

:	Silicon Monolithic Integrated Circuit
:	Power driver for CD/DVD player
:	BA5956FM
:	Figure 1
:	Figure 2
:	Figure 3
:	Figure 4
:	Figure 5
	: : : : : : : : : : : : : : : : : : : :

 \odot Features

 \bigcirc 2 channel current feedback type driver, 3 channel BTL driver.

 \bigcirc Employs the HSOP-M36 power package for compaction.

 \bigcirc Has a wide dynamic range.

 \bigcirc The thermal shutdown circuit is built.

 \bigcirc Mute circuit is built in. (except for loading driver)

 $\bigcirc\,A$ power supply is divided into 4 systems.

[PreVcc, PowVcc1=actuator, PowVcc2=loading motor, PowVcc3=sled motor, spindle motor]

⊙Absolute Maximum Rating (Ta=25°C)

Item	Symbol	Rating	Unit
Supply voltage	PreVcc,PowVcc	18	V
Power dissipation	Pd	2.2^{*1}	W
Maximum output current	Iomax	1^{*2}	А
Operating temperature range	Topr	$-35 \sim 85$	°C
Storage temperature range	Tstg	$-55 \sim 150$	°C

*1 Rating for 70 mm×70 mm(size), 1.6 mm(thickness), copper foil occupation ratio less than 3%, And use of glass-epoxy substrate.

When this IC is used above Ta=25°C, note that this rating decreases 17.6mW each time the temperature increases 1° C.

 *2 This rating of permissible dissipation must not exceed ASO.

Operating Supply Range

PreVcc	$4.5 \sim 14$ (V)
PowVcc	$4.5 \sim \text{PreVcc} (V)$

• ELECTRICAL CHARACTERISTICS

 $(\label{eq:unless} \mbox{otherwise noted}, \mbox{Ta=25°C}, \mbox{PreVcc=PowVcc3=12V}, \mbox{PowVcc1=PowVcc2=5V}, \mbox{BIAS=1.65V}, \mbox{RL=8}\Omega, \mbox{Rd=0.5}\,\Omega, \mbox{C=100pF})$

Parameter	symbol	MIN	TYP	MAX	Unit	Condition	Test circuit
Quiescent current	IQ	_	34	44	mA		Figure.5
Voltage for mute ON	VMON	0	—	0.5	V		Figure.5
Voltage for mute OFF	VMOFF	2.0	—	_	V		Figure.5
<actuator driver=""></actuator>							
Output offset current	IOOF	-6	0	6	mA		Figure.5
Maximum output voltage	VOM	3.6	4.0	_	V	$VIN=\pm 1.65V$	Figure.5
Trans conductance	Gvc	1.5	1.8	2.1	A/V	VIN=BIAS±0.2V	Figure.5
< Sled motor driver pre OPAMP & O)PAMP>					•	
Common mode input range	VICM	0.4	_	10.5	V		Figure.5
Input offset voltage	VIOFOP	-6	0	6	mV		Figure.5
Input bias current	IBOP	_	-	300	nA		Figure.5
Low level output voltage	VOLOP	_	0.2	0.5	V		Figure.5
Output source current	ISO	0.5	_	_	mA		Figure.5
Output sink current	ISI	0.5	-	_	mA		Figure.5
< Sled motor driver >						• •	
Output offset voltage	VOOFSL	-50	0	50	mV		Figure.5
Maximum output voltage	VOMSL	8.0	9.5	_	V	$VIN=\pm 1.65V$	Figure.5
Closed loop voltage gain	GVSL	17.6	19.6	21.6	dB	VIN=±0.2V	Figure.5
< Loading motor driver >							
Output offset voltage	VOOFLD	-50	0	50	mV		Figure.5
Maximum output voltage	VOMLD	3.5	4.0	_	V	$VIN=\pm 1.65V$	Figure.5
Gain error by polarity	GVLD	15.7	17.7	19.7	dB	VIN=BIAS±0.2V	Figure.5
< Spindle motor driver >							
Output offset voltage	VOOFSP	-50	0	50	mV		Figure.5
Maximum output voltage	VOMS	8.0	9.5	_	V	$VIN=\pm 1.65V$	Figure.5
Gain error by polarity	GVSP	15.7	17.7	19.7	dB	VIN=BIAS±0.2V	Figure.5

 \bigcirc This product is not designed for protection against radioactive rays.

Figure 1 PACKAGE OUTLINE

Electrical characteristic curves

Pd; Power Dissipation

Rating for 70mm \times 70mm(size), 1.6mm(thickness), copper foil occupation ratio less than 3%, and use of glass-epoxy substrate.

Figure 2 POWER DISSIPATION

Unit of resistance: Ω

Figure 3 BLOCK DIAGRAM

|--|

No	Pin name	Pin description	No	Pin name	Pin descrition
1	LDBIAS	Input for bias voltage (Loading driver)	19	VOLD (-)	Inverted output of loading
2	BIAS	Input for bias voltage	20	VOLD (+)	Non inverted output of loading
3	FCIN	Input for focus driver	21	VOSL(-)	Inverted output of sled
4	CFCerr1	Connection with capacitor for error amplifier 1	22	VOSL(+)	Non inverted output of sled
5	CFCerr2	Connection with capacitor for error amplifier 2	23	VOSP(-)	Inverted output of spindle
6	MUTE	Input for mute control	24	VOSP(+)	Non inverted output of spindle
7	TKIN	Input for tacking driver	25	PGND2	GND for power block of loading, sled and
					spindle driver
8	CTKerr1	Connection with capacitor for error amplifier 1	26	PVcc2	Vcc for power block of loading driver
9	CTKerr2	Connection with capacitor for error amplifier 2	27	PVcc3	Vcc for power block of sled and spindle driver
10	PreGND	GND for pre-drive block	28	PreVcc	Vcc for pre-drive block
11	PVcc1	Vcc for power block of actuator	29	SPIN	Input for spindle driver
12	VNFFC	Feedback for focus driver	30	OPOUTSL	Sled Pre OP amplifier output
13	PGND1	GND for power block of actuator	31	OPINSL(-)	Sled Pre OP amplifier invert input
14	VNFTK	Feedback for tracking driver	32	OPINSL(+)	Sled Pre OP amplifier non invert input
15	VOTK(-)	Inverted output of tracking	33	LDIN	Input for loading driver
16	VOTK (+)	Non inverted output of tracking	34	OPOUT	OP amplifier output
17	VOFC(-)	Inverted output of focus	35	OPIN(-)	OP amplifier invert input
18	VOFC (+)	Non inverted output of focus	36	OPIN (+)	OP amplifier non invert input

notes) Symbol of + and - (output of drivers) means polarity to input pin.

(For example if voltage of pin3 is high , pin18 is high.)

Figure 4 APPLICATION

OPAMP

Figure5 TEST CIRCUIT

[•] Measurement circuit switch table

Sumbol		Sw	itch				Inp	out			Condition	Measureme
Symbol	SW1	SW2	SW3	SW4	VIN1	VIN2	VIN3	VIN5	VINOP	MUTE	Condition	nt point
IQ	1	1	2	1	1.65V	1.65V	1.65V	1.65V		2.0V		IQ
VMON	1	1	2	1	1.65V	1.65V	1.65V	1.65V	_	2.0V		IQ
VMOFF	1	1	2	1	1.65V	1.65V	1.65V	1.65V	-	0.5V		IQ
<actuator d<="" td=""><td>river></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></actuator>	river>											
IOOF	1	1	2	1	1.65V	1.65V	1.65V	1.65V	_	2.0V		IO
VOM	1	1	2	1	$\pm 1.65 V$	$\pm 1.65 V$	1.65V	1.65V		2.0V	VIN1,2=0, 3.3V	VO1,2
Gvc	1	1	2	1	±0.2V	±0.2V	1.65V	1.65V	_	2.0V	VIN=1.45, 1.85V	IO
<sled motor<="" td=""><td>r driver</td><td>pre OF</td><td>AMP &</td><td>z OPAN</td><td>/IP></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></sled>	r driver	pre OF	AMP &	z OPAN	/IP>							
IBOP	2	1	3	1	1.65V	1.65V	1.65V	1.65V		2.0V		VBOP
VIOFOP	1	1	2	1	1.65V	1.65V	1.65V	1.65V	_	2.0V		VOOF
VOLOP	1	2	1	1	1.65V	1.65V	1.65V	1.65V	12V	2.0V		VOOP
ISO	1	1	2	2	1.65V	1.65V	1.65V	1.65V	_	2.0V		VOOP
ISI	1	1	2	2	1.65V	1.65V	1.65V	1.65V	1	2.0V		VOOP
<sled motor<="" td=""><td>r driver</td><td>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></sled>	r driver	>										
VOOFSL	1	1	2	1	1.65V	1.65V	1.65V	1.65V		2.0V		VO4
VOMSL	1	2	1	1	1.65V	1.65V	1.65V	1.65V	$\pm 1.65 V$	2.0V	VINOP=0, 3.3V	VO4
GVSL	1	2	1	1	1.65V	1.65V	1.65V	1.65V	±0.2V	2.0V	VINOP=1.45, 1.85V	VO4
<loading di<="" td=""><td>river></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loading>	river>											
VOOFLD	1	1	2	1	1.65V	1.65V	1.65V	1.65V	-	2.0V		VO3
VOMLD	1	1	2	1	1.65V	1.65V	$\pm 1.65 V$	1.65V		2.0V	VIN3=0, 3.3V	VO3
GVLD	1	1	2	1	1.65V	1.65V	±0.2V	1.65V	1	2.0V	VIN3=1.45, 1.85V	VO3
<spindle dr<="" td=""><td>iver></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></spindle>	iver>											
VOOFSP	1	1	2	1	1.65V	1.65V	1.65V	1.65V	_	2.0V		VO5
VOMS	1	1	2	1	1.65V	1.65V	1.65V	±1.65V	_	2.0V	VIN5=0, 3.3V	VO5
GVSP	1	1	2	1	1.65V	1.65V	1.65V	±0.2V	_	2.0V	VIN5=1.45, 1.85V	VO5

8/11

- 1. Thermal-shut- down circuit built-in. In case IC chip temperature rise to 175° C (typ.) thermal-shut-down circuit operates and output current is muted. Next time IC chip temperature falls below 150° C (typ.)
- 2. In case mute-pin voltage under 0.5V or opened, quiescent current is muted. Mute-pin voltage should be over 2.0V for normal application.
- 3. In case supply voltage falls below 3.5V (typ.), output current is muted. Next time supply voltage rises to 3.7V(typ.), the driver blocks start.
- 4. Bias-pin (pin1 and pin2) should be pulled up more than 1.2V. In case bias-pin voltage is pulled down under 1.0V (typ.), output current is muted.
- 5. In case a capacitance load is connected to the OP amplifier output, the amplifier phase margin decreases, which causes the peak or oscillator. When connecting such load, insert a resistance in series between the output and the capacitance load and take a full consideration for frequency characteristics, to prevent problems during practical use.
- 6. Insert the by-pass capacitor between Vcc-pin and GND-pin of IC as possible as near (approximately 0.1μ F).
- 7. Heat dissipation fins are attached to the GND on the inside of the package. Make sure to connect these to the external GND
- Avoid the short-circuits between: Output pin and Vcc Output pin and GND Output pins
 If this caution is ignored, IC damage may cause smokes.
- 9. Examine in consideration of operating margin, when each driver output falls below sub-voltage of IC (GND) due to counter-electromotive-force of load.

< Supplement >

Current feedback driver

Trans conductance (output current/input voltage) is shown as follws.

$$gm = \frac{1}{R_d + R_{WIRE}} \quad (A/V)$$

 $R_{WIRE} \Rightarrow 0.075\Omega \ (\pm 0.05\Omega) \ (Typ.)$:Au wire

	Notes
No copyin consent of	g or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.
The conter	t specified herein is subject to change for improvement without notice.
The conter	nt specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can	be obtained from ROHM upon request.
Examples	of application circuits, circuit constants and any other information contained herein
illustrate th	le standard usage and operations of the Products. The peripheral conditions must
be taken in	to account when designing circuits for mass production.
Great care	was taken in ensuring the accuracy of the information specified in this document.
However, s	should you incur any damage arising from any inaccuracy or misprint of such
informatior	n, ROHM shall bear no responsibility for such damage.
The technic	cal information specified herein is intended only to show the typical functions of and
examples	of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, a	iny license to use or exercise intellectual property or other rights held by ROHM and
other parti	es. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such	intechnical information.
The Produce equipment nication de	cts specified in this document are intended to be used with general-use electronic or devices (such as audio visual equipment, office-automation equipment, commu- vices, electronic appliances and amusement devices).
The Produ	cts specified in this document are not designed to be radiation tolerant.
While ROF	IM always makes efforts to enhance the quality and reliability of its Products, a
Product ma	ay fail or malfunction for a variety of reasons.
Please be	sure to implement in your equipment using the Products safety measures to guard
against the	e possibility of physical injury, fire or any other damage caused in the event of the
failure of a	ny Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear	no responsibility whatsoever for your use of any Product outside of the prescribed
scope or n	of in accordance with the instruction manual.
The Produ	cts are not designed or manufactured to be used with any equipment, device or
system wh	ich requires an extremely high level of reliability the failure or malfunction of which
may result	in a direct threat to human life or create a risk of human injury (such as a medical
instrument	, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-
controller of	or other safety device). ROHM shall bear no responsibility in any way for use of any
of the Prod	ducts for the above special purposes. If a Product is intended to be used for any
such speci	al purpose, please contact a ROHM sales representative before purchasing.
If you inter	nd to export or ship overseas any Product or technology specified herein that may
be controll	ed under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a lic	ense or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ROHM Semiconductor: BA5956FM-E2