

2SP0320T2Cx-12 Preliminary Data Sheet

Compact, high-performance, plug-and-play dual-channel IGBT driver based on SCALE[™]-2 technology for individual and parallel-connected modules in 2-level, 3-level and multilevel converter topologies

Abstract

The SCALE[™]-2 plug-and-play driver 2SP0320T2Cx-12 is a compact dual-channel intelligent gate driver designed for 1200V IGBT modules from Danfoss, Fuji or Infineon. The driver features an electrical interface with a built-in DC/DC power supply.

The turn-on and turn-off gate resistors of both channels are not assembled in order to provide maximum flexibility. They must be assembled by the user before start of operation. Please refer to the paragraph on "Gate Resistor Assembly" for the recommended gate resistors.

For drivers adapted to other types of high-power and high-voltage IGBT modules, refer to

www.IGBT-Driver.com/go/plug-and-play

Features	Applications
✓ Plug-and-play solution	✓ Wind-power converters
✓ Allows parallel connection of IGBT modules	✓ Industrial drives
✓ For 2-level, 3-level and multilevel topologies	✓ UPS
✓ Shortens application development time	 Power-factor correctors
 Extremely reliable; long service life 	✓ Traction
✓ Built-in DC/DC power supply	Railroad power supplies
✓ 20-pin flat cable interface	✓ Welding
✓ Duty cycle 0 100%	✓ SMPS
✓ Active clamping of V _{ce} at turn-off	Radiology and laser technology
✓ IGBT short-circuit protection	✓ Research
✓ Monitoring of supply voltage	✓ and many others
✓ Safe isolation to EN 50178	-

✓ UL compliant

Suitable for 1200V IGBT modules
 Gate resistors not assembled

Safety Notice!

The data contained in this data sheet is intended exclusively for technically trained staff. Handling all high-voltage equipment involves risk to life. Strict compliance with the respective safety regulations is mandatory!

Any handling of electronic devices is subject to the general specifications for protecting electrostatic-sensitive devices according to international standard IEC 60747-1, Chapter IX or European standard EN 100015 (i.e. the workplace, tools, etc. must comply with these standards). Otherwise, this product may be damaged.

Important Product Documentation

This data sheet contains only product-specific data. For a detailed description, must-read application notes and common data that apply to the whole series, please refer to "Description & Application Manual for 2SP0320T SCALE-2 IGBT Drivers" on <u>www.IGBT-Driver.com/go/2SP0320</u>.

The gate resistors on this gate driver are not assembled in order to provide maximum flexibility. For the gate resistors required for specific IGBT modules, refer to the paragraph on "Gate Resistor Assembly". Use of gate resistors other than those specified may result in failure.

Mechanical Dimensions

Dimensions: See the relevant "Description and Application Manual"

Mounting principle: Connected to IGBT module with screws

Absolute Maximum Ratings

Parameter	Remarks	Min	Max	Unit
Supply voltage V_{DC}	VDC to GND	0	16	V
Supply voltage V _{cc}	VCC to GND (Note 1)	0	16	V
Logic input and output voltages	To GND	-0.5	VCC+0.	5 V
SO _x current	Fault condition, total current		20	mA
Gate peak current I _{out}	Note 2	-20	+20	Α
Average supply current I_{DC}	Note 16		600	mA
Output power per gate	Ambient temperature <70°C (Note 3)		3	W
	Ambient temperature 85°C (Note 3)		2	W
Turn-on gate resistance	Note 17	0.3		Ω
Turn-off gate resistance	Note 17	1		Ω
Switching frequency F	Note 23		n.d.	kHz
Test voltage (50Hz/1min.)	Primary to secondary (Note 19)		3800	V _{AC(eff)}
	Secondary to secondary (Note 19)		3800	V _{AC(eff)}
DC-link voltage	Note 4		800	V
dV/dt	Rate of change of input to output voltage (Note 20)		50	kV/µs
Operating voltage	Primary/secondary, secondary/secondary		1200	V _{peak}

Parameter	Remarks	Min	Мах	Unit
Operating temperature		-40 -40	+85 +90	°C °C
Storage temperature		-40	+90	C

Recommended Operating Conditions

Power Supply	Remarks	Min	Тур	Мах	Unit
Supply voltage V _{DC}	To GND (Note 1)	14.5	15	15.5	V
Supply voltage V_{CC}	To GND (Note 1)	14.5	15	15.5	V
Resistance from TB to GND	Blocking time≠0, ext. value	128		∞	kΩ

Electrical Characteristics

Power Supply	Remarks	Min	Тур	Мах	Unit
Supply current I _{DC}	Without load		37		mA
Efficiency η	Internal DC/DC converter		85		%
Supply current I _{cc}	Without load		19		mA
Coupling capacitance C_{io}	Primary side to secondary side, total, per o	channel	20		pF
Power Supply Monitoring	Remarks	Min	Тур	Мах	Unit
Supply threshold V _{cc}	Primary side, clear fault	11.9	12.6	13.3	V
	Primary side, set fault (Note 5)	11.3	12.0	12.7	V
Monitoring hysteresis	Primary side, set/clear fault	0.35			V
Supply threshold V _{isox} -V _{eex}	Secondary side, clear fault	12.1	12.6	13.1	V
	Secondary side, set fault (Note 21)	11.5	12.0	12.5	V
Monitoring hysteresis	Secondary side, set/clear fault	0.35			V
Supply threshold V_{eex} - V_{COMx}	Secondary side, clear fault	5	5.15	5.3	V
	Secondary side, set fault (Note 21)	4.7	4.85	5	V
Monitoring hysteresis	Secondary side, set/clear fault	0.15			V
Logic Inputs and Outputs	Remarks	Min	Тур	Мах	Unit
Input impedance	V(INx) = 15V (Note 6)	4.3	4.5	4.6	kΩ
Turn-on threshold	V(INx) (Note 7)		10.5		V
Turn-off threshold	V(INx) (Note 7)		5		V
SOx pull-up resistor to VCC	On board		10		kΩ
SOx output voltage	Fault condition, I(SOx)<6.5mA			0.7	V

Short-circuit Protection	Remarks	Min	Тур	Мах	Unit
Vce-monitoring threshold	Between auxiliary terminals		10.2		V
Response time	DC-link voltage > 550V (Note 8)		6.9		μs
Delay to IGBT turn-off	After the response time (Note 9)	1.4		μs	
Blocking time	After fault (Note 10)	90			ms
Timing Characteristics	Remarks	Min	Тур	Мах	Unit
Turn-on delay t _{d(on)}	Note 11		95		ns
Turn-off delay t _{d(off)}	Note 11		75		ns
Jitter of turn-on delay	Note 12		±2		ns
Jitter of turn-off delay	Note 12		±2		ns
Output rise time tr(out)	G_x to E_x (Note 13)		7		ns
Output fall time $t_{f(out)}$	G_x to E_x (Note 13)		25		ns
Dead time between outputs	Half-bridge mode (Note 14)		3		μs
Jitter of dead time	Half-bridge mode		±100		ns
Transmission delay of fault state	Note 15		450		ns
Outputs	Remarks	Min	Тур	Max	Unit
Turn-on gate resistor R _{g(on)}	Note 17	not	assemb	oled	Ω
Turn-off gate resistor R _{g(off)}	Note 17	not assembled		Ω	
Gate voltage at turn-on			15		V
Gate-voltage at turn-off	P = 0W		-10.4		V
	P = 0.3W		-10.2		V
	P = 2.1W		-9.7		V
	P = 3W		-9.6		V
Gate resistance to COMx			4.7		kΩ
dV/dt Feedback	Remarks	Im	olemen	tation	
dV/dt feedback	Note 18		No		
Electrical Isolation	Remarks	Min	Тур	Мах	Unit
Test voltage (50Hz/1s)	Primary to secondary side (Note 19)	3800	3850	3900	V_{eff}
	Secondary to secondary side (Note 19)	3800	3850	3900	V_{eff}
Partial discharge extinction volt.	Primary to secondary side (Note 22)	1220			V_{peak}
-	Secondary to secondary side (Note 22)	1200			V _{peak}
Creepage distance	Primary to secondary side	secondary side 20		mm	
	Secondary to secondary side	17			mm
All data refer to $\pm 25^{\circ}$ C and V =	$V_{DC} = 15V$ unless otherwise specified				

All data refer to +25°C and V_{CC} = V_{DC} = 15V unless otherwise specified

Footnotes to the Key Data

- 1) Both supply voltages V_{DC} and V_{CC} should be applied in parallel.
- 2) The gate current is limited by the gate resistors located on the driver.
- 3) If the specified value is exceeded, this indicates a driver overload. It should be noted that the driver is not protected against overload. From 70°C to 85°C, the maximum permissible output power can be linearly interpolated from the given data.
- 4) This limit is due to active clamping. Refer to "Description & Application Manual for 2SP0320T SCALE-2 IGBT Drivers".
- 5) Undervoltage monitoring of the primary-side supply voltage (VCC to GND). If the voltage drops below this limit, a fault is transmitted to the corresponding output(s) and the IGBTs are switched off.
- 6) The input impedance can be modified (customer-specific solution).
- 7) Turn-on and turn-off threshold values can be modified (customer-specific solution).
- 8) The resulting pulse width of the direct output of the gate drive unit for short-circuit type I (excluding the delay of the gate resistors) is the sum of response time plus delay to IGBT turn-off.
- 9) The turn-off event of the IGBT is delayed by the specified time after the response time.
- 10) Factory set value. The blocking time can be reduced with an external resistor. Refer to "Description & Application Manual for 2SP0320T SCALE-2 IGBT Drivers".
- 11) Measured from the transition of the turn-on or turn-off command at the driver input to direct output of the gate drive unit (excluding the delay of the gate resistors).
- 12) Jitter measurements are performed with input signals INx switching between 0V and 15V referred to GND, with a corresponding rise time and fall time of 8ns.
- 13) Refers to the direct output of the gate drive unit (excluding the delay of the gate resistors).
- 14) Note that the dead time may vary from sample to sample. A tolerance of approximately ±20% may be expected. If higher timing precisions are required, CONCEPT recommends using direct mode and generating the dead time externally.
- 15) Transmission delay of the fault state from the secondary side to the primary status outputs.
- 16) If the specified value is exceeded, this indicates a driver overload. It should be noted that the driver is not protected against overload.
- 17) The gate resistors are not assembled on this IGBT gate driver. They must be assembled by the user according to the paragraph on "Gate Resistor Assembly".
- 18) A dV/dt feedback can optionally be implemented in order to reduce the rate of rise of the collector emitter voltage of the IGBTs at turn-off (customer-specific solution).
- 19) HiPot testing (= dielectric testing) must generally be restricted to suitable components. This gate driver is suited for HiPot testing. Nevertheless, it is strongly recommended to limit the testing time to 1s slots as stipulated by EN 50178. Excessive HiPot testing at voltages much higher than 850V_{AC(eff)} may lead to insulation degradation. No degradation has been observed over 1min. testing at 3800V_{AC(eff)}. Every production sample shipped to customers has undergone 100% testing at the given value or higher (<5100V_{eff}) for 1s.
- 20) This specification guarantees that the drive information will be transferred reliably even at a high DClink voltage and with ultra-fast switching operations.
- 21) Undervoltage monitoring of the secondary-side supply voltage (Visox to Veex and Veex to COMx which correspond with the approximate turn-on and turn-off gate-emitter voltages). If the corresponding voltage drops below this limit, the IGBT is switched off and a fault is transmitted to the corresponding output.
- 22) Partial discharge measurement is performed in accordance with IEC 60270 and isolation coordination specified in EN 50178. The partial discharge extinction voltage between primary and either secondary side is coordinated for safe isolation to EN 50178.
- 23) The maximum switching frequency is not defined, as it depends on the IGBT module used. Please consult the corresponding driver data sheet for more information.

Gate Resistor Assembly

The turn-on and turn-off gate resistors of 2SP0320T2Cx drivers are adapted to their respective IGBT modules. Recommended gate resistors are: PR02 / 2W / 5% from Vishay.

1200V IGBT Type	R120/R121/ R220/R221	R122/R123 / R222/R223	Resulting Rg,on	Resulting Rg,off
FF450R12IE4	5.1Ω	6.8Ω	2.55Ω	3.4Ω
FF600R12IE4	3.6Ω	6.8Ω	1.8Ω	3.4Ω
2MBI900VXA-120E-50	3.3Ω	5.1Ω	1.65Ω	2.55Ω
2MBI900VXA-120P-50	4.3Ω	3.3Ω	2.15Ω	1.65Ω
FF900R12IE4	2.7Ω	6.8Ω	1.35Ω	3.4Ω
FF900R12IP4	3.3Ω	6.8Ω	1.65Ω	3.4Ω
2MBI1400VXB-120E-50	2Ω	3Ω	1Ω	1.5Ω
2MBI1400VXB-120P-50	3.3Ω	3.3Ω	1.65Ω	1.65Ω
DP1400B1200T103714	2Ω	4.7Ω	1Ω	2.35Ω
FF1400R12IP4	2Ω	6.8Ω	1Ω	3.4Ω

The following versions exist:

For the component position, refer to Fig. 1.

Assembly Drawing

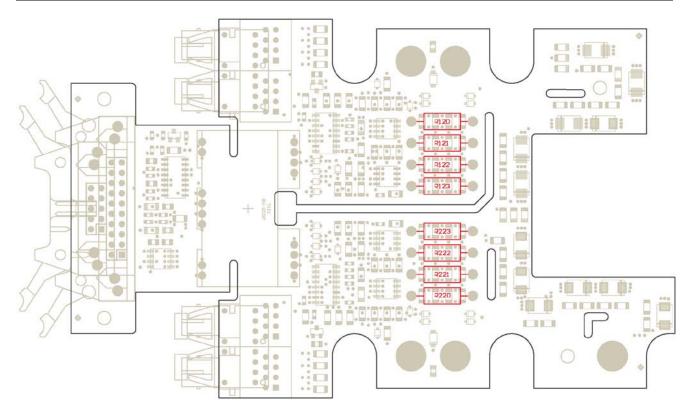


Fig. 1: Assembly drawing of 2SP0320 with highlighted gate resistors

Note that the wires of the gate resistors should not project more than 1.6mm after soldering (excess length at bottom side). Furthermore, a minimum distance of 1mm must be maintained between the gate resistor body and the PCB.

Legal Disclaimer

This data sheet specifies devices but cannot promise to deliver any specific characteristics. No warranty or guarantee is given – either expressly or implicitly – regarding delivery, performance or suitability.

CT-Concept Technologie GmbH reserves the right to make modifications to its technical data and product specifications at any time without prior notice. The general terms and conditions of delivery of CT-Concept Technologie GmbH apply.

Related IGBT

1200V IGBT modules

Preliminary Data Sheet

Ordering Information

The general terms and conditions of delivery of CT-Concept Technologie GmbH apply.

CONCEPT Driver Type

2SP0320T2C0-12 (Only 15V logic supported)

Product home page: <u>www.IGBT-Driver.com/go/2SP0320</u>

Refer to <u>www.IGBT-Driver.com/go/nomenclature</u> for information on driver nomenclature

Information about Other Products

For other drivers, evaluation systems product documentation and application support

Please click: <u>www.IGBT-Driver.com</u>

Manufacturer

CT-Concept Technologie GmbH A Power Integrations Company Johann-Renfer-Strasse 15 2504 Biel-Bienne Switzerland

Phone +41 - 32 - 344 47 47 Fax +41 - 32 - 344 47 40

E-mail <u>Info@IGBT-Driver.com</u> Internet <u>www.IGBT-Driver.com</u>

© 2008...2014 CT-Concept Technologie GmbH - Switzerland. All rights reserved. We reserve the right to make any technical modifications without prior notice. Version 2.0 from 2016-05-20

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Power Integrations:

 2SP0320T2C0-12
 2SP0320S2A0-12
 2SP0320T2C0-FF600R12IE4
 2SP0320T2C0-DP1400B1200T103714

 2SP0320T2C0-FF1400R12IP4
 2SP0320T2C0-2MBI900VXA-120P-50
 2SP0320T2C0-2MBI1400VXB-120E-50

 2SP0320T2C0-FF450R12IE4
 2SP0320T2C0-2MBI1400VXB-120P-50
 2SP0320T2C0-2MBI900VXA-120E-50

 2SP0320T2C0-FF900R12IE4
 2SP0320T2C0-FF900R12IP4
 2SP0320T2C0-2MBI900VXA-120E-50