

NAME OF PRODUCT DC-AC Inverter Control IC

TYPE

BD9895FV

FUNCTION · 2ch control with Half-Bridge

- Lamp current and voltage sense feed back control
- Sequencing easily achieved with Soft Start Control
- · Circuit protection with Timer Latch
- Under Voltage Lock Out
- Over Voltage Protection
- Mode-selectable the operating or stand-by mode by stand-by pin
- BURST mode controlled by PWM and DC input
- Output linear Controllable Analog dimming by external DC voltage
- · Synchronous operating the other several BD9895FV IC's

OAbsolute Maximum Ratings (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Supply Voltage	Vcc	15	V
Operating Temperature Range	Topr	-40~+90	°C
Storage Temperature Range	Tstg	-55~+150	°C
Power Dissipation	Pd	1062*	mW
Maximum Junction Temperature	Tjmax	+150	°C

*Pd derated at 8.5mW/°C for temperature above Ta = 25° C (When mounted on a PCB 70.0mm × 70.0mm × 1.6mm)

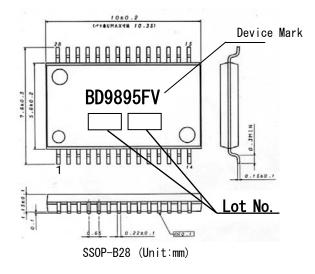
ORecommended operating condition

Parameter	Symbol	Limits	Unit
Supply voltage	Vcc	6.0~14.0	V
Output oscillation frequency	fout	25~90	kHz
BCT oscillation frequency	fbct	0.05~1.00	kHz

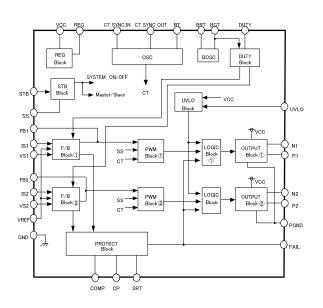
Status of this document

The Japanese version of this document is the official specification.

Please use the translation version of this document as a reference to expedite understanding of the official version. If these are any uncertainty in translation version of this document, official version takes priority.


O<u>Electric Characteristics (Ta=25°C, VCC=7V)</u>

Electric Gnaracteristics (Ta-2	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0					
Parameter	Symbol		Limits		Unit	Conditions
	Symbol	MIN.	TYP.	MAX.	UIIIL	Conditions
((WHOLE DEVICE))						
Operating current	lcc1	-	—	17.0	mA	CT_SYNC_IN=Low
Stand-by current	lcc2	-	-	10	μA	CT_SYNC_IN=OPEN
((OVER VOLTAGE DETECT))		•	•			
FB over voltage detect voltage	Vovf	2.20	2.40	2.60	٧	
((STAND BY CONTROL))						
Stand-by voltage L	VstL	-0.3	_	0, 8	٧	
Input voltage range of Slave setting	VstH1	1.8	-	2.25	٧	
Input voltage range of Master setting	VstH2	2.55	-	VCC	V	
((TIMER LATCH))						
Timer Latch voltage	Vcp	1.9	2.0	2.1	V	
Timer Latch current	lcp	0.5	1.0	1.5	μA	
((BURST MODE))	100	0.0	1.0	1.0	μΛ	
BOSC Max voltage	VburH	1.94	2.0	2.06	V	fbct=0. 3kHz
BOSC Min Voltage	VburL	0.4	0.5	0.6	V	fBCT=0. 3kHz
BOSC constant current	IBCT	0.4 1.35/BRT	1. 5/BRT	1. 65/BRT	A	IBUI-U. JKIIZ
					-	
BOSC frequency	fBCT	292. 5	300	307.5	Hz	BRT=36k Ω BCT=0. 048 μ F
((OSC BLOCK))				1	r	
MAX DUTY	MAXDUTY	44. 0	48.0	49.5	%	fout=60kHz
Soft start current	lss	1.0	2.0	3.0	μA	
IS COMP detect Voltage	Visc	0.45	0.50	0. 55	٧	
SS COMP detect voltage	Vssc	2.0	2.2	2.4	V	
SRT ON resistance	RSRT	_	200	400	Ω	
((UVLO BLOCK))						
Detect voltage (VCC UVLO)	Vcc_vuvlo	5, 100	5. 300	5. 500	V	
Hysteresis width (UVLO)	Vcc_vuvlo	0.150	0.200	0.250	V	
Operating voltage (VCC_UVLO)	Vuvlo	2.260	2. 340	2. 420	V	
Hysteresis width (VCC_UVLO)	⊿Vuvlo	0. 075	0.100	0. 125	V	
((REG BLOCK))			n		-	- F
REG output voltage	VREG	3. 038	3.100	3. 162	V	
REG source current	IREG	5.0	—	-	mA	
((FEED BACK BLOCK))	-	-	-			
IS threshold voltage ①	Vis(1)	1. 225	1. 250	1. 275	۷	VREF pin:OPEN,REG is shorted
IS threshold voltage ②	Vis2	-	VREFIN	VIS①	۷	VREF pin is supplied
VS threshold voltage	Vvs	1. 220	1.250	1. 280	۷	
IS source current 1	lis1	_	_	1.5	μA	DUTY=2. 2V
IS source current 2	lis2	13.0	20.0	27.0	μA	DUTY=OV、IS=0.5V
VS source current	lvs	—	—	1.0	μA	
VREF input voltage range	VREF IN	0.6	-	1.6	٧	Over 1.25V is not effective
((OUTPUT BLOCK))	•				•	
Pch output voltage H	VoutPH	VCC-0, 3	VCC-0. 1	_	٧	
Nch output voltageH	VoutNH	VCC-0. 3	VCC-0. 1	_	V	
Pch output voltage L	VoutPL	_	0.1	0.3	V	
Nch output voltage L	VoutNL	_	0.1	0.3	v	1
P c h output sink resistance	RsinkP		5	10	Ω	lsink = 10mA
P c h output source resistance	RsourceP	_	8	16	Ω	Isource = 10mA
N c h output sink resistance	RsinkN	_	5	10	Ω	Isink = 10mA
N c h output source resistance	RsourceN	_	8	16	Ω	Isource = 10mA
Drive output frequency	four	57.9	60.0	62.1	KHz	RT=15kΩ
	1001	57.9	00.0	UZ. I	INTE	11-10/32
((COMP BLOCK))	VOONDU	0.1	0.5	0.0	. v	I
Overr voltage detect	VCOMPH	2.4	2.5	2.6	V	
Hysteresis width (COMP)	∠VCOMPH	0. 040	0.060	0.080	V	
((PROTECT CLOCK))						
FAIL-pin On resistor value	R_FAIL	_	200	400	Ω	
((SYNCRO BLOCK))						
CT_SYNC_IN_High input Voltage Range	VCT_SYNC_IN_H	2.0		VCC*0. 8	۷	
CT_SYNC_IN_Low input Voltage Range	VCT_SYNC_IN_L	-0.3	-	1.5	۷	
CT_SYNC_IN Pull-up resistor	RCT_SYNC_IN_pull_up	500	_	—	kΩ	
CT_SYNC_IN Self-oscillation voltage	VCT_SYNC_IN	VCC * 0. 9	_	VCC	٧	
CT SYNC OUT sink resistor value	 RCT_SYNC_OUTsink	_	150	300	Ω	
CT_SYNC_OUT source resistor value	RCT_SYNC_OUTsource	_	370	740	Ω	
CT_SYNC_OUT_High output Voltage Range		2.8	3.1	3.4	V	1
CT_SYNC_OUT_Low output Voltage Range	VCT_SYNC_OUT_L		_	0.5	v	1
SRT SYNC Exchange detect Voltage	Vor_onto_oor_c	0.5	0.8	1.1	v	
This product is not designed for perma						_L


(This product is not designed for normal operation with in a radio active environment.)

OPackage Dimensions

OBlock Diagram

端子番号 端子名 機能 FET driver for 1ch N1 1 2 P1 FET driver for 1ch External capacitor from CP to GND for 3 CP Timer Latch 4 REG Internal regulator output 5 FAIL Protect clock output VREF 6 Reference voltage Output pin of CT synchronous signal 7 CT_SYNC_OUT 8 CT_SYNC_IN Input pin of CT synchronous signal External resistor from SRT to RT for 9 RT adjusting the triangle oscillator External resistor from SRT to RT for 10 SRT adjusting the triangle oscillator 11 GND GROUND External capacitor from BCT to GND for 12 BCT adjusting the BURST triangle oscillator External resistor from BRT to GND for 13 BRT adjusting the BURST triangle oscillator 14 DUTY Control PWM mode and BURST mode Stand-by switch, Master/Slave selection 15 STB Error amplifier input④ 16 VS2 17 182 Error amplifier input3 18 FB2 Error amplifier output(2) 19 VS1 Error amplifier input② 20 1\$1 Error amplifier input① 21 FB1 Error amplifier output(1) External capacitor from SS to GND for Soft 22 SS Start Control Over voltage detector 23 COMP 24 VCC Supply voltage input 25 **UVLO** External Under Voltage Lock OUT 26 FET driver for 2ch P2 27 N2 FET driver for 2ch 28 PGND Ground for FET drivers

OPin Description

ONOTE FOR USE

- 1. When designing the external circuit, including adequate margins for variation between external devices and the IC.Use adequate margins for steady state and transient characteristics.
- 2. Recommended Operating Range

The circuit functionality is guaranteed within of ambient temperature operation range as long as it is within recommended operating range. The standard electrical characteristic values cannot be guaranteed at other voltages in the operating ranges, however, the variation will be small.

3. Mounting Failures

Mounting failures, such as misdirection or miscounts, may harm the device.

4. Electromagnetic Fields

A strong electromagnetic field may cause the IC to malfunction.

- 5. The GND pin should be the location within $\pm 0.3V$ compared with the PGND pin
- 6. BD9895FV has the short circuit protection with Thermal Shut Down System. When STB or Vcc pin re-supplied, They enables to cancel the latch. If It rise the temperature of the chip more than 170°C (TYP), It make the external FET OFF
- 7. Absolute maximum ratings are those values that, if exceeded, may cause the life of a device to become significantly shortened. Moreover, the exact failure mode caused by short or open is not defined. Physical countermeasures, such as a fuse, need to be considered when using a device beyond its maximum ratings.
- 8. About the external FET, the parasitic Capacitor may cause the gate voltage to change, when the drain voltage is switching. Make sure to leave adequate margin for this IC variation.
- 9. On operating Slow Start Control (SS is less than 2.2V), It does not operate Timer Latch.
- 1 O. By STB voltage, BD9895FV is changed to 3 states. Therefore, do not input STB pin voltage between one state and the other state (0.8~1.8, 2.25~2.55).
- 1 1. The pin connected a connector need to connect to the resistor for electrical surge destruction.
- 1 2. This IC is a monolithic IC which (as shown is Fig-1)has P⁺ substrate and between the various pins. A P-N junction is formed from this P layer of each pin. For example, the relation between each potential is as follows,

 $O\left(\text{When GND} > \text{PinB} \text{ and GND} > \text{PinA}, \text{ the P-N junction operates as a parasitic diode.}\right)$

 $O\left(\text{When PinB} > \text{GND} > \text{PinA}, \text{ the P-N junction operates as a parasitic transistor.}\right)$

Parasitic diodes can occur inevitably in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits as well as operation faults and physical damage. Accordingly you must not use methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin. Resistance Transistor (NPN)

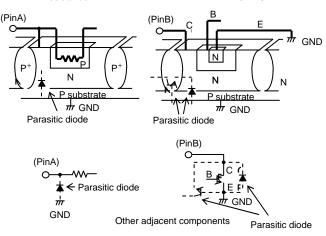


Fig-1 Simplified structure of a Bipolar IC

	Notes
	g or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.
The conten	t specified herein is subject to change for improvement without notice.
"Products")	It specified herein is for the purpose of introducing ROHM's products (hereinafte b. If you wish to use any such Product, please be sure to refer to the specifications be obtained from ROHM upon request.
illustrate th	of application circuits, circuit constants and any other information contained herein e standard usage and operations of the Products. The peripheral conditions mus to account when designing circuits for mass production.
However, s	was taken in ensuring the accuracy of the information specified in this document should you incur any damage arising from any inaccuracy or misprint of such , ROHM shall bear no responsibility for such damage.
examples of implicitly, a other partie	cal information specified herein is intended only to show the typical functions of and of application circuits for the Products. ROHM does not grant you, explicitly o ny license to use or exercise intellectual property or other rights held by ROHM and es. ROHM shall bear no responsibility whatsoever for any dispute arising from the technical information.
equipment	ets specified in this document are intended to be used with general-use electronic or devices (such as audio visual equipment, office-automation equipment, commu vices, electronic appliances and amusement devices).
The Produc	ts specified in this document are not designed to be radiation tolerant.
	M always makes efforts to enhance the quality and reliability of its Products, a ay fail or malfunction for a variety of reasons.
against the failure of ar shall bear r	sure to implement in your equipment using the Products safety measures to guard possibility of physical injury, fire or any other damage caused in the event of the product, such as derating, redundancy, fire control and fail-safe designs. ROHM responsibility whatsoever for your use of any Product outside of the prescribed of in accordance with the instruction manual.
system whi may result instrument fuel-contro any of the F	cts are not designed or manufactured to be used with any equipment, device or ch requires an extremely high level of reliability the failure or malfunction of which in a direct threat to human life or create a risk of human injury (such as a medica , transportation equipment, aerospace machinery, nuclear-reactor controller ller or other safety device). ROHM shall bear no responsibility in any way for use of Products for the above special purposes. If a Product is intended to be used for any al purpose, please contact a ROHM sales representative before purchasing.
be controlle	d to export or ship overseas any Product or technology specified herein that may ed under the Foreign Exchange and the Foreign Trade Law, you will be required to ense or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ROHM Semiconductor: BD9895FV-E2