

Technical Note

Capacitive Sensor Control IC Series Capacitive Sensor Switch Control IC

No.09048EBT02

BU21010MUV

Description

BU21010MUV are the capacitive sensor controller with 8 channels respectively. Half of sensor ports are available to use to LED driver. Also gesture function can recognize the short touch, long touch and finger motion.

Features

- 1) Gesture function
- 2) LED driver
- 3) 2 wire serial interface
- 4) Power supply = 2.5V to 3.3V, I/O power supply = 1.7V to 3.3V
- 5) Integrated 10bit AD converter, clock and reset
- 6) Package VQFN016V3030

Applications

It is possible to use it widely as a switch such as a Mobile phone, Portable equipment, and Audiovisual apparatuses.

●Absolute Maximum Ratings (Ta=25°C)

PARAMETER	SYMDOL	RAT	UNIT	
PARAMETER	SYMBOL	MIN	MAX	UNIT
APPLIED VOLTAGE	AVDD	-0.3	4.5	v
APPLIED VOLIAGE	DVDD	-0.3	4.5	v
INPUT VOLTAGE	VAIN	-0.3	AVDD + 0.3	v
INPUT VOLTAGE	Vdin	-0.3	DVDD + 0.3	V
STORAGE TEMPERATURE RANGE	Tstg	-55	125	°C
POWER DISSIPATION	Pd	215		mW

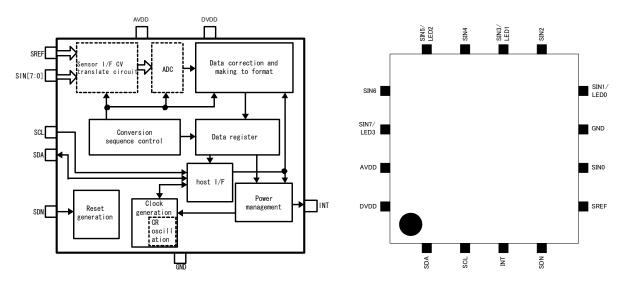
Recommended Operating conditions

PARAMETER	SYMBOL		UNIT			
FARAMETER	STINDUL	MIN	TYP	MAX	UNIT	
	AVDD	2.5	3.0	3.3	V	
APPLIED VOLTAGE	DVDD	1.7	3.0	3.3	V	
OPERATINGTEMPERATURE RANGE	Topr	-40	25	85	°C	

●Electrical characteristics (Especially, Topr=25°C and AVDD=DVDD=0 as long as it doesn't specify it.)

PARAMETER			RATING			T Condition		
PARAIVIETER	SYMBOL	MIN	TYP	MAX	UNIT	Condit	1011	
H INPUT VOLTAGE	Vihio	DVDDx0.8	-	DVDD+0.3	V			
L INPUT VOLTAGE	Vilio	DVSS-0.3	-	DVDDx0.2	V			
Output "H" voltage	Vоню	DVDD-0.7	-	DVDD	V	IOH=-2[mA]. Overshoot is e	excluded.	
	VOLLED	AVSS	-	0.5		IOL=8[mA]. Undershoot is	excluded. LED output.	
				0.5		IOL=3[mA]. Undershoot is	DVDD > 2[V]	
Output "L" voltage	Voltxd	DVSS	-	DVDDx0.3	V	excluded. SDA/TXD application.	$DVDD \leq 2[V]$	
	Volint	DVSS	-	0.5		IOL=2[mA]. Undershoot is a application.	excluded. INT	
Input leakage current	lız	-1	-	1	μA			
Off leakage current	loz	-1	-	1	μA			
Standby current	Ist	-	-	2	μA	Shutdown (SDN="L")		
Current of operation	IDD	-	300	-	μA			

●A/D Converter


PARAMETER	SYMBOL		RATING	UNIT	Condition	
PARAMETER	STIVIBUL	MIN	TYP	MAX	UNIT	Condition
Resolution		-	10	-	bit	
Analog Input voltage	VAIN	AVSS	-	AVDD	V	
change clock frequency	fadck	0.2	-	2.0	MHz	
change time	ftim	-	77	-	µsec	fadck = 1[MHz]
Zero scale voltage		-	-	AVSS+0.07	V	
full scale voltage		AVDD-0.07	-	-	V	
differential Non line accurate	DNL	-	-	±3	LSB	
Integrate Non line accurate	INL	-	-	±3	LSB	

۸

●CR Oscillator characteristic

	SVMDOI		RATING			Condition
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	Condition
Frequency Oscillation	fcr	0.4	1.1	2.0	MHz	

Block Diagram, Pin configuration

Sensor I/F CV translate circuit
 This module selects between sensor inputs. The selection sequences between all 16 channels.

• AD Conversion

The voltage into which CV is converted is converted into a digital value. Conversion is 10 bit and full scale corresponds to AVDD.

- Conversion sequence control Performs timing generation for the analogue circuitry and a sequencer circuit for selection of the sensor channel for conversion.
- · Data correction and making to format

This module provides the digital intelligence of the sensor. The block includes, amongst other things, scaling, adding offsets and input filtering for de-bouncing. Registers are formatted to simplify usage by the softwareapplication. The block implements auto-calibration to manage drift in temperature, process variation, voltage variation and aging effects.

Data register

This stores the results for the software application. Please refer to the register map for details.

- HOST I/F
 2 wire serial interface.
- · Power management

The power management block provides smart power control.

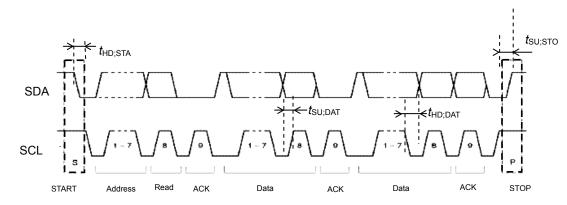
When the sensors are not in use, the Controller automatically transitions into a low-power mode. When a sensor is touched, then the device automatically wakes up and enters its normal operation. The chip drives an INT pin for alerting the controller device in this case.

- Reset generation
 The circuit is initialized by the external SDN pin.
- Clock generation
- The device has an internal oscillator.

Provision is also made if the application would like to make use of an external clock input.

Pin Description

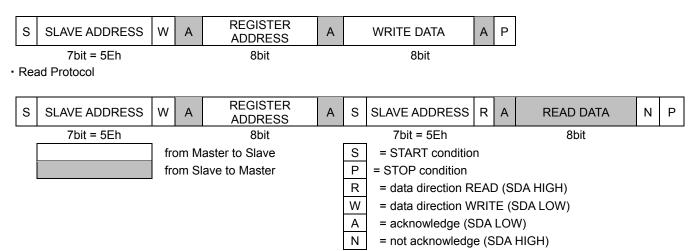
Pin No.	Name	I/O	Function	Note	Supply Reference	Reset Level	I/O Pad
1	SDA	In/Out	Communication data sending and receiving	-	DVDD	"Hi-Z"	5
2	SCL	In	Communication synchronous clock input	-	DVDD	-	2
3	INT	Out	Output of interrupt	"L" : Active mode "H" : Idle mode	DVDD	"L"	3
4	SDN	In	Shutdown input	"L" : Halt condition "H" : state of operation	DVDD	-	1
5	SREF	Aln	Standard capacitor input	-	AVDD	"Hi-Z"	4
6	SIN0	Aln	sensor input0	-	AVDD	"Hi-Z"	4
7	GND	Ground	Analog and digital ground	-	-	-	-
8	SIN1/LED0	Aln/Out	sensor input 1 / LED control output 0	sensor input , LED drive select	AVDD	"Hi-Z"	4
9	SIN2	Aln	sensor input2	-	AVDD	"Hi-Z"	4
10	SIN3/LED1	Aln/Out	sensor input 3 / LED control output 1	sensor input , LED drive select	AVDD	"Hi-Z"	4
11	SIN4	Aln	sensor input4	-	AVDD	"Hi-Z"	4
12	SIN5/LED2	Aln/Out	sensor input 5 / LED control output 2	sensor input , LED drive select	AVDD	"Hi-Z"	4
13	SIN6	Aln	sensor input6	-	AVDD	"Hi-Z"	4
14	SIN7/LED3	Aln/Out	sensor input 7 / LED control output 3	sensor input , LED drive select	AVDD	"Hi-Z"	4
15	AVDD	Power	Digital part Power supply	-	AVDD	-	-
16	DVDD	Power	Analog part Power supply	-	DVDD	-	-


●I/O Circuit

①CMOS INPUT	②CMOS Schmitt INPUT	3CMOS OUTPUT
CIN PAD	CIN PAD	I SPAD
④CMOS 3stute OUTPUT with ANALOG-SW	⑤CMOS Schmitt INOUT	
ASW AIN I OE OE	CIN I OEN OEN	

●HOST I/F

 2 wire serial, BUS Slave mode only Slave Address = 5Eh Normal (Normal mode. 100kHz Transfer rate) Fs mode (Fast mode. 400kHz Transfer rate) also. Not adapting sequential read / write.


[Data format]

Parameter	Standar	rd mode	High Spe	Unit	
Parameter	MIN	MAX	MIN	MAX	Unit
fSCL : SCL Clock Freq	0	100	0	400	kHz
tHD;STA : START condition hold time	4.0	-	0.6	-	µsec
tLow : SCL "L"	4.7	-	1.3	-	µsec
tнigн : SCL "H"	4.0	-	0.6	-	µsec
tHD;DAT : Data hold time	0.1	3.45	0.1	0.9	µsec
tsu;DAT : Data setup time	0.25	-	0.1	-	µsec
tsu;sto : START condition hold time	4.0	-	0.6	-	µsec
tBUF : Free time of bus between STOP condition and START condition	4.7	-	1.3	-	µsec

[PROTOCOL]

Write Protocol

Register map

register map				
Address	Register name	R/W	Length	Explanation
1*h	SENS_DATA	R	1byte / channel	Sensor output data. One for each channel.
32h	BTN	R	1byte	Button On/Off.
35h	BTN_STATE	R	1byte	Button state data.
4*h	OFFSET	R	1byte / channel	Offset correction data. One for each channel.
60h, 61h	GES_VEL	R	2byte	Gesture duration.
62h	GES_DIR	R	1byte	Gesture direction.
E2h	GES_CLR	W	1byte	Gesture clear control.
E3h	GES_CTL	R/W	1byte	Gesture control.
E4h	GES_CLK	R/W	1byte	Gesture clock setting.
E5h	GES_TIMEOUT	R/W	1byte	Gesture time-out data setting.
EEh	CALIB	W	1byte	Soft calibration execution.
EFh	DONE	R/W	1byte	Setting done command.
F0h	SENS_CH	R/W	1byte	Sensor channel enables.
F2h	LED_CH	R/W	1byte	LED channel enables.
F3h	IDLE_CH	R/W	1byte	Idle mode release control.
F5h	LED_LINK	R/W	1byte	LED linkage to sensor input.
F6h	TIMES	R/W	1byte	Defines the sampling interval and number of samples required to recognize a button press.
F7h	TH_ON2	R/W	1byte	A second threshold value in the detection of a button going from OFF state to ON state.
F8h	TH_ON2_CH	R/W	1byte	Per channel selection of whether to use TH_ON or TH_ON2.
FAh	CMD	R/W	1byte	Simultaneous press and idle mode entry.
FBh	GAIN_FILTER	R/W	1byte	Gain setting, filter function.
FCh	TH_ON	R/W	1byte	A threshold value in the detection of a button going from OFF state to ON state.
FDh	TH_OFF	R/W	1byte	A threshold value in the detection of a button going from ON state to OFF state.
FEh	DLED	R/W	1byte	Register to allow simple writing to LEDs.

[1*h : Sensor Output Data]

Name:SENS_DATAAddress:1* h (one byte

1* h (one byte per sensor channel)

Description: The sensor output that converts to 10bit. Scaling, offsets and filtering (when enabled) are applied. The most significant 8 bits are presented to the software with this register.

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1*h	SD_*[7]	SD_*[6]	SD_*[5]	SD_*[4]	SD_*[3]	SD_*[2]	SD_*[1]	SD_*[0]
R/W	R	R	R	R	R	R	R	R
Initial val.	1	0	0	0	0	0	0	0

[32h : Button On/Off]

Name: BTN Address: 32h Description: This is the stat

Description: This is the state of the sensor when considered as an ON/OFF button. Here 1 : On. 0 :Off.

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
32h	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
R/W	R	R	R	R	R	R	R	R
Initial val.	0	0	0	0	0	0	0	0

[35h : Button State Data]

Name:BTN_STATEAddress:35hDescription:This provides information about the press.

CH[3:0] : Effective channel :

This indicates which button is dominant.

SIMUL : Button effective :

This indicates that the effective channel corresponds to a valid button press according to the thresholds. 1: On. 0: Off.

CONTINU : A push and hold is effective :

Indicates that the button was pressed and held for more than push/hold judgment time. 1 : On. 0 : Off.

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
35h	CONTINU	-	-	SIMUL	CH[3]	CH[2]	CH[1]	CH[0]
R/W	R	-	-	R	R	R	R	R
Initial val.	0	-	-	0	0	0	0	0

[4* h : Offset Correction Data]

Name: OFFSET

Address: 4* h (one byte per sensor channel)

Description: This is the offset required to correct the sense data to half scale during the calibration procedure.

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
4*h	OFS_*[7]	OFS_*[6]	OFS_*[5]	OFS_*[4]	OFS_*[3]	OFS_*[2]	OFS_*[1]	OFS_*[0]
R/W	R	R	R	R	R	R	R	R
Initial val.	1	0	0	0	0	0	0	0

[60h / 61h : Gesture Duration]

 Name:
 GES_VEL

 Address:
 60h, 61h

 Description:
 Indicates the duration of the gesture in number of internal clocks.

 The count is a clock set with 0xE4(GES_CLK).

 It is possible to count up to 0~4095 clocks.

 Gesture duration = (gesture sampling interval) * VEL [sec]

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 60h VEL[7] VEL[6] VEL[5] VEL[4] VEL[3] VEL[2] VEL[1] VEL[0] 61h VEL[11] VEL[10] VEL[9] **VEL[8]** R/W R R R R R R R R Initial val. 0 0 0 0 0 0 0 0

[62h : Gesture Direction Judgment]

Name:GES_DIRAddress:62hDescription:Gesture direction judgment

DIR_A : gesture direction A

0xE3(GES_CTL) reference DIR_B : gesture direction B 0xE3(GES_CTL) reference

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
62h	-	-	-	-	-	-	DIR_B	DIR_A
R/W	-	-	-	-	-	-	R	R
Initial val.	-	-	-	-	-	-	0	0

[E2h : Gesture Clear]

 Name:
 GES_CLR

 Address:
 E2h

 Description:
 This register when written to clears GES_VEL and GES_DIR. It is cleared by one, and it returns to 0 by the automatic operation.

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
E2h	CLR	-	-	-	-	-	-	-
R/W	W	-	-	-	-	-	-	-
Initial val.	0	-	-	-	-	-	-	-

[E3h : Gesture Function Setting]

Name:	GES_CTL

Description: This register controls what key-press sequence is recognized as a gesture. Only 4 channels may be used - SIN0, SIN2, SIN4, and SIN6.

EN : enable

These are the enable bits. One is provided for each of the 4 sense inputs used for gesture. EN[0] is for SN0, EN[1] is for SN2, EN[2] is for SN4 and EN[3] is for SN6. 1 is to enable and 0 is for disable. **MODE : mode**

0 : Requires all sensors to be present in the sequence before the gesture is recognized. (All detection mode)

1 : Allows one or more of the keys to be missed in the sequence. (Verbose mode)

The condition and the direction of detection that can be detected in each mode are as follows.

mode	MODE	Direction (GES_DIR)	Detected			
All detection	0	DIR_A	1)SIN0→SIN2→SIN4→SIN6			
All detection	0	DIR_B	1)SIN6→SIN4→SIN2→SIN0			
Verbose	1	DIR_A	$\begin{array}{c c} 1)SIN0 \rightarrow SIN2 \rightarrow SIN4 \\ 2)SIN0 \rightarrow SIN2 \rightarrow & SIN6 \\ 3) & SIN2 \rightarrow SIN4 \rightarrow SIN6 \\ 4)SIN0 \rightarrow & SIN4 \\ 5) & SIN2 \rightarrow & SIN6 \end{array}$			
	I	DIR_B	$\begin{array}{c c} 1)SIN6 \rightarrow SIN4 \rightarrow SIN2 \\ 2)SIN6 \rightarrow SIN4 \rightarrow & SIN0 \\ 3) & SIN4 \rightarrow SIN2 \rightarrow SIN0 \\ 4)SIN6 \rightarrow & SIN2 \\ 5) & SIN4 \rightarrow & SIN0 \end{array}$			

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
E3h	-	-	-	MODE	EN[3]	EN[2]	EN[1]	EN[0]
R/W	-	-	-	W	W	W	W	W
Initial val.	-	-	-	1	1	1	1	1

[E4h : Gesture Clock Setting]

Name:	GES_CLK
Address:	E4h
Description:	This register allows setting of the time base for the gesture detection.
	It sets a divide ratio of the clock used.
	The maximum judgment time and the sampling interval of the gesture can be set by changing this clock.
	Gesture sampling interval =

1 / ((Internal oscillation frequency) / (2 * 16 * 16) * 1 [sec]	G_DIV = 0
1 / ((Internal oscillation frequency) / (2 * 16 * 16) * 2 [sec]	G_DIV = 1
1 / ((Internal oscillation frequency) / (2 * 16 * 16) * 4 [sec]	G_DIV = 2
1 / ((Internal oscillation frequency) / (2 * 16 * 16) * 8 [sec]	G_DIV = 3

1 / ((Internal oscillation frequency) / (2 * 16 * 16) * 8 [sec] ... G_DIV = 3 Gesture maximum judgment time = (Gesture sampling interval) * TO * 16 [sec]

For example with an internal clock of 1.1MHz

G_DIV	Gesture sampling interval[msec]	Gesture maximum judgment time [sec]
0	0.46	1.90
1	0.93	3.81
2	1.86	7.62
3	3.72	15.2

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
E4h	-	-	-	-	-	-	G_DIV[1]	G_DIV[0]
R/W	-	-	-	-	-	-	W	W
Initial val.	-	-	-	-	-	-	1	0

[E5h : Gesture Timeout Data Setting]

	···· ··· ··· ··· ··· ··· ··· ··· ··· ·
Name:	GES_TIMEOUT
Address:	E5h
Description:	The maximum judgment time of the gesture is set.
	A key sequence which exceeds this time is not recognized.

Gesture Maximum Judgment Time = (Gesture sampling interval) * TO * 16 [sec]

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
E5h	TO[7]	TO[6]	TO[5]	TO[4]	TO[3]	TO[2]	TO[1]	TO[0]
R/W	W	W	W	W	W	W	W	W
Initial val.	1	1	1	1	1	1	1	1

[EEh : Soft Calibration]

Name: CALIB

Address: EEh

Description: This forces a chip re-calibration when a 1 is written and returns to 0 afterward automatically. Please note that one should always re-calibrate after changing the gain adjustment value.

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EEh	-	-	-	-	-	-	-	CALIB
R/W	-	-	-	-	-	-	-	W
Initial val.	-	-	-	-	-	-	-	0

[EFh : Setting Done, Detect Start]

Name: DONE

Address: EFh

Description: This register should be written to following register updates.

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EFh	-	-	-	-	-	-	-	DONE
R/W	-	-	-	-	-	-	-	W
Initial val.	-	-	-	-	-	-	-	0

[F0h : Sensor Channel Setting]

Name: SENS CH Address: F0h

Description: Individual enabling and disabling of sensor channels. 1 : Effective 0 : Not in use

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
F0h	SIN7	SIN6	SIN5	SIN4	SIN3	SIN2	SIN1	SIN0
R/W	W	W	W	W	W	W	W	W
Initial val.	0	0	0	0	0	0	0	0

[F2h : LED Channel Setting]

LED_CH Name: Address: F2h Description: Enables and disables the channels to be used as LED outputs. Valid for the 8 LED outputs.1 : Effective 0 : Not in use

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
F2h	-	-	-	-	LED3	LED2	LED1	LED0
R/W	-	-	-	-	W	W	W	W
Initial val.	-	-	-	-	0	0	0	0

[F3h : Idle Exit Condition]

Name: IDLE CH F3h

Address: Description:

Defines which channels cause the device to wake up - i.e. go from idle mode to normal operation on a key press. Selection is made on a per channel basis.

1 : Effective 0 : Not used

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
F3h	SIN7	SIN6	SIN5	SIN4	SIN3	SIN2	SIN1	SIN0
R/W	W	W	W	W	W	W	W	W
Initial val.	1	1	1	1	1	1	1	1

[F5h : LED to Sensor Linkage]

LED LINK Name: Address: F5h

Allows the LED outputs to be automatically linked to the input channels without need for Description: any software control.

1 : It synchronizes with the button. 0 : It synchronizes with data (The register name: DLED) from host.

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
F5h	-	-	-	-	LED3	LED2	LED1	LED0
R/W	-	-	-	-	W	W	W	W
Initial val.	-	-	-	-	1	1	1	1

[F6h : Sampling Interval and Number of Samples Used for Button Press]

Name: TIMES

Address: F6h

Description: Defines the sampling interval and number of samples required to recognise as a button press.

CONT_T[3:0] : Push and hold judgment time :

Governs how long it is before the chip decides it is push and hold. Given by the following equation: Push-Hold Time = system clock $x 2^{19} x CONT_T$ (Example: system clock 1[MHz] time : About 520[msec]).

SAMP[3:0] : Sampling Interval :

Given by the following equation:

Sampling interval = system clock x 2¹³ x SAMP (Example: system clock 1[MHz] time : About 8.2[msec]).

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
F6h	CONT_T[3]	CONT_T[2]	CONT_T[1]	CONT_T[0]	SAMP[3]	SAMP[2]	SAMP[1]	SAMP[0]
R/W	W	W	W	W	W	W	W	W
Initial val.	0	0	0	0	0	0	0	0

【F7h : Button OFF→ON Threshold】

Name:	TH_ON2
Address:	F7h

Description: A second threshold value for determining a button off→on judgment of sensor. The sensor output value of 8bit (register SENS_DATA) is compared with 128+ ON2 [6:0], and if it is larger, the button is determined active.

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
F7h	-	ON2[6]	ON2[5]	ON2[4]	ON2[3]	ON2[2]	ON2[1]	ON2[0]
R/W	-	W	W	W	W	W	W	W
Initial val.	-	0	0	1	0	0	0	0

[F8h : Button OFF→ON Threshold Selection]

 Name:
 TH_ON2_CH

 Address:
 F8h

 Description:
 This register is used to relate either threshold TH_ON or TH_ON2 to particular sensor channels for button press activity determination.

 1 : TH_ON2 is applied
 0 :TH_ON is applied

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
F8h	SIN7	SIN6	SIN5	SIN4	SIN3	SIN2	SIN1	SIN0
R/W	W	W	W	W	W	W	W	W
Initial val.	0	0	0	0	0	0	0	0

[FAh: Simultaneous Press and Idle Mode Entry]

Name: CMD Address: FAh Description:

SIMUL_SEL : Simultaneous push judgment element choice :

In the case of simultaneous key press a decision must be made to select the dominant channel. The chip allows for two alternative methods. Either it can be based on whichever key press was first, or the priority can be based on the highest signal level.

1 : A level of a sensor gives priority 0 : Give priority to the channel pushed earliest

INTERMIT_EN : Intermittent and the drive are enable. :

Whether intermittent is driven at the idol mode is selected.

1 : Intermittent is driven. 0 : Intermittent is not driven. Initial state : Intermittent is driven.

IDLE_T[3:0] : non-detect time-out setting :

This sets the time the chip takes to go from normal mode to idle mode in a period key inactivity.

Duration = system clock x 2¹⁹ x IDLE_T (Example of system clock 1[MHz]time : About 520[msec])

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
FAh	SIMUL_SEL	-	-	INTERMIT_EN	IDLE_T[3]	IDLE_T[2]	IDLE_T[1]	IDLE_T[0]
R/W	W	-	-	W	W	W	W	W
Initial val.	0	-	-	1	0	1	1	1

[FBh : Gain Setting, Filter Function]

Name: GAIN_FILTER

Address: FBh Description: Gain adjustment and setting of noise filter function

GAIN[2:0] : gain setting :

It uses it for the gain adjustment in eight stages. Initial adjustment value : x1

Adjustment value x 1 x 4.22 x 8.4 x 16.5 x 23 x 46 x 69 x 92	GAIN[2:0]	000	001	010	011	100	101	110	111
	Adjustment value	X I		x 8.4	x 16.5		x 46	x 69	x 92

FILTER_EN : Filter enable :

Enables/disables setting of noise filter function

1 : enabled 0 : disabled Initial state : disabled

DELTA[3:0] : Filter follow count setting :

The follow count to which the noise filter function is effective is set.

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
FBh	GAIN[2]	GAIN [1]	GAIN[0]	FILTER_EN	DELTA[3]	DELTA[2]	DELTA[1]	DELTA[0]
R/W	W	W	W	W	W	W	W	W
Initial val.	0	0	0	0	0	0	1	0

[FCh: Switch OFF -> ON Threshold]

Name: TH ON

Address: FCh Description:

This register provides a threshold value for determining if a sensor has transitioned from OFF to ON. This is relative value from reference value (128d). So the absolute value of threshold is 128d + ON[6:0]. It makes a threshold value between TH ON and TH OFF. TH ON must be bigger than TH OFF (\overline{TH} ON >= \overline{TH} OFF)

Maximum threshold is 256d and minimum value is 128d.

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
FCh	-	ON[6]	ON[5]	ON[4]	ON[3]	ON[2]	ON[1]	ON[0]
R/W	-	W	W	W	W	W	W	W
Initial val.	-	0	0	1	0	0	0	0

[FDh: Switch ON -> OFF Threshold Value]

Name:	TH_OFF
Address:	FDh
Description:	This register provides a threshold value for transitioning from ON to OFF.
	This is relative value from reference value (128d). So absolute value of threshold is
	128d + OFF[6:0]. It makes a threshold value between TH_ON and TH_OFF.
	TH_OFF must be smaller than TH_ON (TH_OFF =< TH_ON)
	Maximum value is 256d and minimum value is 128d.

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
FDh	-	OFF[6]	OFF[5]	OFF[4]	OFF[3]	OFF[2]	OFF[1]	OFF[0]
R/W	-	W	W	W	W	W	W	W
Initial val.	-	0	0	0	0	0	0	1

[FEh: LED Port Data]

Name: DLED Address: FEh Description: When LED is not linked with the sensor, it becomes a simple digital output that controls the LED. 1 : Light. 0 : Turned off.

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
FEh	-	-	-	-	D3	D2	D1	D0
R/W	-	-	-	-	W	W	W	W
Initial val.	-	-	-	-	0	0	0	0

Operation mode

This IC has a normal mode, idle mode and a shutdown mode as states of operation.

[Normal mode]

This is the normal operation of the device. Output pin INT="L".

[Idle mode]

This is the mode when the normal mode times out due to inactivity on the keys. In this mode the control interface is still alive.

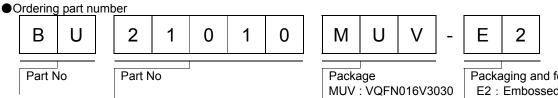
*Usually time-out is aimed at about 200msec or less.

*Transition between normal and idle modes is automatic and without software control.

[Shutdown mode]

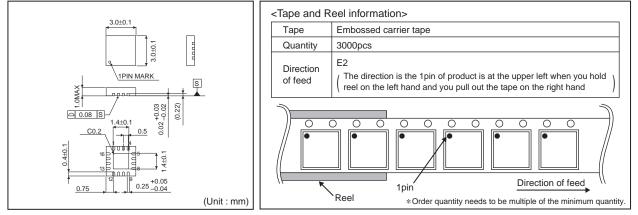
In this mode the device is completely stopped – and reset. This is achieved by making the terminal SDN L. All analog circuits and the logic circuits are stopped. The return from the shutdown mode returns by making the terminal SDN H.

*After shut-down all registers have their default values.


Initialization procedure

A normal power on sequence is:

- (1) Power on
- (2) Setup the registers
- (3) Write '1' to 0xEF (done register)
 - <sensing operation begins after auto-calibration occurs>


• Power supply turning on procedure

You should always power on DVDD at the same time as AVDD or before AVDD.

Packaging and forming specification E2 : Embossed tape and reel

VQFN016V3030

	Notes
	g or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.
The conten	t specified herein is subject to change for improvement without notice.
"Products")	It specified herein is for the purpose of introducing ROHM's products (hereinafte b. If you wish to use any such Product, please be sure to refer to the specifications be obtained from ROHM upon request.
illustrate th	of application circuits, circuit constants and any other information contained herein e standard usage and operations of the Products. The peripheral conditions mus to account when designing circuits for mass production.
However, s	was taken in ensuring the accuracy of the information specified in this document should you incur any damage arising from any inaccuracy or misprint of such , ROHM shall bear no responsibility for such damage.
examples of implicitly, a other partie	cal information specified herein is intended only to show the typical functions of and of application circuits for the Products. ROHM does not grant you, explicitly o ny license to use or exercise intellectual property or other rights held by ROHM and es. ROHM shall bear no responsibility whatsoever for any dispute arising from the technical information.
equipment	ets specified in this document are intended to be used with general-use electronic or devices (such as audio visual equipment, office-automation equipment, commu vices, electronic appliances and amusement devices).
The Produc	ts specified in this document are not designed to be radiation tolerant.
	M always makes efforts to enhance the quality and reliability of its Products, a ay fail or malfunction for a variety of reasons.
against the failure of ar shall bear r	sure to implement in your equipment using the Products safety measures to guard possibility of physical injury, fire or any other damage caused in the event of the product, such as derating, redundancy, fire control and fail-safe designs. ROHM responsibility whatsoever for your use of any Product outside of the prescribed of in accordance with the instruction manual.
system whi may result instrument fuel-contro any of the F	cts are not designed or manufactured to be used with any equipment, device or ch requires an extremely high level of reliability the failure or malfunction of which in a direct threat to human life or create a risk of human injury (such as a medica , transportation equipment, aerospace machinery, nuclear-reactor controller ller or other safety device). ROHM shall bear no responsibility in any way for use of Products for the above special purposes. If a Product is intended to be used for any al purpose, please contact a ROHM sales representative before purchasing.
be controlle	d to export or ship overseas any Product or technology specified herein that may ed under the Foreign Exchange and the Foreign Trade Law, you will be required to ense or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ROHM Semiconductor: BU21010MUV-E2