
linker, merged globals may increase the data size
requirement of an application.

Don't put globals in the common section

Specifies whether a frame pointer register is omitted if
not required.

Specifies the optimization level to use.

Forces the compiler to make 'double’ equivalent to
'float'.

Use built-in library functions e.g. scanf

The V7A/V7R architecture has integer divide
instructions in both ARM and Thumb instruction sets.

Select between standard 32-bit or shorter 16-bit size
for wide characters and wchar _t.

936

Embedded Studio Reference Manual

Compiler
Property

Additional C Compiler Only Options
c_only_addi ti onal _opti onsStringList

Additional C Compiler Only Options From File
c_only_additional _options_fromfil eProjFileNa

Additional C++ Compiler Only Options
cpp_only_additi onal _opti onsStringList

Additional C++ Compiler Only Options From File
cpp_only_additional _options_fromfil eProjFile

Additional C/C++ Compiler Options
c_addi ti onal _opti onsStringList

Additional C/C++ Compiler Options From File
c_addi ti onal _options_from fil eProjFileName

C Language Standard
gcc_c_l anguage_st andar dEnumeration

C++ Language Standard
gcc_cpl uspl us_I anguage_st andar dEnumeration

Compiler
arm conpi | er _vari ant Enumeration

Enforce ANSI Checking
c_enf orce_ansi _checki ngBoolean

Keep Assembly Source
arm keep_assenbl yBoolean

Keep Preprocessor Output
arm keep_pr eprocessor _out put Boolean

Object File Name
bui | d_obj ect _fi |l e_nanmeFileName

Supply Absolute File Path
arm suppl y_absol ute_fil e_pat hBoolean

Appendices

Description

Enables additional options to be supplied to the
C compiler only. This property will have macro
expansion applied to it.

Enables additional options to be supplied to the C
compiler only from a file. This property will have macro
expansion applied to it.

Enables additional options to be supplied to the
C++ compiler only. This property will have macro
expansion applied to it.

Enables additional options to be supplied to the C++
compiler only from a file. This property will have macro
expansion applied to it.

Enables additional options to be supplied to the C/C+
+ compiler. This property will have macro expansion
applied toit.

Enables additional options to be supplied to the C/C
++ compiler from a file. This property will have macro
expansion applied to it.

Specifies the language standard to use when
compiling Cfiles.

Specifies the language standard to use when
compiling Cfiles.

Specifies which compiler to use.

Perform additional checks for ensure strict
conformance to the selected ISO (ANSI) C or C++
standard.

Specifies whether assembly code generated by the
compiler is kept.

Specifies whether preprocessor output generated by
the compiler is kept.

Specifies a name to override the default object file
name.

Specifies whether absolute file paths are supplied to
the compiler.

937

Embedded Studio Reference Manual

Preprocessor

Property

Ignore Includes
c_i gnore_i ncl udesBoolean

Preprocessor Definitions
c_preprocessor _definitionsStringList

Preprocessor Undefinitions
c_preprocessor _undefini ti onsStringList

System Include Directories
c_system.incl ude_di rect ori esStringList

Undefine All Preprocessor Definitions
c_undefine_al |l _preprocessor_definitionsBool

User Include Directories
c_user _i ncl ude_di r ect ori esStringList

Section

Property

Code Section Name
def aul t _code_sect i onString

Constant Section Name
def aul t _const _sect i onString

Data Section Name
def aul t _dat a_sect i onString

ISR Section Name
defaul t _i sr_secti onString

Vector Section Name
def aul t _vect or _secti onString

Zeroed Section Name
defaul t _zeroed_secti onString

User Build Step

Property

Post-Compile Command
conpi | e_post _bui | d_conmandUnknown

Appendices

Description
Ignore the include directories properties.
Specifies one or more preprocessor definitions. This

property will have macro expansion applied to it.

Specifies one or more preprocessor undefinitions. This
property will have macro expansion applied to it.

Specifies the system include path. This property will
have macro expansion applied to it.

Does not define any standard preprocessor definitions.

Specifies the user include path. This property will have
macro expansion applied to it.

Description

Specifies the default name to use for the program code
section.

Specifies the default name to use for the read-only
constant section.

Specifies the default name to use for the initialized,
writable data section.

Specifies the default name to use for the ISR code.
Specifies the default name to use for the interrupt
vector section.

Specifies the default name to use for the zero-
initialized, writable data section.

Description

A command to run after the compile command has
completed. This property will have macro expansion
applied to it with the additional $(TargetPath) macro
set to the output filepath of the compiler command.

938

Embedded Studio Reference Manual Appendices

The working directory where the post-compile
command is run. This property will have macro
expansion applied to it.

Post-Compile Working Directory
conpi | e_post _bui | d_conmand_wdDirPath

Pre-Compile Command A command to run before the compile command. This
conpi | e_pre_bui | d_commandUnknown property will have macro expansion applied to it.
Pre-Compile Command Output File Path The pre-compile generated file name. This property

conpi |l e_pre_buil d_command_out put _fil e_nane will have macro expansion applied to it.

The working directory where the pre-compile
command is run. This property will have macro
expansion applied to it.

Pre-Compile Working Directory
conpi | e_pre_bui | d_conmand_wdDirPath

939

Embedded Studio Reference Manual

Debugging Options

Debugger

Property

Command Arguments
debug_command_ar gunment sString

DABORT Handler Name
dabor t Handl er _naneString

Debug Dependent Projects
debug_dependent _pr oj ect sBoolean

Debug Symbols File
ext ernal _debug_synbol s_fi | e_naneProjFileName

Debug Symbols Load Address
ext ernal _debug_synbol s_| oad_addr essString

Default debuglO implementation
arm debugl O_|I npl ement at i onEnumeration

Entry Point Symbol
debug_entry_poi nt _synbol String

FIQ Handler Name
fi gHandl er _nameString

IRQ Handler Name
i rgHandl er _naneString

Ignore .debug_aranges Section
debug_i gnor e_debug_ar angesBoolean

Ignore .debug_frame Section
debug_i gnor e_debug_f r ameBoolean

Initial Breakpoint Is Set

debug_i ni ti al _breakpoi nt _set _opti onEnumerati

Leave Target Running
debug_I eave_t ar get _r unni ngBoolean

Load Offset
debug_Il oad_fil e_of f set String

Load Offset Symbol Limit
debug_l oad_file_limtString

Appendices

Description

The command arguments passed to the executable.
This property will have macro expansion applied to it.

The name of the dabort handler symbol. Used for
backtracing out of exception handlers.

Debugger will debug dependent projects.

The name of the debug symbols file. This property will
have macro expansion applied to it. If it is not defined
then the main load file is used.

The (code) address to be added to the debug symbol

(code) addresses.

The default debuglO implementation.

Debugger will start execution at symbol if defined.

The name of the fig handler symbol. Used for
backtracing out of exception handlers.

The name of the irq handler symbol. Used for
backtracing out of exception handlers.

The debugger will not use the .debug_aranges section.

The debugger will not use the .debug_frame section.

Specify when the initial breakpoint should be set

Debugger will leave the target running on debug stop.

The offset to add to the load address of the load
file.This offset is added to any absolute relocations
of symbols (whose address is less than Load Offset
Symbol Limit) if the load file contains relocation
sections.

If set apply the Load Offset logic to only those symbols
that have addresses less than the specified limit.

940

Embedded Studio Reference Manual

PABORT Handler Name
pabor t Handl er _nameString

Register Definition File
debug_regi ster_definition_fil eProjFileName

Reserved Member Name
reser vedMenber _naneString

Run To
debug_i ni ti al _br eakpoi nt String

SWI Handler Name
swi Handl er _naneString

Start Address
external _start_addr essString

Start From Entry Point Symbol
debug_start _from entry_poi nt _synbol Boolean

Startup Completion Point
debug_start up_conpl eti on_poi nt String

Target Connection
debug_t arget _connect i onEnumeration

Thread Maximum
debug_t hr eads_nmaxIntegerRange

Threads Script File
debug_t hreads_scri pt ProjFileName

Type Interpretation File
debug_t ype_fi | eFileName

UNDEF handler name
undef Handl er _naneString

Working Directory
debug_wor ki ng_di r ect or yDirPath

J-Link
Property

Additional J-Link Options
JLi nkExecut eCommandStringList

Enable Adaptive Clocking
adapt i veEnumeration

Appendices

The name of the pabort handler symbol. Used for
backtracing out of exception handlers.

The name of the file containing register definitions.

The struct reserved member name. Struct members
that contain the (case insensitive) string will not be
displayed.

An initial breakpoint to set if no other breakpoints exist

The name of the swi handler symbol. Used for
backtracing out of exception handlers.

The address to start the externally built executable
running from.

If yes the debugger will start execution from the entry
point symbol.If no the debugger will start execution
from the core specific location.

Specifies the point in the program where startup is
complete. Software breakpoints and debuglO will be
enabled after this point has been reached.

Specifies the target to connect to for debugging
actions.

The maximum number of threads to display.

The threads script used by the debugger.

Specifies the type interpretation file to use.
The name of the undef handler symbol. Used for
backtracing out of exception handlers.

The working directory for a debug session. This
property will have macro expansion applied to it.

Description

Specify additional J-Link options to allow enabling or
disabling advanced features and fine tuning.
For more information see J-Link Command Strings

Adaptive clocking is enabled.

941

https://wiki.segger.com/J-Link_Command_Strings

Embedded Studio Reference Manual

Exclude Flash Cache Range
JLi nkExcl udeFl ashCacheRangeString

Host Connection
Connect i onEnumeration

JTAG Instruction Register Size Before Target
arm | i nker _jtag_pad_post _i rIntegerRange

JTAG Number Of Devices Before Target
arm | i nker _j t ag_pad_post _dr IntegerRange

Log File
JLi nkLogFi | eNameFileName

Script File
JLi nkScri pt Fi | eNanmeFileName

Show Log Messages In Output Window
showLogEnumeration

Speed
speedintegerRange

Supply Power
suppl yPower Enumeration

Target Interface Type
arm_target _interface_typeEnumeration

Appendices

Define a memory range that should not be cached by
J-Link.

By default all areas that J-Link knows to be Flash
memory are cached.

This means that it is assumed that the contents of
these areas do not change during program execution.
If this assumption does not hold true, typically because
the target program modifies the flash content for data
storage, then the affected area should be excluded
from the cache.

This may slightly reduce the debugging speed.
Syntax: either 'start_address-end_address' or
‘address,size’. For example: 0x08000000,0x1000.

Defines how to connect the host to the J-Link:

"USB": Connect to J-Link via USB

"USB S/N": Connect to J-Link with specified serial
number via USB e.g. USB 174300001

"IP S/N": Connect to J-Link with specified serial
number via IP e.g. IP 174300001

"IP n.n.n.n": Connect to J-Link with specified IP
address e.g. IP 192.168.20.20

Specifies the number of bits in the instruction
register before the target (as seen from TDI), which
is the number of bits to pad the JTAG instruction
register with the BYPASS instruction after the target
instruction.

Specifies the number of devices before the target (as
seen from TDI), which is the number of bits to pad the
JTAG data register.

The file to output the J-Link log to.

The file path of the optional J-Link script file to use.

Display the J-Link log messages to the output window.

The required JTAG/SWD clock frequency in kHz (0 to
auto-detect best possible).

The J-Link supplies power to the target.

Specifies the type of interface the target has. The
options are:

JTAG - Use JTAG interface
SWD - Use SWD interface

942

Embedded Studio Reference Manual

Loader

Property

Additional Load File Address[0]
debug_addi ti onal _| oad_fil e_addr essString

Additional Load File Address[1]
debug_addi ti onal _| oad_fi |l e_addr ess1String

Additional Load File Address[2]
debug_addi ti onal _| oad_fil e_addr ess2String

Additional Load File Address[3]
debug_addi ti onal _| oad_fil e_addr ess3String

Additional Load File Type[0]
debug_addi ti onal _| oad_fil e_t ypeEnumeration

Additional Load File Type[1]
debug_addi tional _| oad_fil e_t ypelEnumeration

Additional Load File Type[2]
debug_addi ti onal _| oad_fil e_t ype2Enumeration

Additional Load File Type[3]
debug_addi ti onal _| oad_fil e_t ype3Enumeration

Additional Load File[0]
debug_addi ti onal _| oad_fi | eProjFileName

Additional Load File[1]
debug_addi ti onal _| oad_fi | e1ProjFileName

Additional Load File[2]
debug_addi ti onal _| oad_fi | e2ProjFileName

Additional Load File[3]
debug_addi ti onal _| oad_fi | e3ProjFileName

Load ELF Sections
debug_I| oad_sect i onsEnumeration

Load File
ext ernal _buil d_fil e_naneProjFileName

Load File Address
ext ernal _| oad_addr essString

Load File Type
external _| oad_fil e_t ypeEnumeration

No Load Sections
target | oader _no_| oad_sect i onsStringList

Appendices

Description

The address to load the additional load file.

The address to load the additional load file.

The address to load the additional load file.

The address to load the additional load file.

The file type of the additional load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

The file type of the additional load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

The file type of the additional load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

The file type of the additional load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

Additional file to load on debug load. This property will
have macro expansion applied to it.

Additional file to load on debug load. This property will
have macro expansion applied to it.

Additional file to load on debug load. This property will
have macro expansion applied to it.

Additional file to load on debug load. This property will
have macro expansion applied to it.

The debugger will load ELF sections rather than ELF
programs.

The name of the main load file. This property will have
macro expansion applied to it. If it is not defined then
the output filepath of the linker command is used.

The address to download the main load file to.

The file type of the main load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

Names of (loadable) sections not to load.

943

Embedded Studio Reference Manual

Simulator

Property

Memory Simulation Filename

Appendices

Description

Specifies the dll that simulates the memory system.

arm si mul at or _nmenory_si mul ati on_fi | enamePrc This property will have macro expansion applied to it.

Memory Simulation Parameter

Parameter passed to the memory simulation.The
format of this is specific to the memory simulation.
The default memory simulation takes a list of RX[RWX

arm si mul at or _nmenory_si mul ati on_par anet er Si'hex start address', 'hex size in bytes', 'default hex

Memory Simulation Parameter Macros

word value' for example RX 00000000, 10000000,
FFFFFFFF;RWX 10000000, 10000000, CDCDCDCD

Macros to apply to the parameter passed to the

arm si mul at or _nmenory_si mul ati on_par anet er _ memory simulation on creation.

Stop On Memory Error

Specifies the simulator behaviour when a memory

arm si nul at or _st op_on_r ead_wr i t eEnumeration error occurs.

Trace Buffer Size

arm si nul at or_num trace_entri esinteger

Target Script

Property

Attach Script
target _attach_scri ptJavaScript

Connect Script
target _connect _scri pt JavaScript

Debug Begin Script
t ar get _debug_begi n_scri pt JavaScript

Debug End Script
tar get _debug_end_scri pt JavaScript

Disconnect Script
target _di sconnect _scri pt JavaScript

Reset Script
target _reset_scri pt JavaScript

Target Script File
target _script_fil eFileName

Target Trace

Property

The number of trace entries to store.

Description

The script that is executed when the target is attached
to.

The script that is executed when the target is
connected to.

The script that is executed when the debugger begins
a debug session.

The script that is executed when the debugger ends a
debug session.

The script that is executed when the target is
disconnected from.

The script that is executed when the target is reset.
The target script file, the contents of this file are

prepended to script project properties before they are
executed.

Description

944

Embedded Studio Reference Manual

ITM Stimulus Ports Enable

armtarget _itmstinmulus_port_enabl eintegerHe

ITM Stimulus Ports Privilege

Appendices

Specifies the ITM Stimulus ports to enable.

Specifies the ITM Stimulus ports to enable.

armtarget _itmstimulus_port_privil egelntege

ITM Timestamping

armtarget_itmtimestanpi ng_enabl eEnumeratio

ITM/DWT Data Trace PC
arm target_dwt _data_trace_PCBoolean

ITM/DWT PC Sampling

arm target _dwt _PC sanpling_enabl eEnumeration

ITM/DWT Trace Exceptions

armtarget _dwt _trace_excepti onsBoolean
MTB RAM Address

arm target _ntb_ram addressintegerHex
MTB RAM Size

armtarget _mtb_ram si zeEnumeration

SWO Baud Rate
arm target _trace_SWO speedintegerRange

Trace Clock Speed
arm target _trace_cl ock_speedintegerRange

Trace Initialize Script
target _trace_initialize_scri ptJavaScript

Trace Interface Type
armtarget _trace_interface_typeEnumeration

Specifies ITM timestamping. The options are:

Disable - disable timestamping
Local - use the local timestamp clock
Global - use the global timestamp clock

Specifies whether to trace the PC on data trace.

Specifies the DWT PC sampling rate.

Specifies whether to trace exception entry and return.

Specifies the MTB RAM Address - note that this must
be aligned to the MTB RAM size.

Specifies the MTB RAM Size

The baud rate of the SWO.

The speed of the trace clock. This is usually the same as
the CPU clock and is used to program the prescaler for
the SWO

The script that is executed to initialize the target
trace hardware. When executed this script has the
macro $(TracelnterfaceType) expanded with value
of the Trace Interface Type property, typically it is
EnableTrace("$(TracelnterfaceType)").

Specifies the type of trace interface the target has. The
options are:

SWO - Use asynchronous SWO trace interface.
TracePort - Use synchronous parallel trace
interface.

ETB - Use on-chip embedded trace buffer.
MTB - Use on-chip MTB - Cortex-MO0+ only.

PC Sampling - sample the PC.

None

945

Embedded Studio Reference Manual

Trace Port Size
armtarget _trace_port_si zeEnumeration

Appendices

Specifies the trace port size the target has. The options

are:

946

1-bit
2-bit
4-bit
8-bit
16-bit
24-bit
32-bit

Embedded Studio Reference Manual Appendices

Executable Project Options

Library

Property

Exclude Default Library Helper Functions
link use nulti_threaded_librariesBoolean

Include Standard Libraries
l'i nk_i ncl ude_standard_| i brari esBoolean

Library Instruction Set
arm_|library_instruction_set Enumeration

Library Optimization
arm.|ibrary_optim zati onEnumeration

Standard Libraries Directory
|l i nk_standard_Ili braries_directoryString

Use GCC Libraries
arm use_gcc_l i brari esBoolean

Linker

Property

Additional Input Files
| i nker _addi ti onal _fil esStringList

Additional Linker Options
| i nker _addi ti onal _opti onsStringList

Additional Linker Options From File

Description

Specifies whether to exclude default library helper
functions.

Specifies whether the standard libraries should be
linked into your application.

Specifies the instruction set variant of the libraries to
link with.

Specifies whether to link with libraries optimized for
speed or size.

Specifies where to find the standard libraries

Use GCC exception and RTTlI libraries.

Description

Enables additional object and library files to be
supplied to the linker.

Enables additional options to be supplied to the linker.

Enables additional options to be supplied to the linker

l'i nker _addi tional _options_from fil eProjFileNafrom a file.

Additional Output File Gap Fill Value

The value to fill gaps between sections in additional

arm | i nker _addi ti onal _output_file_gap_fill outputfile.

Additional Output Format
| i nker _out put _f or mat Enumeration

Check For Memory Segment Overflow

The format used when creating an additional linked

output file.The options are:

None do not create an additional output file.
bin create a binary file.

srec create a Motorola S-Record file.

hex create an Intel Hex file.

Specifies whether the linker should check whether

arm |ibrary_check_nmenory_segnent _over f | owB program sections fit in their memory segments.

947

Embedded Studio Reference Manual

DebuglO Implementation
arm_ | i nk_debugi o_t ypeEnumeration

Default Fill Pattern

Appendices

Specifies which DebuglO mechanism to link in.
Options are Breakpoint (hardware breakpoint
instruction and memory locations are used, not not
available on v4t architecture), DCC (ARM debug
communication channel is used), and Memory Poll
(memory locations are polled).

Specifies the default pattern used to fill unspecified
regions of memory in a generated linker script. This

arm | inker_script_generator_default_fill_p pattern maybe overidden by the fill attribute of a

Emit Relocations
armlinker emt relocati onsBoolean

Entry Point
gcc_entry_poi nt String

Generate Map File
I'i nker _map_fi | eBoolean

Keep Linker Script File
keep_linker_script_fil eBoolean

Keep Symbols
I'i nker _keep_synbol sStringList

Linker Script File
i nk_li nker_scri pt_fil eProjFileName

Linker Symbol Definitions

|'i nk_synbol _defi nitionsStringList

Section Placement File

|'i nker _secti on_pl acerment _fi | eProjFileName

Section Placement Macros
| i nker _secti on_pl acement _nmacr osStringList

Section Placement Segments
| i nker _secti on_pl acenment s_segnent sStringList

Strip Debug Information
i nker_strip_debug_i nf ormati onBoolean

Strip Symbols
gcc_stri p_synbol sBoolean

Suppress Warning on Mismatch
arm | i nker _no_war n_on_nmi smat chBoolean

Treat Linker Warnings as Errors
arm | i nker _treat_warni ngs_as_error sBoolean

program section in the section placement file.

Output relocation information into the executable.

Specifies the entry point of the program.

Specifies whether to generate a linkage map file.

Keep the generated linker script file.

Specifies the symbols that should be kept by the linker
even if they are not reachable.

The name of the manual linker script file.

Specifies one or more linker symbol definitions.

The name of the file containing section placement
description.

Macro values to substitue in section placement nodes -
MACRO1=value1;MACRO2=value2.

The start and size of named segments in the section
placement file, these are used when no memory

map file is available.Each segment is specified by
NAME RWX HEXSTART HEXSIZE for example FLASH RX
0x08000000 0x00010000

Specifies whether debug information should be
stripped from the linked image.

Specifies whether symbols should be stripped.

No warning on mismatched object files/libraries.

Treat linker warnings as errors.

948

Embedded Studio Reference Manual

Use Indirect File
arm | i nker _i ndi rect_fil eBoolean

Use Manual Linker Script
link_use_linker_script_fil eBoolean

Printf/Scanf

Property

Printf Floating Point Supported
i nker _printf_fp_enabl edBoolean

Printf Integer Support
linker_printf_fm | evel Enumeration

Printf Width/Precision Supported

Appendices

Create indirect file for input files.

Specifies whether to use a manual linker script.

Description

Are floating point numbers supported by the printf
function group.

The largest integer type supported by the printf
function group.

Enables support for width and precision specification

l'i nker _printf_wi dth_precision_supportedBoolin the printf function group.

Scanf Classes Supported

Enables support for %l...] and %[A...] character class

| i nker _scanf _char act er _gr oup_mat chi ng_enab matching in the scanf functions.

Scanf Floating Point Supported
I'i nker _scanf _f p_enabl edBoolean

Scanf Integer Support
I i nker _scanf _f nt _| evel Enumeration

Wide Characters Supported
I'i nker _printf_wchar _enabl edBoolean

Runtime Memory Area

Property

Heap Size
arm_| i nker _heap_si zelntegerRange

Main Stack Size
arm | i nker _st ack_si zelntegerRange

Process Stack Size
arm | i nker _process_st ack_si zelntegerRange

Stack Size (Abort Mode)
arm_| i nker _abt _stack_si zelntegerRange

Stack Size (FIQ Mode)
arm | i nker _fiq_stack_si zelntegerRange

Stack Size (IRQ Mode)
arm | i nker _irqg_stack_si zelntegerRange

Are floating point numbers supported by the scanf
function group.

The largest integer type supported by the scanf
function group.

Are wide characters supported by the printf function
group.

Description

The size of the heap in bytes.

The size of the main stack in bytes.

The size of the process stack in bytes.

The size of the Abort mode stack in bytes.

The size of the FIQ mode stack in bytes.

The size of the IRQ mode stack in bytes.

949

Embedded Studio Reference Manual

Stack Size (Supervisor Mode)
arm_| i nker _svc_st ack_si zelntegerRange

Stack Size (Undefined Mode)
arm | i nker _und_st ack_si zelntegerRange

User Build Step

Property

Link Patch Command
|'i nker _pat ch_bui | d_commandUnknown

Link Patch Working Directory
| i nker _pat ch_bui | d_conmand_wdDirPath

Post-Link Command
I'i nker _post _bui | d_comandUnknown

Post-Link Output File
| i nker _post _bui | d_command_out put _fi | eString

Post-Link Working Directory
| i nker _post _bui | d_conmand_wdDirPath

Pre-Link Command
| i nker _pre_bui | d_commandUnknown

Pre-Link Working Directory
I'i nker _pre_bui | d_conmmand_wdDirPath

Appendices

The size of the Supervisor mode stack in bytes.

The size of the Undefined mode stack in bytes.

Description

A command to run after the link but prior to additional
binary file generation. This property will have

macro expansion applied to it with the additional
$(TargetPath) macro set to the output filepath of the
linker command.

The working directory where the link patch command
is run. This property will have macro expansion applied
toit.

A command to run after the link command has
completed.This property will have macro expansion
applied to it with the additional $(TargetPath) macro
set to the output filepath of the linker command and
$(PostLinkOutputFilePath) set to the value of the
output filepath of the post link command.

The name of the file created by the post-link
command. This property will have macro expansion
applied toit.

The working directory where the post-link command is
run. This property will have macro expansion applied
toit.

A command to run before the link command. This
property will have macro expansion applied to it.

The working directory where the pre-link command is
run. This property will have macro expansion applied
to it.

950

Embedded Studio Reference Manual

System Macros

System Macro Values

Property

S(Date)

$(Dat e) String
$(DateDay)

$(Dat eDay) String

$(DateMonth)
$(Dat eMont h) String

S(DateYear)
$(Dat eYear) String

$(DesktopDir)

$(Deskt opDi r) String
$(DocumentsDir)

$(Docunent sDi r) String
$(HomeDir)

$(HoneDi r) String
$(HostArch)

$(Host Ar ch) String

$(HostDLL)
$(Host DLL) String

$(HostDLLExt)
$(Host DLLEXt) String

S(HostEXE)
$(Host EXE) String

$(HostOS)

$(Host OS) String
$(Micro)

$(M cr o) String
$(PackagesDir)

$(PackagesDi r) String

S(Platform)
$(Pl at f or i) String

$(ProductNameShort)
$(Product NarmeShor t) String

S(StudioArchiveFileExt)
$(St udi 0Ar chi veFi | eExt) String

Appendices

Description

Day Month Year e.g. 21 June 2011.

Year e.g. 2011.

Month e.g. June.

Day e.g. 21.

Path to users desktop directory.

Path to users documents directory.

Path to users home directory.
The CPU architecture that SEGGER Embedded Studio is
running on e.g. x86.

The file extension for dynamic link libraries on the CPU
that SEGGER Embedded Studio is running on e.g. .dIl.

The file extension for dynamic link libraries used by the
operating system that SEGGER Embedded Studio is
running on e.g. .dll, .so, .dylib.

The file extension for executables on the CPU that
SEGGER Embedded Studio is running on e.g. .exe.

The name of the operating system that SEGGER
Embedded Studio is running on e.g. win.

The SEGGER Embedded Studio target e.g. ARM.

Path to the users packages directory.

The target platform.

The product name.

The filename extension of a studio archive file.

951

Embedded Studio Reference Manual

$(StudioBuildToolExeName)
$(St udi oBui | dTool ExeNane) String

$(StudioBuildToolName)
$(St udi oBui | dTool Nane) String

$(StudioDir)

$(St udi oDi r) String
$(StudioExeName)

$(St udi oExeNane) String

$(StudioMajorVersion)
$(St udi oMaj or Ver si on) String

$(StudioMinorVersion)
$(St udi oM nor Ver si on) String

$(StudioName)
$(St udi oNane) String

$(StudioNameShort)
$(St udi oNaneShor t) String

$(StudioPackageFileExt)
$(St udi oPackageFi | eExt) String

$(StudioProjectFileExt)
$(St udi oPr oj ect Fi | eExt) String

$(StudioScriptToolExeName)
$(St udi oScri pt Tool ExeNane) String

$(StudioScriptToolName)
$(St udi oScri pt Tool Nane) String

$(StudioSessionFileExt)
$(St udi 0Sessi onFi | eExt) String

$(StudioUserDir)
$(St udi oUser Di r) String

$(TargetlD)

$(Tar get | D) String
S(Time)

$(Ti ne) String
$(TimeHour)

$(Ti meHour) String
S(TimeMinute)

$(Ti meM nut e) String

$(TimeSecond)
$(Ti meSecond) String

Appendices

The filename of the build tool executable.

The name of the build tool executable.

The install directory of the product.

The filename of the studio executable.

The major release version of software.

The minor release version of software.

The full name of studio.

The short name of studio.

The filename extension of a studio package file.

The filename extension of a studio project file.

The filename of the script tool executable.

The name of the script tool executable.

The filename extension of a studio session file.

The directory containing the user data.

ID number representing the SEGGER Embedded Studio
target.

Hour:Minutes:Seconds e.g. 15:34:03.

Hour e.g. 15.

Hour e.g. 34.

Hour e.g. 03.

952

Embedded Studio Reference Manual

Build Macros

(Build Macro Values)

Property

$(Arch)
$(Ar ch) String

$(AsmOptions)

$(Asnmpt i ons) String
$(COnlyOptions)

$(COnl yOpt i ons) String
$(COptions)

$(COpt i ons) String
$(CombiningOutputFilePath)

$(Conbi ni ngQut put Fi | ePat h) String

$(CombiningRellnputPaths)

$(Conbi ni ngRel I nput Pat hs) String

$(Configuration)
$(Confi gurati on) String

$(CoreType)
$(Cor eType) String

S(Defines)
$(Def i nes) String

$(DependencyPath)
$(DependencyPat h) String

$(EXE)

$(EXE) String
$(Endian)

$(Endi an) String
$(FPU)

$(FPU) String
S(FPU2)

$(FPU2) String
$(FPU3)

$(FPU3) String
$(FolderName)
$(Fol der Nane) String

$(GCCTarget)
$(GCCTar get) String

Appendices

Description

The lower case value of the ARM Architecture project
property.

A space seperated list of assembler options for the
external assemble command.

A space seperated list of compiler options for the
external c compile command.

A space seperated list of compiler options for the
external c and c++ compile commands.

The full path of the output file of the combining
command.

The relative inputs to the combining command.

The build configuration e.g. ARM Flash Debug.

The lower case value of the ARM Core Type project
property.

The preprocessor defines property value for the
external compile command.

The path of the dependency file for the external
compile command.

The default file extension for an executable file
including the dot e.g. .elf.

The lower case value of the Byte Order project
property.

The lower case value of the ARM FPU Type project
property.

Alternative value of the ARM FPU Type project
property.

Alternative value of the ARM FPU Type project
property.

The folder name of the containing folder.

The value of the GCC Target project property.

953

Embedded Studio Reference Manual

S(Includes)
$(1 ncl udes) String

S(InputDir)
$(1 nput Di r) String
S(InputExt)
$(| nput Ext) String

S(InputFileName)
$(1 nput Fi | eNane) String

S(InputName)

$(| nput Nane) String
S(InputPath)

$(| nput Pat h) String

$(IntDir)
$(1 nt Di r) String

$(LIB)

$(LI B) String

$(LibExt)

$(Li bExt) String
$(LinkOptions)

$(Li nkOpt i ons) String
$(LinkerScriptPath)

$(Li nker Scri pt Pat h) String
$(MapPath)

$(MapPat h) String

$(0BJ)

$(OBJ) String

$(Objects)

$(Obj ect s) String
$(ObjectsFilePath)

$(Obj ect sFi | ePat h) String
$(OutDir)

$(Qut Di r) String
$(PackageExt)

$(PackageExt) String

$(PostLinkOutputFilePath)
$(Post Li nkQut put Fi | ePat h) String

$(ProjectDir)
$(Proj ect Di r) String

$(ProjectName)
$(Pr oj ect Nang) String

Appendices

The user includes property value for the external
compile command.

The absolute directory of the input file.

The extension of an input file not including the dot e.g
cpp.

The name of an input file relative to the project
directory.

The name of an input file relative to the project
directory without the extension.

The absolute name of an input file including the
extension.

The macro-expanded value of the Intermediate
Directory project property.

The default file extension for a library file including the
dot e.g. lib.

The architecture and build specific library extension.
A space seperated list of compiler options for the

external link command.

The full path of the linker script file for the link
command.

The full path of the map file of the external link
command.

The default file extension for an object file including
the dot e.g. .0.

A space seperated list of files for the external archive or
link command.

The filename containing the files for the external
archive or link command.

The macro-expanded value of the Output Directory
project property.

The file extension of a package file e.g. emPackage.
The full path of the output file of the post link
command.

The absolute value of the Project Directory project
property of the current project. If this isn't set then the
directory containing the solution file.

The project name of the current project.

954

Embedded Studio Reference Manual

$(ProjectNodeName)
$(Pr oj ect NodeNane) String

$(RellnputPath)
$(Rel | nput Pat h) String

$(RelTargetPath)
$(Rel Tar get Pat h) String

$(RootOutDir)
$(Root Qut Di r) String

$(RootRelativeOutDir)
$(Root Rel ati veQut Di r) String

$(SolutionDir)
$(Sol uti onDi r) String

$(SolutionExt)
$(Sol uti onExt) String

$(SolutionFileName)
$(Sol uti onFi | eNane) String

$(SolutionName)
$(Sol ut i onNang) String

$(SolutionPath)
$(Sol ut i onPat h) String

$(StageOutputFilePath)
$(St ageQut put Fi | ePat h) String

$(TargetPath)
$(Tar get Pat h) String

$(ToolChainDir)
$(Tool Chai nDi r) String

Appendices

The name of the selected project node.

The relative path of the input file to the project
directory.

The project directory relative path of the output file of

the link or compile command.

The macro-expanded value of the Root Output
Directory project property.

The relative path to get from the path specified by
the Output Directory project property to the path
specified by the Root Output Directory project

property.

The absolute path of the directory containing the
solution file.

The extension of the solution file without the dot.

The filename of the solution file.

The basename of the solution file.

The absolute path of the solution file.

The full path of the output file of the stage command.
The full path of the output file of the link or compile
command.

The macro-expanded value of the Tool Chain
Directory project property.

955

Embedded Studio Reference Manual Appendices

BinaryFile
The following table lists the BinaryFile object's member functions.

BinaryFile.crc32(offset, length) returns the CRC-32 checksum of an address range length bytes long, starting

at offset. This function computes a CRC-32 checksum on a block of data using the standard CRC-32 polynomial
(0x04C11DB7) with an initial value of OXFFFFFFFF. Note that this implementation doesn't reflect the input or the
output and the result is inverted.

BinaryFile.length() returns the length of the binary file in bytes.
BinaryFile.load(path) loads binary file from path.
BinaryFile.peekBytes(offset, length) returns byte array containing length bytes peeked from offset.

BinaryFile.peekUint32(offset, littleEndian) returns a 32-bit word peeked from offset. The littleEndian argument
specifies the endianness of the access, if true or undefined it will be little endian, otherwise it will be big endian.

BinaryFile.pokeBytes(offset, byteArray) poke byte array byteArray to offset.

BinaryFile.pokeUint32(offset, value, littleEndian) poke a value to 32-bit word located at offset. The littleEndian
argument specifies the endianness of the access, if true or undefined it will be little endian, otherwise it will be
big endian.

BinaryFile.resize(length, fill) resizes the binary image to length bytes. If the operation extends the size, the
binary image will be padded with bytes of value fill.

BinaryFile.save(path) saves binary file to path.

BinaryFile.saveRange(path, offset, length) saves part of the binary file to path. The offset argument specifies
the byte offset to start from. The length argument specifies the maximum number of bytes that should be
saved.

956

Embedded Studio Reference Manual Appendices

CWSys

The following table lists the CWSys object's member functions.

CWSys.appendStringToFile(path, string) appends string to the end of the file path.
CWSys.copyFile(srcPath, destPath) copies file srcPath to destPath.

CWSys.crc32(array) returns the CRC-32 checksum of the byte array array. This function computes a CRC-32
checksum on a block of data using the standard CRC-32 polynomial (0x04C11DB7) with an initial value of
OxFFFFFFFF. Note that this implementation doesn't reflect the input or the output and the result is inverted.

CWSys.fileExists(path) returns true if file path exists.

CWSys fileSize(path) return the number of bytes in file path.

CWSys.getRunStderr() returns the stderr output from the last CWSys.run() call.
CWSys.getRunStdout() returns the stdout output from the last CWSys.run() call.
CWSys.makeDirectory(path) create the directory path.

CWSys.packU32(array, offset, number, le) packs number into the array at offset.
CWSys.popup(text) prompt the user with text and return true for yes and false for no.
CWSys.readByteArrayFromFile(path) returns the byte array contained in the file path.
CWSys.readStringFromFile(path) returns the string contained in the file path.
CWSys.removeDirectory(path) remove the directory path.

CWSys.removeFile(path) deletes file path.

CWSys.renameFile(oldPath, newPath) renames file oldPath to be newPath.
CWSys.run(cmd, wait) runs command line cmd optionally waits for it to complete if wait is true.
CWSys.unpackU32(array, offset, le) returns the number unpacked from the array at offset.
CWSys.writeByteArrayToFile(path, array) creates a file path containing the byte array array.

CWSys.writeStringToFile(path, string) creates a file path containing string.

957

Embedded Studio Reference Manual Appendices

Debug

The following table lists the Debug object's member functions.

Debug.breakexpr(expression, count, hardware) set a breakpoint on expression, with optional ignore count
and use hardware parameters. Return the, none zero, allocated breakpoint number.

Debug.breakline(filename, linenumber, temporary, count, hardware) set a breakpoint on filename and
linenumber, with optional temporary, ignore count and use hardware parameters. Return the, none zero,
allocated breakpoint number.

Debug.breaknow() break execution now.
Debug.deletebreak(number) delete the specified breakpoint or all breakpoints if zero is supplied.

Debug.disassembly(source, labels, before, after) set debugger mode to disassembly mode. Optionally specify
source and labels to be displayed and the number of bytes to disassemble before and after the located program
counter.

Debug.echo(s) display string.

Debug.enableexception(exception, enable) enable break on exception.
Debug.evaluate(expression) evaluates debug expression and returns it as a JavaScript value.
Debug.getfilename() return located filename.

Debug.getlineumber() return located linenumber.

Debug.go() continue execution.

Debug.locate(frame) locate the debugger to the optional frame context.
Debug.locatepc(pc) locate the debugger to the specified pc.
Debug.locateregisters(registers) locate the debugger to the specified register context.

Debug.print(expression, fmt) evaluate and display debugexpression using optional fmt. Supported formats are
b binary, c character, d decimal, e scientific float, f decimal float, g scientific or decimal float, i signed decimal, o
octal, p pointer value, s null terminated string, u unsigned decimal, x hexadecimal.

Debug.printglobals() display global variables.

Debug.printlocals() display local variables.

Debug.quit() stop debugging.

Debug.setprintarray(elements) set the maximum number of array elements for printing variables.
Debug.setprintradix(radix) set the default radix for printing variables.

Debug.setprintstring(c) set the default to print character pointers as strings.

Debug.showbreak(number) show information on the specified breakpoint or all breakpoints if zero is
supplied.

Debug.showexceptions() show the exceptions.

Debug.source(before, after) set debugger mode to source mode. Optionally specify the number of source
lines to display before and after the location.

Debug.stepinto() step an instruction or a statement.

958

Embedded Studio Reference Manual Appendices

Debug.stepout() continue execution and break on return from current function.

Debug.stepover() step an instruction or a statement stepping over function calls.

Debug.stopped() return stopped state.

Debug.wait(ms) wait ms millseconds for a breakpoint and return the number of the breakpoint that hit.

Debug.where() display call stack.

959

Embedded Studio Reference Manual Appendices

ElfFile

The following table lists the ElfFile object's member functions.

ElfFile.crc32(address, length, virtualNotPhysical, padding) returns the CRC-32 checksum of an address range
length bytes long, located at address. If virtualNotPhysical is true or undefined, address is a virtual address
otherwise it is a physical address. If padding is defined, it specifies the byte value used to fill gaps in the
program. This function computes a CRC-32 checksum on a block of data using the standard CRC-32 polynomial
(0x04C11DB7) with an initial value of OXFFFFFFFF. Note that this implementation doesn't reflect the input or the
output and the result is inverted.

ElfFile.findProgram(address) returns an object with start, the data and the size to allocate of the Elf program
that contains address.

ElfFile.getEntryPoint() returns the entry point in the ELF file.

ElfFile.getSection(name) returns an object with start and the data of the EIf section corresponding to the
name.

ElfFile.isLittleEndian() returns true if the Elf file has numbers encoded as little endian.
ElfFile.load(path) loads Elf file from path.

ElfFile.peekBytes(address, length, virtualNotPhysical, padding) returns byte array containing length bytes
peeked from address. If virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a
physical address. If padding is defined, it specifies the byte value used to fill gaps in the program.

ElfFile.peekUint32(address, virtualNotPhysical) returns a 32-bit word peeked from address. If
virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a physical address.

ElfFile.pokeBytes(address, byteArray, virtualNotPhysical) poke byte array byteArray to address. If
virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a physical address.

ElfFile.pokeUint32(address, value, virtualNotPhysical) poke a value to 32-bit word located at address. If
virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a physical address.

ElfFile.save(path) saves Elf file to path.

ElfFile.symbolValue(symbol) returns the value of symbol in Elf file.

960

Embedded Studio Reference Manual Appendices

Targetinterface

The following table lists the Targetinterface object's member functions.

Targetinterface.beginDebugAccess() puts the target into debug state if it is not already in order to

carry out a number of debug operations. The idea behind beginDebugAccess and endDebugAccess is

to minimize the number of times the target enters and exits debug state when carrying out a number of
debug operations. Target interface functions that require the target to be in debug state (such as peek and
poke) also use beginDebugAccess and endDebugAccess to get the target into the correct state. A nesting
count is maintained, incremented by beginDebugAccess and decremented by endDebugAccess. The initial
processor state is recorded on the first nested call to beginDebugAccess and this state is restored when the
final endDebugAccess is called causing the count to return to it initial state.

Targetinterface.commReadWord() returns a word from the ARM7/ARM9 debug comms channel.
Targetinterface.commWriteWord(word) writes a word to the ARM7/ARM9 debug comms channel.

Targetinterface.crc32(address, length) reads a block of bytes from target memory starting at address for
length bytes, generates a crc32 on the block of bytes and returns it.

Targetinterface.cycleTCK(n) provide n TCK clock cycles.
Targetinterface.delay(ms) waits for ms milliseconds

Targetinterface.downloadDebugHandler() downloads the debug handler as specified by the Debug Handler
File Path/Load Address project properties and uses the debug handler for the target connection.

Targetinterface.endDebugAccess(alwaysRun) restores the target run state recorded at the first nested call to
beginDebugAccess. See beginDebugAccess for more information. If alwaysRun is non-zero the processor will
exit debug state on the last nested call to endDebugAccess.

Targetinterface.eraseBytes(address,length) erases a length block of target memory starting at address.

Targetinterface.error(message) terminates execution of the script and outputs a target interface error
message to the target log.

Targetinterface.executeFunction(address, parameter, timeout) calls a function at address with the parameter
and returns the function result. The timeout is in milliseconds.

Targetinterface.executeMCR(opcode) interprets/executes the opcode assuming it to be an MRC instruction
and returns the value of the specified coprocessor register.

Targetinterface.executeMCR(opcode, value) interprets/executes the opcode assuming it to be an MCR
instruction that writes value to the specified coprocessor register.

Targetinterface.expandMacro(string) returns the string with macros expanded.

Targetinterface.fillScanChain(bool, Isb, msb) sets bits from Isb (least significant bit) to msb (most significant
bit) in internal buffer to bool value.

Targetinterface.getDebugRegister(address) returns the value of the ADIv5 debug register denoted by
address. Address has the nibble sized access point number starting at bit 24 and the register number in the
bottom byte.

Targetinterface.getlCEBreakerRegister(r) returns the value of the ARM7/ARM9/ARM11/CortexA/CortexR
debug registerr.

Targetinterface.getProjectProperty(savename) returns the value of the savename project property.

961

Embedded Studio Reference Manual Appendices

Targetinterface.getRegister(registername) returns the value of the register, register is a string specifying the
register to get and must be one of r0, r1, r2, r3,r4, r5,16,r7,r8,19,r10,r11,r12,r13,r14, r15, sp, Ir, pc, cpsr, r8_fiq,
r9_fiq, r10_fiq, r11_fiq, r12_fiq, r13_fiq, r14_fiq, spsr_fiqg, r13_svc, r14_svc, spsr_svc, r13_abt, r14_abt, spsr_abt,
r13_irq, r14_irq, spsr_irg, r13_und, r14_und, spsr_und.

Targetinterface.getTDO() return the TDO signal.

Targetinterface.getTargetProperty(savename) returns the value of the savename target property.
Targetinterface.go() allows the target to run.

Targetinterface.idcode() returns the JTAG idcode of the target.

Targetinterface.implementation() returns a string defining the target interface implementation.
Targetinterface.isStopped() returns true if the target is stopped.
Targetinterface.message(message) outputs a target interface message to the target log.

Targetinterface.packScanChain(data, Isb, msb) packs data from Isb (least significant bit) to msb (most
significant bit) into internal buffer.

Targetinterface.peekBinary(address, length, filename) reads a block of bytes from target memory starting at
address for length bytes and writes them to filename.

Targetinterface.peekByte(address) reads a byte of target memory from address and returns it.

Targetinterface.peekBytes(address, length) reads a block of bytes from target memory starting at address for
length bytes and returns the result as an array containing the bytes read.

Targetinterface.peekMultUint16(address, length) reads length unsigned 16-bit integers from target memory
starting at address and returns them as an array.

Targetinterface.peekMultUint32(address, length) reads length unsigned 32-bit integers from target memory
starting at address and returns them as an array.

Targetinterface.peekUint16(address) reads a 16-bit unsigned integer from target memory from address and
returns it.

Targetinterface.peekUint32(address) reads a 32-bit unsigned integer from target memory from address and
returns it.

Targetinterface.peekWord(address) reads a word as an unsigned integer from target memory from address
and returns it.

Targetinterface.pokeBinary(address, filename) reads a block of bytes from filename and writes them to target
memory starting at address.

Targetinterface.pokeByte(address, data) writes the byte data to address in target memory.

Targetinterface.pokeBytes(address, data) writes the array data containing 8-bit data to target memory at
address.

Targetinterface.pokeMultUint16(address, data) writes the array data containing 16-bit data to target memory
at address.

Targetinterface.pokeMultUint32(address, data) writes the array data containing 32-bit data to target memory
at address.

Targetinterface.pokeUint16(address, data) writes data as a 16-bit value to address in target memory.

Targetinterface.pokeUint32(address, data) writes data as a 32-bit value to address in target memory.

962

Embedded Studio Reference Manual Appendices

Targetinterface.pokeWord(address, data) writes data as a word value to address in target memory.
Targetinterface.readBinary(filename) reads a block of bytes from filename and returns them in an array.
Targetinterface.reset() resets the target, optionally executes the reset script and lets the target run.

Targetinterface.resetAndStop(delay) resets the target by cycling nSRST and then stops the target. delay is the
number of milliseconds to hold the target in reset.

Targetinterface.resetAndStopAtZero(delay) sets a breakpoint on the instruction at address zero execution,
resets the target by cycling nSRST and waits for the breakpoint to be hit. delay is the number of milliseconds to
hold the target in reset.

Targetinterface.resetDebuglinterface() resets the target interface (not the target).

Targetinterface.runFromAddress(address, timeout) start the target executing at address and waits for a
breakpoint to be hit. The timeout is in milliseconds.

Targetinterface.runFromToAddress(from, to, timeout) start the target executing at address from and waits for
the breakpoint to be hit. The timeout is in milliseconds.

Targetinterface.runTestldle() moves the target JTAG state machine into Run-Test/Idle state

Targetinterface.runToAddress(address, timeout) sets a breakpoint at address, starts the target executing and
waits for the breakpoint to be hit. The timeout is in milliseconds.

Targetinterface.scanDR(length, count) scans length bits from the internal buffer into the data register and
puts the result into the internal buffer (count specifies the number of times the function is done).

Targetinterface.scanlR(length, count) scans length bits from the internal buffer into the instruction register
and puts the result into the internal buffer (count specifies the number of times the function is done).

Targetinterface.selectDevice(irPre, irPost, drPre, drPost) sets the instruction and data register (number of
devices) pre and post bits.

Targetinterface.setDBGRQ(v) sets/clears the DBGRQ bit of the ARM7/ARM9 debug control register.

963

Embedded Studio Reference Manual Appendices

Targetinterface.setDebuglnterfaceProperty("reset_debug_interface_enabled", bool) turn on/off the reset of
the debug interface.

Targetinterface.setDebuginterfaceProperty("has_etm", bool) set the ARM7/ARM9 property to enable use of
the ETM.

Targetinterface.setDebuginterfaceProperty("reset_delay", N) set the XScale reset delay property to N.
Targetinterface.setDebuginterfaceProperty("post_reset_delay", N) set the XScale post reset delay property to
N.

Targetinterface.setDebuglnterfaceProperty("post_reset_cycles", N) set the XScale post reset cycles property
to N.

Targetinterface.setDebuginterfaceProperty("post_ldic_cycles", N) set the XScale Idic cycles property to N.
Targetinterface.setDebuginterfaceProperty("sync_exception_vectors", bool) turn on/off the XScale sync
exception vectors property.

Targetinterface.setDebuglnterfaceProperty("peek_flash_workaround", bool) turn on/off the ARMv6M/
ARMv7M peek flash memory workaround debug property.
Targetinterface.setDebuginterfaceProperty("adiv5_fast_delay_cycles", N) set the ADIv5 fast delay cycles
property to N (FTDI2232 target interfaces only).
Targetinterface.setDebuginterfaceProperty("use_adiv5_AHB", N, [start, size]) set the ARMv7A/ARMV7R debug
property list to turn on/off usage of the ADIv5 AHB MEM-AP for 1+2+4 data sized accesses on the optional
address range specified by start and size.
Targetinterface.setDebuglnterfaceProperty("set_adiv5_AHB_ap_num", N) specify the ARMv6M/ARMv7A/
ARMv7M/ARMV7R AHB AP number to use.
Targetinterface.setDebuginterfaceProperty("set_adiv5_APB_ap_num", N) specify the ARMv7A/ARMv7R APB
AP number to use.

Targetinterface.setDebuginterfaceProperty("max_ap_num®", N) set the ADIv5 debug property to limit the
number of AP's to detect to N.

Targetinterface.setDebuginterfaceProperty("component_base", N) set the ADIv5 debug property that
specifies the base address N of the CoreSight debug component.

Targetinterface.setDebugRegister(address, value) set the value of the ADIV5 debug register denoted by
address. Address has the nibble sized access point number starting at bit 24 and the register number in the
bottom byte.

Targetinterface.setDeviceTypeProperty(type) sets the target interface's Device Type property string to type.
This would typically be used by a Connect Script to override the default Device Type property and provide a
custom description of the connected target.

Targetinterface.setiICEBreakerBreakpoint(n, address, addressMask, data, dataMask, control, controlMask)
sets the ARM7/ARM9 watchpoint n registers.

Targetinterface.setlICEBreakerRegister(r, value) set the value of the ARM7/ARM9/ARM11/CortexA/CortexR
debug registerr.

Targetinterface.setMaximumJTAGFrequency(hz) allows the maximum TCK frequency of the currently
connected JTAG interface to be set dynamically. The speed setting will only apply for the current connection
session, if you reconnect the setting will revert to the speed specfied by the target interface properties. Calls to
this function will be ignored if adaptive clocking is being used.

Targetinterface.setNSRST(v) sets/clears the NSRST signal.
Targetinterface.setNTRST(v) sets/clears the NTRST signal.

964

Embedded Studio Reference Manual Appendices

Targetinterface.setRegister(registername, value) sets the register to the value, register is a string specifying
the register to get and must be one of r0, r1, r2,r3, r4, r5, 16, r7,18,r9,r10,r11,r12,r13,r14, r15, sp, Ir, pc, cpsr,
r8_fiq, r9_fiq, r10_fiq, r11_fiq, r12_fiq, r13_fiqg, r14_fiq, spsr_fiq, r13_svc, r14_svc, spsr_svc, r13_abt, r14_abt,
spsr_abt, r13_irq, r14_irq, spsr_irq, r13_und, r14_und, spsr_und.

Targetinterface.setTDI(v) clear/set TDI signal.

Targetinterface.setTMS(v) clear/set TMS signal.
Targetinterface.setTargetProperty(savename) set the value of the savename target property.
Targetinterface.stop() stops the target.

Targetinterface.stopAndReset(delay) sets a breakpoint on any instruction execution, resets the target by
cycling nSRST and waits for the breakpoint to be hit. delay is the number of milliseconds to hold the device in
reset.

Targetinterface.trst() resets the target interface (not the target).
Targetinterface.type() returns a string defining the target interface type.

Targetinterface.unpackScanChain(lsb, msb) unpacks data from Isb (least significant bit) to msb (most
significant bit) from internal buffer and returns the result.

Targetinterface.waitForDebugState(timeout) waits for the target to stop or the timeout in milliseconds.

Targetinterface.writeBinary(array, filename) write the bytes in array to filename.

965

Embedded Studio Reference Manual Appendices

WScript

The following table lists the WScript object's member functions.

WScript.Echo(s) echos string s to the output terminal.

966

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Segger Microcontroller:
15.00.23 15.00.00 20.50.23

http://www.mouser.com/segger
http://www.mouser.com/access/?pn=15.00.23
http://www.mouser.com/access/?pn=15.00.00
http://www.mouser.com/access/?pn=20.50.23

	Contents
	Introduction
	What is SEGGER Embedded Studio?
	What we don't tell you
	Getting Started
	Text conventions
	Release notes

	SEGGER Embedded Studio User Guide
	SEGGER Embedded Studio standard layout
	Menu bar
	Title bar
	Status bar
	Editing workspace
	Docking windows
	Dashboard

	SEGGER Embedded Studio help and assistance
	Creating and managing projects
	Solutions and projects
	Creating a project
	Adding existing files to a project
	Adding new files to a project
	Removing a file, folder, project, or project link

	Building your application
	Creating variants using configurations
	Project options
	Configurations and project options
	Project macros
	Dependencies and build order
	Linking and section placement

	Using source control
	Source control capabilities
	Configuring source-control providers
	Connecting to the source-control system
	File source-control status
	Source-control operations
	Adding files to source control
	Updating files
	Committing files
	Reverting files
	Locking files
	Unlocking files
	Removing files from source control
	Showing differences between files
	Source-control properties
	Subversion provider
	CVS provider

	Package management
	Exploring your application
	Project explorer
	Source navigator window
	References window
	Symbol browser window
	Memory usage window
	Bookmarks window

	Editing your code
	Basic editing
	Moving the insertion point
	Adding text
	Deleting text
	Using the clipboard
	Undo and redo
	Drag and drop
	Searching

	Advanced editing
	Indenting source code
	Commenting out sections of code
	Adjusting letter case

	Using bookmarks
	Find and Replace window
	Clipboard Ring window
	Mouse-click accelerators
	Regular expressions

	Debugging windows
	Locals window
	Globals window
	Watch window
	Register window
	Memory window
	Breakpoints window
	Call Stack window
	Threads window
	Execution Profile window
	Execution Trace window
	Debug file search editor

	Breakpoint expressions
	Debug expressions

	Command-line options
	-D (Define macro)
	-noclang (Disable Clang support)
	-packagesdir (Specify packages directory)
	-permit-multiple-studio-instances (Permit multiple studio instances)
	-rootuserdir (Set the root user data directory)
	-save-settings-off (Disable saving of environment settings)
	-set-setting (Set environment setting)
	-templatesfile (Set project templates path)

	Uninstalling SEGGER Embedded Studio
	ARM target support
	Target startup code
	Startup code
	Section Placement

	C Library User Guide
	Floating point
	Single and double precision

	Multithreading
	Thread safety in the SEGGER Embedded Studio library
	Implementing mutual exclusion in the C library

	Input and output
	Customizing putchar

	Locales
	Unicode, ISO 10646, and wide characters
	Multi-byte characters
	The standard C and POSIX locales
	Additional locales in source form
	Installing a locale
	Setting a locale directly

	Complete API reference
	<assert.h>
	__assert
	assert

	<complex.h>
	cabs
	cabsf
	cacos
	cacosf
	cacosh
	cacoshf
	carg
	cargf
	casin
	casinf
	casinh
	casinhf
	catan
	catanf
	catanh
	catanhf
	ccos
	ccosf
	ccosh
	ccoshf
	cexp
	cexpf
	cimag
	cimagf
	clog
	clogf
	conj
	conjf
	cpow
	cpowf
	cproj
	cprojf
	creal
	crealf
	csin
	csinf
	csinh
	csinhf
	csqrt
	csqrtf
	ctan
	ctanf
	ctanh
	ctanhf

	<ctype.h>
	isalnum
	isalnum_l
	isalpha
	isalpha_l
	isblank
	isblank_l
	iscntrl
	iscntrl_l
	isdigit
	isdigit_l
	isgraph
	isgraph_l
	islower
	islower_l
	isprint
	isprint_l
	ispunct
	ispunct_l
	isspace
	isspace_l
	isupper
	isupper_l
	isxdigit
	isxdigit_l
	tolower
	tolower_l
	toupper
	toupper_l

	<debugio.h>
	debug_abort
	debug_break
	debug_clearerr
	debug_enabled
	debug_exit
	debug_fclose
	debug_feof
	debug_ferror
	debug_fflush
	debug_fgetc
	debug_fgetpos
	debug_fgets
	debug_filesize
	debug_fopen
	debug_fprintf
	debug_fprintf_c
	debug_fputc
	debug_fputs
	debug_fread
	debug_freopen
	debug_fscanf
	debug_fscanf_c
	debug_fseek
	debug_fsetpos
	debug_ftell
	debug_fwrite
	debug_getargs
	debug_getch
	debug_getchar
	debug_getd
	debug_getenv
	debug_getf
	debug_geti
	debug_getl
	debug_getll
	debug_gets
	debug_getu
	debug_getul
	debug_getull
	debug_kbhit
	debug_loadsymbols
	debug_perror
	debug_printf
	debug_printf_c
	debug_putchar
	debug_puts
	debug_remove
	debug_rename
	debug_rewind
	debug_runtime_error
	debug_scanf
	debug_scanf_c
	debug_system
	debug_time
	debug_tmpfile
	debug_tmpnam
	debug_ungetc
	debug_unloadsymbols
	debug_vfprintf
	debug_vfscanf
	debug_vprintf
	debug_vscanf

	<errno.h>
	EDOM
	EILSEQ
	EINVAL
	ENOMEM
	ERANGE
	errno

	<float.h>
	DBL_DIG
	DBL_EPSILON
	DBL_MANT_DIG
	DBL_MAX
	DBL_MAX_10_EXP
	DBL_MAX_EXP
	DBL_MIN
	DBL_MIN_10_EXP
	DBL_MIN_EXP
	DECIMAL_DIG
	FLT_DIG
	FLT_EPSILON
	FLT_EVAL_METHOD
	FLT_MANT_DIG
	FLT_MAX
	FLT_MAX_10_EXP
	FLT_MAX_EXP
	FLT_MIN
	FLT_MIN_10_EXP
	FLT_MIN_EXP
	FLT_RADIX
	FLT_ROUNDS

	<iso646.h>
	and
	and_eq
	bitand
	bitor
	compl
	not
	not_eq
	or
	or_eq
	xor
	xor_eq

	<limits.h>
	CHAR_BIT
	CHAR_MAX
	CHAR_MIN
	INT_MAX
	INT_MIN
	LLONG_MAX
	LLONG_MIN
	LONG_MAX
	LONG_MIN
	MB_LEN_MAX
	SCHAR_MAX
	SCHAR_MIN
	SHRT_MAX
	SHRT_MIN
	UCHAR_MAX
	UINT_MAX
	ULLONG_MAX
	ULONG_MAX
	USHRT_MAX

	<locale.h>
	lconv
	localeconv
	setlocale

	<math.h>
	acos
	acosf
	acosh
	acoshf
	asin
	asinf
	asinh
	asinhf
	atan
	atan2
	atan2f
	atanf
	atanh
	atanhf
	cbrt
	cbrtf
	ceil
	ceilf
	copysign
	copysignf
	cos
	cosf
	cosh
	coshf
	erf
	erfc
	erfcf
	erff
	exp
	exp2
	exp2f
	expf
	expm1
	expm1f
	fabs
	fabsf
	fdim
	fdimf
	floor
	floorf
	fma
	fmaf
	fmax
	fmaxf
	fmin
	fminf
	fmod
	fmodf
	fpclassify
	frexp
	frexpf
	hypot
	hypotf
	ilogb
	ilogbf
	isfinite
	isgreater
	isgreaterequal
	isinf
	isless
	islessequal
	islessgreater
	isnan
	isnormal
	isunordered
	ldexp
	ldexpf
	lgamma
	lgammaf
	llrint
	llrintf
	llround
	llroundf
	log
	log10
	log10f
	log1p
	log1pf
	log2
	log2f
	logb
	logbf
	logf
	lrint
	lrintf
	lround
	lroundf
	modf
	modff
	nearbyint
	nearbyintf
	nextafter
	nextafterf
	pow
	powf
	remainder
	remainderf
	remquo
	remquof
	rint
	rintf
	round
	roundf
	scalbln
	scalblnf
	scalbn
	scalbnf
	signbit
	sin
	sinf
	sinh
	sinhf
	sqrt
	sqrtf
	tan
	tanf
	tanh
	tanhf
	tgamma
	tgammaf
	trunc
	truncf

	<setjmp.h>
	longjmp
	setjmp

	<stdarg.h>
	va_arg
	va_copy
	va_end
	va_start

	<stddef.h>
	NULL
	offsetof
	ptrdiff_t
	size_t

	<stdio.h>
	getchar
	gets
	printf
	putchar
	puts
	scanf
	snprintf
	sprintf
	sscanf
	vprintf
	vscanf
	vsnprintf
	vsprintf
	vsscanf

	<stdlib.h>
	EXIT_FAILURE
	EXIT_SUCCESS
	MB_CUR_MAX
	RAND_MAX
	abs
	atexit
	atof
	atoi
	atol
	atoll
	bsearch
	calloc
	div
	div_t
	exit
	free
	itoa
	labs
	ldiv
	ldiv_t
	llabs
	lldiv
	lldiv_t
	lltoa
	ltoa
	malloc
	mblen
	mblen_l
	mbstowcs
	mbstowcs_l
	mbtowc
	mbtowc_l
	qsort
	rand
	realloc
	srand
	strtod
	strtof
	strtol
	strtoll
	strtoul
	strtoull
	ulltoa
	ultoa
	utoa

	<string.h>
	memccpy
	memchr
	memcmp
	memcpy
	memcpy_fast
	memmove
	mempcpy
	memset
	strcasecmp
	strcasestr
	strcat
	strchr
	strcmp
	strcpy
	strcspn
	strdup
	strerror
	strlcat
	strlcpy
	strlen
	strncasecmp
	strncasestr
	strncat
	strnchr
	strncmp
	strncpy
	strndup
	strnlen
	strnstr
	strpbrk
	strrchr
	strsep
	strspn
	strstr
	strtok
	strtok_r

	<time.h>
	asctime
	asctime_r
	clock_t
	ctime
	ctime_r
	difftime
	gmtime
	gmtime_r
	localtime
	localtime_r
	mktime
	strftime
	time_t
	tm

	<wchar.h>
	WCHAR_MAX
	WCHAR_MIN
	WEOF
	btowc
	btowc_l
	mbrlen
	mbrlen_l
	mbrtowc
	mbrtowc_l
	mbsrtowcs
	mbsrtowcs_l
	msbinit
	wchar_t
	wcrtomb
	wcrtomb_l
	wcscat
	wcschr
	wcscmp
	wcscpy
	wcscspn
	wcsdup
	wcslen
	wcsncat
	wcsnchr
	wcsncmp
	wcsncpy
	wcsnlen
	wcsnstr
	wcspbrk
	wcsrchr
	wcsspn
	wcsstr
	wcstok
	wcstok_r
	wctob
	wctob_l
	wint_t
	wmemccpy
	wmemchr
	wmemcmp
	wmemcpy
	wmemmove
	wmempcpy
	wmemset
	wstrsep

	<wctype.h>
	iswalnum
	iswalnum_l
	iswalpha
	iswalpha_l
	iswblank
	iswblank_l
	iswcntrl
	iswcntrl_l
	iswctype
	iswctype_l
	iswdigit
	iswdigit_l
	iswgraph
	iswgraph_l
	iswlower
	iswlower_l
	iswprint
	iswprint_l
	iswpunct
	iswpunct_l
	iswspace
	iswspace_l
	iswupper
	iswupper_l
	iswxdigit
	iswxdigit_l
	towctrans
	towctrans_l
	towlower
	towlower_l
	towupper
	towupper_l
	wctrans
	wctrans_l
	wctype

	<xlocale.h>
	duplocale
	freelocale
	localeconv_l
	newlocale

	C++ Library User Guide
	Standard template library
	Subset API reference
	<new> - memory allocation
	operator delete
	operator new
	set_new_handler

	Utilities Reference
	Compiler driver
	File naming conventions
	Command-line options
	-ansi (Warn about potential ANSI problems)
	-ar (Archive output)
	-arch (Set ARM architecture)
	-be (Big Endian)
	-c (Compile to object code, do not link)
	-d (Define linker symbol)
	-D (Define macro symbol)
	-e (Set entry point symbol)
	-E (Preprocess)
	-exceptions (Enable C++ Exception Support)
	-fabi (Floating Point Code Generation)
	-fpu (Set ARM FPU)
	-F (Set output format)
	-g (Generate debugging information)
	-g1 (Generate minimal debugging information)
	-help (Display help information)
	-io (Select I/O library implementation)
	-I (Define user include directories)
	-I- (Exclude standard include directories)
	-J (Define system include directories)
	-K (Keep linker symbol)
	-L (Set library directory path)
	-l- (Do not link standard libraries)
	-make (Make-style build)
	-M (Display linkage map)
	-n (Dry run, no execution)
	-nostderr (No stderr output)
	-o (Set output file name)
	-oabi (Use oabi compiler)
	-O (Optimize output)
	-printf (Select printf capability)
	-rtti (Enable C++ RTTI Support)
	-R (Set section name)
	-scanf (Select scanf capability)
	-sd (Treat double as float)
	-Thumb (Generate Thumb code)
	-v (Verbose execution)
	-w (Suppress warnings)
	-we (Treat warnings as errors)
	-Wa (Pass option to tool)
	-x (Specify file types)
	-y (Use project template)
	-z (Set project property)

	Command-Line Project Builder
	Building with a SEGGER Embedded Studio project file
	Building without a SEGGER Embedded Studio project file
	Command-line options
	-batch (Batch build)
	-config (Select build configuration)
	-clean (Remove output files)
	-D (Define macro)
	-echo (Show command lines)
	-file (Build a named file)
	-packagesdir (Specify packages directory)
	-project (Specify project to build)
	-property (Set project property)
	-rebuild (Always rebuild)
	-show (Dry run, don't execute)
	-solution (Specify solution to build)
	-studiodir (Specify SEGGER Embedded Studio directory)
	-template (Specify project template)
	-time (Time the build)
	-threadnum (Specify number of build threads)
	-type (Specify project type)
	-verbose (Show build information)

	Command-Line Scripting
	Command-line options
	-define (Define global variable)
	-help (Show usage)
	-load (Load script file)
	-define (Verbose output)

	emScript classes
	Example uses

	Embed
	Header file generator
	Using the header generator
	Command line options
	-regbaseoffsets (Use offsets from peripheral base)
	-nobitfields (Inhibit bitfield macros)

	Linker script file generator
	Command-line options
	-check-segment-overflow
	-memory-map-file
	-memory-map-macros
	-section-placement-file
	-section-placement-macros
	-symbols

	Package generator

	Appendices
	Technical
	File formats
	Memory Map file format
	Section Placement file format
	Project file format
	Project Templates file format
	Property Groups file format
	Package Description file format
	External Tools file format

	Environment Options
	Building Environment Options
	Debugging Environment Options
	IDE Environment Options
	Programming Language Environment Options
	Source Control Environment Options
	Text Editor Environment Options
	Windows Environment Options

	Project Options
	General Build Options
	Compilation Options
	Debugging Options
	Executable Project Options

	Macros
	System Macros
	Build Macros

	Script classes
	BinaryFile
	CWSys
	Debug
	ElfFile
	TargetInterface
	WScript

