

Javelin Stamp Manual

Version 1.1

WARRANTY
Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt
of product. If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the
purchase price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA)
number. Write the RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose
the following along with the returned merchandise: your name, telephone number, shipping address, and a description
of the problem. Parallax will return your product or its replacement using the same shipping method used to ship the
product to Parallax.

14-DAY MONEY BACK GUARANTEE

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a
full refund. Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This
guarantee is void if the product has been altered or damaged. See the Warranty section above for instructions on
returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright 2005 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
Parallax Inc.

BASIC Stamp, Stamps in Class, Board of Education, Boe-Bot SumoBot, SX-Key and Toddler are registered
trademarks of Parallax, Inc. If you decide to use registered trademarks of Parallax Inc. on your web page or in
printed material, you must state that "(registered trademark) is a registered trademark of Parallax Inc.” upon the first
appearance of the trademark name in each printed document or web page. HomeWork Board, Parallax, and the
Parallax logo, are trademarks of Parallax Inc. If you decide to use trademarks of Parallax Inc. on your web page or
in printed material, you must state that "(trademark) is a trademark of Parallax Inc.”, “upon the first appearance of the
trademark name in each printed document or web page. Other brand and product names are trademarks or registered
trademarks of their respective holders.

ISBN ###############

DISCLAIMER OF LIABILITY
Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used with
Parallax products. Parallax Inc. is also not responsible for any personal damage, including that to life and health,
resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no matter
how life-threatening it may be.

INTERNET DISCUSSION LISTS
We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible
from www.parallax.com via the Support → Discussion Forums menu. These are the forums that we operate from our
web site:

• BASIC Stamps – This list is widely utilized by engineers, hobbyists and students who share their
BASIC Stamp projects and ask questions.

• Stamps in Class® – Created for educators and students, subscribers discuss the use of the Stamps in
Class educational program in their courses. The list provides an opportunity for both students and
educators to ask questions and get answers.

• Parallax Educators –Exclusively for educators and those who contribute to the development of
Stamps in Class. Parallax created this group to obtain feedback on our curricula and to provide a
forum for educators to develop and obtain Teacher’s Guides.

• Translators – The purpose of this list is to provide a conduit between Parallax and those who
translate our documentation to languages other than English. Parallax provides editable Word
documents to our translating partners and attempts to time the translations to coordinate with our
publications.

• Robotics – Designed exclusively for Parallax robots, this forum is intended to be an open dialogue
for a robotics enthusiasts. Topics include assembly, source code, expansion, and manual updates.
The Boe-Bot®, Toddler®, SumoBot®, HexCrawler and QuadCrawler robots are discussed here.

• SX Microcontrollers and SX-Key – Discussion of programming the SX microcontroller with
Parallax assembly language SX-Key® tools and 3rd party BASIC and C compilers.

§ Javelin Stamp – Discussion of application and design using the Javelin Stamp, a Parallax module
that is programmed using a subset of Sun Microsystems’ Java® programming language.

ERRATA
While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us
know by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials
and documentation, and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and
corrections for a given text will be posted to our web site, www.parallax.com. Please check the individual product
page’s free downloads for an errata file.

Table of Contents

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page i

PREFACE ... VII
MANUAL ORGANIZATION ... VII
JAVA PROGRAMMERS – READ THIS .. VIII
BASIC STAMP ENTHUSIASTS – READ THIS .. IX
MANUAL CONVENTIONS .. IX
RESOURCES AND TECHNICAL SUPPORT .. X
FREE DOWNLOADS FROM WWW.JAVELINSTAMP.COM .. XI
ACKNOWLEDGEMENTS .. XI

1: INTRODUCTION ... 1
THE JAVELIN STAMP AND ITS FEATURES .. 1
PROGRAMMING LANGUAGE - JAVATM FOR THE JAVELIN STAMP .. 2
JAVELIN STAMP INTEGRATED DEVELOPMENT ENVIRONMENT ... 2
VIRTUAL PERIPHERALS ... 3

Background VPs ... 3
Foreground VPs ... 3

HOW THE JAVELIN STAMP WORKS ... 4
JAVELIN STAMP HARDWARE .. 5
EQUIPMENT AND SYSTEM REQUIREMENTS ... 6
USEFUL HARDWARE ... 7

2: JAVELIN QUICK START ... 11
HARDWARE SETUP .. 11
INSTALLING THE JAVELIN STAMP IDE .. 16
RUNNING THE JAVELIN STAMP IDE AND LOADING A TEST PROGRAM 19
DEBUGGING ENVIRONMENT ... 22
ONLINE HELP .. 26
I/O EXAMPLE .. 27
DID THAT WORK? – TROUBLE SHOOTING .. 29
WHERE TO NEXT? ... 32

3: BEGINNERS GUIDE TO EMBEDDED JAVA PROGRAMMING 35
THE CLASS WRAPPER AND MAIN METHOD .. 35
DECLARING CONSTANTS, VARIABLES, AND ARRAYS ... 36
PERFORMING CALCULATIONS ... 39
MAKING DECISIONS .. 40
REPETITIVE OPERATIONS .. 43
DISPLAYING MESSAGES FROM THE JAVELIN ... 47
SENDING MESSAGES TO THE JAVELIN ... 49

Table of Contents

Page ii • Javelin Stamp Manual v1.1 • www.javelinstamp.com

CREATING A METHOD ... 51
CREATING AND USING A LIBRARY CLASS ... 55

4: APPLICATION EXAMPLES – CIRCUTS AND PROGRAMS .. 59
CIRCUITS AND EXAMPLE CODE ... 59
ABOUT SOLDERLESS BREADBOARDS .. 59
PUSHBUTTON AND LED REVISITED .. 61
DIGITAL TO ANALOG CONVERSION .. 63
ANALOG TO DIGITAL CONVERSION .. 64
MEASURING RESISTIVE AND CAPACITIVE ELEMENTS ... 64
CONTROLLING A SERVO WITH A BACKGROUND PWM OBJECT .. 66
COMMUNICATING WITH PERIPHERAL ICS ... 69
COMMUNICATING WITH OTHER COMPUTERS .. 74
COMMUNICATING WITH PERIPHERAL DEVICES ... 78

5: USING THE JAVELIN STAMP IDE .. 81
STARTING THE IDE ... 81
SETTING GLOBAL OPTIONS ... 81
STARTING A PROJECT .. 82
BUILDING YOUR PROGRAM ... 86
DEALING WITH ERRORS .. 87
USING THE DEBUGGER TO LOOK INSIDE THE JAVELIN .. 89
AN EXAMPLE DEBUGGING SESSION .. 92
EDITING TEXT ... 94
TOOLBARS AND MENUBARS ... 95
CLASS PATH CONSIDERATIONS ... 95
WORKING WITH PACKAGES .. 96
WORKING WITH PROJECTS .. 97

6: JAVELIN STAMP PROGRAMMERS REFERENCE .. 99
JAVA DIFFERENCES ... 99
GETTING STARTED .. 99
VARIABLES, TYPES, AND CONSTANTS .. 101

Constants .. 103
Number Bases ... 104
Expressions ... 104
Special Operators ... 106
Comments ... 108
Control Flow .. 108
Classes and Objects ... 111

Table of Contents

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page iii

Methods and Parameters ... 113
Where are the Pointers? .. 115
Arrays ... 118
Strings .. 119
Extending Classes .. 120
Basic Type Classes ... 124
Numeric Conversions ... 125
Statics ... 125
Abstraction ... 126
Exceptions .. 126
Packages and CLASSPATH ... 129

ONLINE RESOURCES ... 131
JAVELIN STAMP KEYWORD REFERENCE ... 131

abstract ... 131
boolean ... 132
break ... 132
byte ... 132
case ... 133
catch ... 133
char .. 133
class .. 133
continue .. 133
default ... 134
do .. 134
else ... 134
extends .. 134
final .. 135
finally ... 135
for ... 135
if ... 137
import ... 138
int ... 139
new ... 140
null ... 140
package .. 140
private, protected, public ... 141
return .. 143
short ... 143
static ... 143
super ... 145

Table of Contents

Page iv • Javelin Stamp Manual v1.1 • www.javelinstamp.com

switch .. 145
this .. 146
throw, throws .. 147
try ... 147
void ... 149
while ... 149

JAVELIN STAMP OPERATOR REFERENCE ... 150
[] .. 150
++, -- .. 150
(type) ... 150
+, -, *, /, %, () ... 151
<<, >>, >>> ... 152
<, >, <=, >=, ==, != .. 153
&, |, ^ .. 153
&&, || ... 154
~, ! .. 154
?: ... 154
instanceof ... 155

UNUSED KEYWORDS ... 156
Unsupported Reserved Words: ... 156

7: WORKING WITH OBJECTS ... 157
WHAT'S AN OBJECT? ... 157

Encapsulation ... 159
Polymorphism ... 160
Class Relationships .. 161
An Object Oriented Example .. 161
Decoupling the Code .. 164
Virtual Peripherals ... 167
A Timer Example .. 168
Object-Oriented Opportunity ... 170

8: OBJECT REFERENCE .. 173
THE JAVA.LANG PACKAGE .. 173

Boolean ... 173
Error ... 174
Exception .. 174
IndexOutOfBoundsException ... 175
Math ... 175
NullPointerException ... 175

Table of Contents

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page v

Object ... 176
OutOfMemoryError ... 177
RuntimeException .. 177
String .. 177
StringBuffer .. 180
System ... 181
Throwable .. 181

THE JAVA.IO PACKAGE .. 181
THE JAVA.UTIL PACKAGE ... 182

Random .. 182
THE STAMP.UTIL PACKAGE .. 182

Expect ... 183
List .. 183
LinkedList ... 183

LINKEDLISTITEM .. 184
9: JAVELIN STAMP HARDWARE REFERENCE .. 185

ADC ... 185
BUTTON .. 186
CPU .. 190

carry ... 191
count ... 191
delay ... 192
installVP ... 192
message .. 193
nap .. 193
pulseIn .. 194
pulseOut ... 196
rcTime .. 196
readPin ... 199
readPort ... 200
removeVP ... 201
setInput ... 202
shiftIn ... 202
shiftOut ... 206
writePin .. 210
writePort .. 210

DAC ... 211
EEPROM ... 212
MEMORY ... 215

Table of Contents

Page vi • Javelin Stamp Manual v1.1 • www.javelinstamp.com

PWM .. 215
TERMINAL ... 216
TIMER ... 219
UART ... 220

10: TECHNICAL DETAILS ... 225
SUMMARY OF JAVA DIFFERENCES .. 225

Single Thread ... 225
No Garbage Collection .. 225
Subset of Primitive Data Types .. 226
Subset of Java Libraries ... 227
Strings are ASCII ... 229
No Interfaces .. 229
One Dimensional Arrays .. 229

UNDERSTANDING THE JAVELIN STAMP’S MEMORY MANAGEMENT 230
MEMORY AND VARIABLE TYPES .. 232

INDEX ... 233

Preface

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page vii

Manual Organization
This manual was written under the assumption that the reader’s level of experience could be
anywhere between beginner and advanced embedded JavaTM aficionado. We recommend that
you start from the beginning and work your way through this manual sequentially, especially
if you are new to both circuits and Java. Make sure to try all the examples and understand
how they work before moving on to the next. For those of you who do not fall at either end of
the spectrum, below is a condensed table of contents with comments regarding the intended
audience and uses of each chapter.

Preface

General information - discusses Javelin Stamp’s features, this manual’s format and
conventions, resources and acknowledgements.

1: Introduction

General information - about the Javelin, its uses, equipment it can be used with,
specifications, software, etc.

2: Javelin Quick Start

Recommended for all – includes step by step instructions for software installation,
hardware setup, trouble shooting, a couple of example programs, an example circuit,
and a software tour.

3: Beginners Guide to Embedded JavaTM Programming

Recommended for Java newcomers and BASIC Stamp users - if you’ve never
programmed in Java before, read this, and try the examples!

4: Application Examples – Circuits and Programs

Recommended for embedded newcomers and BASIC Stamp users – provides good
examples for BASIC Stamp users to make the transition to Java based hardware
design, and helps those new to circuit based programming projects get their feet wet.

5: Using the Javelin Stamp IDE

Recommended for all – the Javelin Stamp IDE is a powerful tool with many useful
features.

Preface

Page viii • Javelin Stamp Manual v1.1 • www.javelinstamp.com

6: Javelin Stamp Programmers Reference

If you are a Java programmer, pay close attention to the differences between Java for
the Javelin and Java on your PC. For beginners, this is a good way to learn
programming in Java.

7: Working with Objects

Recommended if you are still learning Java – by this point, if you were new to Java
at the beginning of this manual, you are now well into the learning curve.

8: Object Reference

Recommended for all – whether you are an experienced Java programmer or you just
finished Chapter 7, this chapter explains the Java library classes available for use
with the Javelin.

9: Javelin Stamp Hardware Reference

Recommended for all – explains all the hardware related library classes and methods.
If it has to do with a VP, a peripheral or an external circuit, the information is here.

10: Technical Details

Appendix material.

Java Programmers – READ THIS
The Javelin Stamp is a small yet powerful controller that makes use of a subset of Java 1.2.
The Javelin Stamp has firmware enhancements (called Virtual Peripherals or VPs) that
emulate, or virtualize, hardware devices such as UARTs, timers, A/D converters, D/A
converters, and more. These VP’s have been painstakingly optimized, and they take the form
of native methods that make it easy to interface with just about any circuit or peripheral
device. Many of these firmware features are similar to those that lead the BASIC Stamp’s
popularity, and others have long been on BASIC Stamp users’ wish lists.

The flip side of the Virtual Peripheral firmware features is that they have been incorporated
into the Javelin Stamp at the expense of Java purity. You will find the experience of
developing applications with the Javelin Stamp uniquiely different from developing
applications on a PC. To get to the rewards of a rapid prototype of your product design or
project with minimal stumbling, we recommend above all that you try the many programming
and circuit examples in this text. Before getting started on the examples, take a few minutes

sdill
Comment [1]: 10: Internet Programming Advanced
example – connecting to UDP servers. This section needs
to be added back.

Preface

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page ix

to review the reading list below. It will acquaint you with the scope of Javelin Stamp projects
and help you avoid some of the programming pitfalls you might otherwise encounter.

Suggested reading for Java Programmers:

Section Page
The Javelin Stamp and Its Features 1
Programming Language - JavaTM for the Javelin Stamp 2
Summary of Java Differences 225
Javelin Stamp Integrated Development Environment 2

Virtual Peripherals

3

Background VPs 3
Foreground VPs 3
How the Javelin Stamp Works 4

BASIC Stamp Enthusiasts – READ THIS
As with the Java Programmers who were addressed in the previous section, programming the
Javalin Stamp is also likely to be very different from what you, the BASIC Stamp Enthusiast,
are expecting. This manual has LOTS of example programs and circuits to help you
transition from PBASIC to the Java subset used to program the Javelin Stamp. Especially if
you are unfamiliar with Java, we strongly recommend that you work through the examples in
this text sequentially. The majority of this manual’s organization was established with you in
mind, so, if you have not already done so, please take a look at the Manual Orginazation
section at the beginning of this preface. If you are like the rest of us at Parallax, you probably
can’t wait to get started, so have fun with Chapter 2: Javelin Quick Start.

Manual Conventions
Below is a list of typographical conventions used in this manual:

 Monospaced is used for:

• Words that are part of the language syntax when they are part of a sentence.
• Fragments of programs. The code snippet below is an excerpt from a

program, but it cannot be run on its own. It has to appear in either a
complete program or a complete class file, both of which are discussed
next:

Preface

Page x • Javelin Stamp Manual v1.1 • www.javelinstamp.com

System.out.println(“Not a complete
program.”);

A gray box is used for:

• Complete programs that can be entered into the Javelin Stamp IDE and
executed on a Javelin Stamp, for example:

import examples.manual_v1_0.*;
public class CompleteProgram{
 public static void main() {
 CompleteClassFile example = new CompleteClassFile();
 System.out.println("Now, it's in a complete
program.");
 example.displaySameMessageAgain();
 }
}

• Complete class files that can be instantiated by other programs. Here is

an example:

package examples.manual_v1_0;
public class CompleteClassFile {
 public static void displaySameMessageAgain() {
 System.out.println("Now, it's in a complete class
file");
 }
}

Resources and Technical Support
The inside cover of this manual has three sections pertaining to resources:

• Internet Access
• Internet Javelin Stamp Discussion List
• Contacting Parallax

Follow the Tech Support link at www.javelinstamp.com
for the latest in tech support contact info, discussion
group links, manual errata, answers to frequently asked
questions, and more!

Preface

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page xi

Free Downloads from www.javelinstamp.com
You can always get the latest revisions and updates of the following from
www.javelinstamp.com:

• Javelin Stamp Manual
• Javelin Stamp IDE
• Application Notes
• Library Files

Acknowledgements
Chris Waters and Celsius Research provided the Javelin Stamp firmware and reference
design. This manual was developed using information and research provided by Al Williams
Consulting. Each and every employee at Parallax has made some contribution to the Javelin
Stamp project, so as always, thanks to the entire Parallax staff.

1: Introduction

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 1

The Javelin Stamp and Its Features
The Javelin Stamp is a single board computer that’s designed to
function as an easy-to-use programmable brain for electronic products
and projects. As shown in Figure 1.1, it’s about the size and shape of a
commemorative postage stamp. It is programmed using software on a
PC and a subset of Sun Microsystems Java® programming language.
After the program is downloaded to the Javelin, it can run the program
without any further help from the PC. The Javelin can be programmed
and re-programmed up to one million times.

We hope you enjoy working with your new Javelin Stamp as much as
we have while preparing this manual. The Javelin Stamp is somewhat
of a departure from Parallax’s BASIC Stamps. Most notably, the
Javelin is programmed using a subset of the Java programming
language. Some of the other features that set the Javelin apart from
BASIC Stamps are:

• The instruction codes for the Javelin are fetched and executed from a

parallel SRAM instead of a serial EEPROM.
• The Javelin has 32k of RAM/program memory with a flat architecture.

No more program banks, and no more tight squeezes with variable
space.

• The Javelin has built in Virtual Peripherals (VPs) that take care of
serial communication, pulse width modulation and tracking time in the
background.

• Serial communication is buffered as a background process. When
writing programs, all you have to do is periodically check the buffer.

• The Javelin Stamp Integrated Development Environment (Javelin
Stamp IDE) software is a significant departure from a simple Editor
and messages window combination. When used with the Javelin
connected to a PC by a serial cable, this software can be used as a
highly integrated in-circuit debugging system that allows you to run
code, set breakpoints and view variable values, memory usage, I/O pin
states and more. There is also no need for emulators; the Javelin can be
placed directly into the circuit and debugged there.

• Delta-sigma A/D conversion.
• D/A conversion is accomplished in the background as a continuous

pulse train delivered by an I/O pin. The pulse width modulation VP can

Figure 1.1 Javelin

(top view)

Aristides� 4/28/05 11:35 AM
Formatted Table

sdill
Comment [2]: The Javelin Stamp takes Parallax’s
BASIC stamps into a new direction.
The Javelin Stamp thrusts Parallax’s BASIC stamps
into a new direction.
Parallax’s BASIC Stamps take a new direction with
the Javelin.
The Javelin Stamp is an exciting new
microcontorller.

1: Introduction

Page 2 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

also be used for generating pulse trains, frequencies, and D/A
conversions in the background while your foreground code is free to
perform other tasks

Those of you who appreciate the simplicity and ease of use of the BASIC Stamps need not
worry; the Javelin Stamp has many features that BASIC Stamp users have come to depend on
in their projects and designs. Here is a list of features built into the Javelin with BASIC
Stamp users in mind:

• Synchronous serial communication (shiftIn/shiftOut)
• The ability to both send and measure discrete pulses (pulseIn/pulseOut)
• Frequency counting (count)
• Simple and intuitive methods for reading from and writing to I/O pins
• Measurement of RC charge and discharge times (rcTime)

BASIC Stamps have been used for everything from lessons in basic computer programming
and electronics, all the way up to aerospace subsystem designs. We expect to see the Javelin
used in a similar manner. However, by making use of the Javelin’s new features, it can be
used to tackle some more demanding designs that used to require larger processors.

Programming Language - JavaTM for the Javelin Stamp
The Javelin’s programming language supports many of the Java languages most useful
features:

• Object Orientation - Inheritance, method overloading, polymorphism and static
initializers.

• Exceptions - Try-catch-finally blocks and the ability to catch exceptions with a
super-class.

• Strings – Programmed using many familiar Java commands.
• Custom Library Support - For many popular peripherals such as LCDs, temperature,

AD, communication ICs, and common Internet protocols such as ARP, UDP, and
PPP.

Java
Differences

There are some differences between writing applications for your PC using
Java 1.2 and the subset of Java used by the Javelin. Experienced Java
programmers should consult the Summary of Java Differences section in
Chapter 10.

Javelin Stamp Integrated Development Environment

sdill
Comment [3]: Check with Jim on this

1: Introduction

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 3

Javelin Stamp Integrated Development Environment (Javelin Stamp IDE) offers the features
that you would commonly expect from a source-level debugger:

• Multiple breakpoints
• Stack backtrace
• Inspection of all variables and objects, both static and dynamically allocated
• Single-step, run, stop, reset
• Built-in bi-directional serial message terminal for System.out.println() and

Terminal.getChar() type debugging

The Javelin Stamp IDE is introduced in Chapter 2, and then discussed in more detail in
Chapter 5. This IDE makes real-time debugging so easy that a PC emulator is completely
unnecessary. It is just as easy to develop and debug on the Javelin module itself.

Virtual Peripherals
The Javelin Stamp firmware supports a variety of Virtual Peripherals (VPs). The VPs are
separated into two separate categories, foreground and background. The background
processes allow you to create UARTs, pulse trains, and a timer. Once created, background
VP objects run independently from the program. Since time-sensitive tasks are taken care of
by the VPs in the background, designs that used to be difficult become easy. For example,
serial communication does not stop just because the Javelin is measuring the duration of an
incoming pulse. The programmer simply needs to periodically check the serial buffer in the
foreground code. Below is a list of background and foreground VPs.

Background VPs
• UART (Full duplex, HW flow control, buffered)
• PWM
• 32-bit Timer
• 1-bit DAC
• Delta/Sigma ADC

Foreground VPs
• Pulse count
• Pulse width measurement
• Pulse generation
• RC Timer
• SPI master

1: Introduction

Page 4 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

These Virtual Peripherals are built into the Javelin
Stamp’s firmware. Although you can write library classes
that make use of these VPs, the VPs themselves cannot be
modified or rewritten.

How the Javelin Stamp Works
The Javelin Stamp’s hardware architecture is shown in Figure 1.2. Programming and
debugging is done via communication with the serial port. The COM circuit takes care of the
voltage conversions necessary for a TTL device to talk with an RS232 port. The Java
interpreter processes all serial port/COM circuit information. Whether it’s byte codes,
debugging data or serial messages, the interpreter processes the data and decides what to do
with it.

When a program is downloaded, the interpreter buffers the program bytecodes and writes
them to the EEPROM. Upon reset (or a power interruption), all the Javelin Stamp’s I/O pins
are set to input. The interpreter copies the bytecodes to the SRAM, then starts fetching
bytecodes from the SRAM and executing them. The bytecode instructions can be executed
very rapidly because all data is transmitted along parallel data busses instead of synchronous
serial lines. A typical fetch and execute cycle involves a couple of read/write cycles. During
a read/write cycle, the interpreter loads some of the 15 bit address information into an address
latch and writes the other portion directly to the SRAM. When the SRAM address is set, then
the data is read or written by the interpreter as needed.

The Javelin’s internal voltage regulation is done using a switching regulator. The switching
regulator runs cooler and is significantly more efficient than a linear regulator. It accepts
voltages between 6 and 24 V, and makes 5 V available for the Javelin Stamp with a total
current budget of 150 mA. The passive components including the input and output
capacitors, switching diode and inductor are on the top side, and the switching IC is on the
bottom side of the board next to the EEPROM. The switching IC monitors the output voltage
and adjusts the switching duty cycle to the passive components to maintain a constant 5 V
output.

1: Introduction

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 5

Java
Interpreter

Address
Latch

32 KB
SRAM

32 KB
EEPROM

Switching
Regulator

IC

Com
CircuitSwitching Regulator

Passive Elements

Serial
Port

Data

Address

Address

Serial Data

Power / Ground / Feedback

Vss

VinVdd
A

dd
re

ss

 top bottom

Figure 1.2 Javelin Block Diagram

Javelin Stamp Hardware
Table 1.1 shows the Javelin Stamp’s specifications. Note that the onboard voltage regulator
can accept between 6 and 24 VDC and output up to 150 mA of current. Since the Javelin
consumes approximately 60 mA, you have 90 mA available for other uses. Keep in mind that
if you are utilizing the full 60 mA of total I/O pin source/sink that only 30 mA is left over for
powering peripheral devices using the Javelin’s Vdd pin. On the other hand, if all the I/O pins
are being used for input, 90 mA can be used drawn from the Javelin’s voltage regulator output
(Vdd) for peripherals. If in doubt, use an external 5 V regulator for your peripherals.

Table 1.1: Javelin Hardware Specifications

Attribute Value
Module Footprint 24-pin DIP module
Package Measurements
(LxWxH) 1.2”x0.6”x0.4” (3.0x1.5x1.0 cm)

Operating Environment 0º - 70º C (32º - 158º F)
Microcontroller Ubicom SX48AC

1: Introduction

Page 6 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

RAM 32 kilobytes
EEPROM 32 kilobytes
Number of I/O pins 16

Voltage Supply
6 – 24 VDC (unregulated)
 - or -

5 VDC (regulated)
Voltage regulator current output 0 < Iout < 180 mA
Current Consumption 60 mA / 13 mA nap
Sink/Source Current per I/O 30 mA / 30 mA
Sink/Source Current per module 60 mA / 60 mA per 8 I/O pins
Sink/Source Current per Bank
Pins (0 – 7) and (8 - 15) 30 mA / 30 mA

Windows Editor/Debugger Javelin Stamp IDE

Equipment and System Requirements
To run the IDE and program the Javelin, you will need an IBM PC or compatible computer
with the following:

• Windows 95, 98, ME, 2000, or XP.
• A CDROM or Internet connection.
• An available 9-pin serial port

Or – A USB port with an approved USB to serial adaptor. See
www.javelinstamp.com for information on products that have been tested and
approved.
Or – A 25-pin serial port with a 25 to 9-pin adaptor.

The Javelin Stamp Starter Kit is discussed in detail in the following section: Useful
Hardware. If you do not have a Javelin Stamp Starter kit, you will need to acquire at least the
following.

• Recommended DC Power Supply: 7.5 VDC, 1000 mA 2.1 mm, center-positive
Acceptable battery/DC Power Supply values range between 6 and 24 VDC.
Minimum output current rating depends on voltage. A 6 V supply can have an
output current rating as low as 100 mA while higher voltage supplies may need
higher output current ratings.

• Serial programming cable
Be sure to use a straight-through serial cable or adaptor. Do not try to use a null
modem cable or adaptor for downloading programs to the Javelin.

• Carrier board or serial cable and power supply connections

1: Introduction

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 7

Parallax makes a variety of carrier boards for BASIC Stamps. The Javelin
Stamp can be powered and programmed using any of these carrier boards. You
can also make your own connections for supply voltage and serial cables. See
the Hardware Setup section in Chapter 2.

Useful Hardware
The Javelin Stamp Starter kit is a great way to get started, especially if this is your first
adventure into Javelin based projects. Projects featured in Chapters 2, 4, and 9 make use of
the carrier board and parts in this starter kit. The Javelin Stamp Demo Board is the carrier
board included in the kit, and its features are shown in Error! Reference source not found.
and listed below.

1: Introduction

Page 8 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

C3 C4

(c) 2002

TM

X1
Vss
P1
P3
P5
P7
P9
P11
P13
P15
Vin

Vss
P0
P2
P4
P6
P8
P10
P12
P14
Vdd

Vdd VssVin

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Vm

6-24
VDC

Reset

Pwr

Sout
Sin
ATN
Vss
P0
P1
P2
P3
P4
P5
P6
P7

P11

P9
P8

Vin

P10

P15
P14
P13
P12

Vdd
Rst
Vss

1

U1

X4

9
8
7
6

4
3
2
1

X3

Figure 1.3 Javelin Stamp Demo Board Features

The Javelin Stamp Demo board (Error! Reference source not found.) has the following
features:

• Socket for the Javelin Stamp (Labeled U1).
• JIDE port for debugging, messages, and downloading programs from the PC into the

Javelin Stamp.
• A power jack that can accept input voltage ranging from 6 to 24 VDC.

1: Introduction

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 9

• A COM port that can be used to connect the Javelin Stamp to other computers.
Alternately, you can attach a null modem adaptor to this COM port and then connect
the Javelin to peripherals such as serial GPS units, mice, etc.

• Linear voltage regulator for prototype circuits.
• Small breadboard area for building, testing and prototyping circuits.
• A power header (supplied by the liner voltage regulator). This header can be used to

supply circuits with power.
• A Javelin I/O header to connect your Javelin Stamp I/O pins to your circuit.
• COM Port I/O header. You can use jumper wires to connect Javelin Stamp I/O pins

to the COM port I/O header. Then you can write code to communicate with another
serial device such as a computer or peripheral that’s connected to the COM port.

• LED power indicator (labeled PWR).
• Reset pushbutton. Press and release to restart the program from its beginning.
• A servo port for connecting and controlling servo motors.

As mentioned earlier, the circuit examples in this manual feature parts you can find in the
Javelin Stamp Starter Kit. The parts are listed in Table 1.2. Table 1.3 lists parts that are also
recommended but not included in the kit.

Table 1.2: Javelin Stamp Starter Kit

Quantity Part Number Part Description
1 550-00019 Javelin Stamp Demo Board Rev A
1 JS1-IC Javelin Stamp Module Rev B
1 27957 Javelin Stamp Manual
1 800-00003 Serial Cable
1 800-00002 DB9 Null Modem Adapter Male to Male
1 604-00002 DS1620 Digital Thermometer
1 350-00009 Photoresistor
1 900-00001 Piezo Speaker
1 602-00009 74HC595 Output Shift Register
1 602-00010 74HC165 Input Shift Regster
3 400-00002 Tact Switch (Pushbutton)
2 350-00006 LED - Red - T1 3/4
8 350-00001 LED - Green - T 3/4
1 150-02210 RED - 220 - ¼ W - 5%
8 150-04710 RES - 470 - ¼ W - 5%
1 150-01020 RES - 1 k - ¼ W - 5%
3 150-01030 RES - 10 k - ¼ W - 5%
2 150-02230 RES - 22 k - ¼ W - 5%

sdill
Comment [4]: Make sure to add these examples.

sdill
Comment [5]: Verify Current Rev

sdill
Comment [6]: Verify Current Rev

1: Introduction

Page 10 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

2 200-01040 CAP - 0.1 µF - MonRad
2 201-01050 CAP - 1 µF - Elect.
1 201-01061 CAP - 10 µF - 16V - Elect.
1 800-00016 3" Jumper Wires (1 Bag of 10)
1 27000 Parallax CD

Table 1.3: Recommended Parts not Included
 in the Javelin Stamp Starter Kit
Quantity Part Number Part Description
1 750-00009 7.5 VDC DC Power Supply
1 900-00005 Parallax Standard Servo

2: Javelin Quick Start

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 11

This chapter will guide you through getting started quickly with the Javelin Stamp. Later
chapters will show you more details about each feature you work with here. The easiest way
to get started is to use the Javelin Stamp Demo Board. However, if you want, you can use a
carrier board of your own design using the schematics in this chapter. This chapter’s topics
include:

• Connecting the Javelin Stamp Hardware
• Installing the Javelin Stamp IDE
• “Hello World” program for the Javelin Stamp
• Online documentation
• An IDE Debugger example
• A “Hello Circuit” program for the Javelin Stamp
• Trouble-shooting tips

Hardware Setup
If you are using the Javelin Stamp Starter Kit or the Javelin Stamp Demo Board, getting the
hardware set up takes just a few steps:

ü Plug your serial cable into an available COM port or COM port adaptor on your PC

or laptop.
ü Plug the 7.5 V DC Power Supply into a wall socket. DO NOT PLUG THE OTHER

END INTO THE CARRIER BOARD YET.

Next, use Figure 2.1 as your guide to the following:

ü Plug your Javelin Stamp into the Javelin Stamp Demo Board. Double check the
figure to make sure you did not plug it in upside down. Once the Javelin’s pins are
all lined up with the holes in the socket, press down firmly with your thumb to make
sure the Javelin is properly seated in its socket.

ü Plug the serial cable into the DB9 connector labeled JIDE port on your Javelin
Stamp Demo Board.

ü Plug the 7.5 V DC Power Supply’s barrel jack into the 6-24 VDC plug on the Javelin
Stamp Demo Board.

2: Javelin Quick Start

Page 12 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Figure 2.1
Connecting

Power and Serial
Cable to Javelin

Stamp Demo
Board

C3 C4

(c) 2002

TM

X1
Vss
P1
P3
P5
P7
P9
P11
P13
P15
Vin

Vss
P0
P2
P4
P6
P8
P10
P12
P14
Vdd

Vdd VssVin

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Vm

6-24
VDC

Reset

Pwr

Sout
Sin
ATN
Vss
P0
P1
P2
P3
P4
P5
P6
P7

P11

P9
P8

Vin

P10

P15
P14
P13
P12

Vdd
Rst
Vss

1

U1

X4

9
8
7
6

4
3
2
1

X3

9-pin male serial
cable plug

9-pin female serial
cable plug (not shown)
plugs into PC’s
serial port

NOTE: Serial cable is a “straight-through”
cable. Do not use a null-modem cable!

AC adaptor
barrel jack

AC adaptor plugged
into wall outlet not
shown

Done?

When you are done with this, you can skip to the Installing the Javelin
Stamp IDE section. The remaining material in this section details the
electrical connections required for powering the Javelin and connecting the
serial cable to the communications pins without a carrier board.

The Javelin Stamp’s pin map and mechanical drawing is shown in Figure 2.2. Throughout
this text, the Javelin Stamp’s pin labels will be referred to as shown on this diagram. Keep in
mind that pin labels correspond to numbered pins on the module. For example, the pins
labeled Vin, Vss, and Vdd are used for connecting power to the Javelin. You can use this pin
map to discover that Vin, Vss, and Vdd are pins 24, 23, and 21 respectively. Likewise, the
general-purpose input/output pins (I/O pins) P0 through P15 correspond to pin numbers 5
through 20 in the figure. The active-low reset pin, RES, is pin 22, and the COM pins, SOUT,
SIN, and ATN are pins 1 through 3 respectively.

2: Javelin Quick Start

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 13

Figure 2.2
Javelin Stamp

Mechanical
Drawings and

Pin Map

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

24

23

22

21

20

19

18

17

16

15

14

13

1

2

3

4

5

6

7

8

9

10

11

12

1.
25

” (
31

.7
4

m
m

)

.62” (16 mm)

.1
”

(2
.5

4
m

m
)

1 Javelin

Rev
A

© 2001

1

2

3

4

5

6

7

9

8

10

11

12

24

23

22

21

20

19

18

16

17

15

14

13

SX48B
D/TQ

 Top Bottom

Figure 2.3 shows the recommended power supply circuit along with the recommended serial
port wiring and reset switch. The power supply connections involve Vin, Vss, and Vdd (pins
24, 23, and 21). Vin should be connected to the positive terminal of the DC power source.
Remember, this positive voltage must be between 6 and 24 VDC. Vss (pin 23) should be
connected to the DC power source ground or the negative battery terminal. Under this
connection scheme, Vdd is a regulated 5 VDC output that can supply anywhere between 30
and 90 mA depending on the current demands placed on the Javelin’s I/O pins.

The recommended reset circuit shown in Figure 2.3 is a normally open pushbutton switch
that, when pressed, connects RES (pin 22) to ground. When RES is driven low by pressing
the pushbutton, the Javelin goes into a reset state. When the button is released, the Javelin
starts whatever program it was running from the beginning. When the pushbutton is not
pressed, the RES input is floating. There is an internal pull-up resistor onboard the Javelin
that keeps RES at 5 V when the input is floating.

Sout, Sin, ATN, and Vss (pin 5 this time) of the Javelin are used for programming and
debugging and are connected to the computer’s serial port as shown Figure 2.3. Note that
there is a loopback connection between pins 6 and 7 on the computer’s serial port. This
loopback is used to help the Javelin Stamp IDE auto detect the COM port that the Javelin
Stamp is connected to. If you do not use this loopback connection, you will have to tell the
software which serial port the Javelin is connected to. For information on how to do this, see
Chapter 5: Using the Javelin Stamp IDE.

IMPORTANT
Do not try to use a null modem adaptor or null modem
cable for connecting the PC to the programming port.

2: Javelin Quick Start

Page 14 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

You will not be able to program your Javelin Stamp if you
are not using a straight through serial cable. When the
cable is labeled serial cable, or serial extension cable, it
is straight through. If it is labeled null modem, it will not
work for programming the Javelin.

Connect DSR and RTS for
automatic port detection.

SOUT
SIN
ATN
VSS
P0
P1
P2
P3
P4
P5
P6
P7

1

2

3

4

6

5

7

9

8

DSR

RTS

JS-IC
Module

PC Serial Port
1
2
3
4
5
6
7
8
9

10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

Rx

Tx

DTR

GND

Note: The serial port is a 9-pin, or 25-pin, male
connector, usually on the back of the computer.
Use a 25-pin to 9-pin adapter when trying to
interface to a 9-pin cable.

1

Circuit A
Recomended

Vin should be a
DC input between
6 and 18 VDC.

The Javelin’s onboard
switching regulator can be
used to supply low power
circuits with regulated 5VDC.

Javelin Stamp Rev A

Vdd

Vss

Vin

Optional
PB Switch

see note 2

Figure 2.3 Javelin Stamp Com Port Connection and Recommended Power Connections

Figure 2.4 shows an alternate power supply scheme that can be used but is not recommended
because of a 15 to 20 mA current draw penalty.

2: Javelin Quick Start

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 15

SOUT
SIN
ATN
VSS
P0
P1
P2
P3
P4
P5
P6
P7

JS-IC
Module

1
2
3
4
5
6
7
8
9

10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

1

Circuit B
Optional 5 VDC from

external voltage
regulator.

Leave Vin unconnected

Vss

X

Vdd

nc

Optional
PB Switch

Figure 2.4 Alternate power supply connection

diagram (not recommended)

2: Javelin Quick Start

Page 16 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Installing the Javelin Stamp IDE
The “IDE” in Javelin Stamp IDE, stands for Integrated Development Environment. The
Javelin Stamp IDE is the software you will use to write, compile and download programs to
the Javelin. The Javelin Stamp IDE also has a terminal window for sending messages to and
receiving messages from the Javelin and a very powerful in-circuit debugging tool. These
features are introduced here and examined more closely in Chapter 5: Using the Javelin
Stamp IDE. For now we will focus on installing the software and taking it and the Javelin for
a test drive.

Installation is simple, especially if you go with the default install. Selecting the default install
options and installation path is especially useful if this is your first test drive of the Javelin
Stamp. The two easiest ways to run the Javelin Stamp IDE setup are:

• Run it from a Parallax CD dated March 2002 or later
• Download it from www.javelinstamp.com and run it from whatever folder you saved

it to.

Each method is discussed below.

INSTALLATION
SHORTCUTS

Parallax CD Install: Run the install program and follow the
recommended defaults. The filename will be similar to this:

Javelin Stamp IDE Setup v1.2.0.exe
It’s located on the Parallax CD (March 2002 or newer) in this directory:

CD:\Software\Javelin_Stamps\

Web Download and Install: You can download the latest version of
Javelin Stamp IDE Setup from the Downloads | Software page of
www.javelinstamp.com. Save it to any folder and double click it to run.

If your install was successful, skip to the section entitled: Test Program

When you insert the Parallax CD into your CD drive, a browser similar to the one shown in
Figure 2.5 will appear. If it does not appear, run the welcome application from the CD’s root
directory. Next, follow these steps:

Click Software
Click the + next to the Javelin Stamps folder
Click the floppy diskette labeled Javelin Stamp IDE Setup

2: Javelin Quick Start

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 17

Click the Install button

Figure 2.5
Parallax CD

Browser

Figure 2.6 on the next page shows the windows you will see during the setup process, and
each screen is summarized below.

(a) Setup wizard introduction for the Javelin Stamp IDE software. Click Next.
(b) Information screen contains version history, notes, and other helpful

information. Review and then click Next.
(c) Destination directory. Especially if this is your first time using the Javelin, use

the default directory. If you decide to install to a directory other than the default
directory, make sure to consult the Class Path Considerations section in Chapter
5: Using the Javelin Stamp IDE. Click Next when ready.

(d) Review your install path, and click Next to install or Back to make changes.
(e) Confirm file association. Click next if you are new to Java.

Java
Programmers

Uncheck the checkbox next to “Associate Javelin IDE
with .java extension” if you do not want the Javelin
Stamp IDE to replace file associations that your
existing Java development suite has established.

2: Javelin Quick Start

Page 18 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

(f) As the Javelin Stamp IDE is installed, there is a blue bar that will show the
progress and then automatically move to the next window after it reaches 100%.

(g) Setup is complete and successful message (not shown). Click the Finish button.

(a) Introducing the setup wizard (b) IDE version information

(c) Destination directory (d) Confirm destination directory

2: Javelin Quick Start

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 19

(e) Confirm file association (f) Watch the pretty blue bar get longer

Figure 2.6 Javelin Stamp Setup screens

Running the Javelin Stamp IDE and Loading a Test Program
The Javelin uses a language similar to Java but with special optimizations and features
designed for embedded systems. The Javelin Stamp IDE will compile and link your code.
This software downloads the compiled program to the Javelin. You can test your program,
using the Javelin Stamp IDE to set breakpoints and examine variables. You can also make
changes and go back to re-test your program until it does what you want it to do.

Once programmed, the Javelin remembers what it is
supposed to do, so after you are done debugging your
program, the Javelin Stamp will not need to remain
connected to the PC – the Javelin Stamp will perform the
last program you loaded every time it powers up. You
can reprogram the Javelin Stamp up to1-million times.

The first example we’ll try is a simple “hello world” program (Program Listing 2.1 below). It
will cause the Javelin to send a message back through the programming cable to the PC. The
Javelin Stamp IDE’s Messages window will display the message when it is received.

Program Listing 2.1 - Hello World!

public class HelloWorld {
 public static void main() {
 System.out.println("Hello World!");

sdill
Comment [7]: ANDY: This is redundant and
kinda choppy. Consider condesing and rewording.

2: Javelin Quick Start

Page 20 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 }
}

To run the Javelin Stamp IDE:

Click the Windows Start Button
Select Programs folder
Select Parallax, Inc folder
Select the Javelin Stamp IDE folder
Select and click Javelin Stamp IDE icon

Figure 2.7
Running the

Javelin Stamp
IDE from the

Windows Start
menu.

The Javelin Stamp IDE will look similar to the window shown in Figure 2.8. To get to the
point where you are ready to run the program, shown in the figure, follow these steps:

Enter the program exactly as shown.
Click the Save button.
Save the file as HelloWorld.java in your projects directory. The path for your

projects directory is:
C:\Program Files\Parallax Inc\Javelin Stamp
IDE\Projects\

IMPORTANT: Your filename must always match the class name shown in
the program, that’s why this file must be saved as HelloWorld.java.
(Java is case-sensitive therefore will distinguish the difference between
lowercase and uppercase letters. Keep an eye out for this when typing in
filenames or entering programs.) This name must match the class name, as
well as the case of the letters, given in the line in the program that reads

public class HelloWorld{

2: Javelin Quick Start

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 21

Make sure your Javelin’s power supply and serial cables are connected.
Click the Program button.

Figure 2.8 The Javelin Stamp IDE.

If the program was entered correctly, a small Progress window will appear in front of the
Javelin Stamp IDE and display the following messages along with a graph of it’s progress:

• Linking Program
• Resetting Javelin
• Downloading Program
• Resetting Javelin

Next, the Messages from Javelin window shown in Figure 2.9 will appear. You can use this
terminal window to view messages from the Javelin in the upper windowpane or send
messages to the Javelin in the lower “transmit terminal”.

Trouble
Shooting

If you are having trouble getting the first program to run, turn to the section in this

2: Javelin Quick Start

Page 22 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

chapter entitled: Did That Work? – Trouble Shooting.

For the Javelin to receive messages, you have to program
it to check for messages. The Javelin Stamp IDE installer
placed an example file called TerminalTest.java in your
projects directory. You can use this program to
experiment with bi-directional Javelin Stamp
communication using the Messages from Javelin window.

Figure 2.9
Messages

from Javelin
Window

Debugging Environment
Clicking the Debug Button in the Javelin Stamp IDE will open the IDE Debugger. This will
be your best and most used tool for program and in-circuit debugging. By clicking the
Memory Usage tab, you can see the display shown in the Figure 2.10. By clicking the Run
button, you can make the Javelin send the PC another “Hello World” message via the serial
cable. The Messages from Javelin Window will re-appear.

If you lose the Debug window, simply select Show Debug
Window from the Debug menu. Similarly, if you lose the
message window select Show Message Window from the
Debug menu.

View messages from
Javelin in the upper
windowpane.

Program the Javelin to
receive messages, then
send them to the Javelin
by clicking here (in the
transmit terminal) and
typing your message.

2: Javelin Quick Start

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 23

Figure 2.10
IDE Debugger

You can move around and resize your windows to a
configuration that best suits you. Then you can save this
configuration by selecting Save Desktop from the Project
menu.

2: Javelin Quick Start

Page 24 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Here’s another program to try with the Debugger:

Program Listing 2.2 - Count Down

import stamp.core.*;

public class CountDown {

 static int myVar;

 public static void main() {
 System.out.println("Commencing Countdown:");
 CPU.delay (10000);
 for(myVar = 10; myVar >= 1; myVar--) {
 CPU.delay(2000);
 System.out.println(myVar);
 }
 System.out.println("Liftoff!");
 }
}

Enter Program Listing 2.2 into the Javelin Stamp IDE.
Click the Debug button.

After the program loads, there should be two windows on your screen, the Javelin Stamp IDE
and the Debugger.

ü Click the Run button in the Debugger window to see what the program does. The
Messages from the Javelin window will reappear and display a countdown from 10
to 1.

ü Click the Reset button in the Debugger window to reset the program to its starting
point.

ü Click the gray left-hand margin in the Javelin Stamp IDE next to the
CPU.delay(10000) command to set a breakpoint. The delay command will be
highlighted in red with a red dot in the gray bar as shown in Figure 2.11.

ü Set a second breakpoint, next to the System.out.println command.

2: Javelin Quick Start

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 25

Figure 2.11 IDE, Debugger, and Messages from Javelin Windows all in use.

ü Click the Run button several times and note how the green “current command” bar

highlights the different breakpoints. You can also try the Step Over, Breakpoint
toggle and Reset buttons. If you want to see the library classes and methods used by
System.out.println(), you can click Step Over until you get to the command
before the second breakpoint. Then, click Step Into. To get back to
CountDown.java, just click Run, and it will take you back to the first breakpoint.

The Debugger doesn’t just let you look at your program. You can also use it to look inside
the Javelin as it executes code. For example:

ü Click the Static Variables tab in the Debugger.
ü Click the + next to Static Fields
ü Click the + next to CountDown
ü Note the value of MyVar

2: Javelin Quick Start

Page 26 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

While developing applications, keep in mind that this powerful tool is at your disposal. The
debugger is discussed in more detail in Chapter 5: Using the Javelin Stamp IDE.

Online Help
If you installed the Javelin Stamp IDE to the default directory, you can view the online help
by entering:

C:\Program Files\Parallax Inc\Javelin Stamp
IDE\lib\index.html

into your web browser. You can also use the Javelin Stamp IDE to view Online Help:

ü Click the Help button in the Javelin Stamp IDE

A web browser will appear with three links, two of which are www.parallaxinc.com and
www.javelinstamp.com. The other link is Online Help.

ü Click the Online Help link

You can view the documentation on the library packages at your disposal as shown in Figure
2.12. You can also toggle back and forth between your code and the online help by clicking
the Source and Documentation tabs in the lower left-hand corner of the Javelin Stamp IDE
window.

2: Javelin Quick Start

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 27

Figure 2.12
Online Help and
Documentation

I/O Example
The real strength to the Javelin Stamp is its comprehensive I/O capabilities. With that in
mind, why not try a simple I/O program before you continue with the rest of this manual?
The schematic in Figure 2.13(a) shows a simple circuit with an LED and pushbutton. Since
this is a “quick start” guide, an example of the circuit built on the Javelin Stamp Demo Board
is also shown in Figure 2.13(b). For those of you unfamiliar with building circuits on a
solderless breadboard, there is an introduction at the beginning of Chapter 4: Application
Examples – Circuits and Programs.

2: Javelin Quick Start

Page 28 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Figure 2.13
Schematic and

Breadboard
Example for

Program Listing 2.3

P0

Vdd

470

LED
PB Switch

Vss

Vdd

10 k

P1

X3
Vdd VssVin

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Vm

 (a) Circuit (b) Breadboard

Program Listing 2.3 - Flash LED with Pushbutton

import stamp.core.*;

public class ButtonLED {

 static boolean P0 = true;

 public static void main() {

 while(true) {
 if (CPU.readPin(CPU.pins[1]) == false) { // If button
pressed
 P0 = !P0; // Negate P0
 CPU.writePin(CPU.pins[0],P0); // LED [On]
 CPU.delay(1000);
 } // end if
 else {
 CPU.writePin(CPU.pins[0],true); // LED [Off]
 } // end else
 } // end while
 } // end main
} // end class
declaration

ü Enter this program as shown and save it as ButtonLED.java.
ü Click the Program Button.

2: Javelin Quick Start

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 29

You’ll see the same downloading screen as before. When it completes the download, you can
press the pushbutton to cause the LED to flash on/off at 5 Hz. When the pushbutton is
released, the LED will not flash on/off.

Once the Javelin Stamp has been programmed, you can unplug it from your PC, turn the
power off, move the Javelin Stamp somewhere else, reconnect the power and it will start
running the program automatically. You only need the PC to program the Javelin Stamp.
Once programmed, it will operate all by itself.

Did That Work? – Trouble Shooting
If the example worked as expected, great! You’re ready to move on to the next section. If the
example did not work, this section reviews some of the most common stumbling blocks and
trouble shooting tips. Regardless of whether it’s a compiler error or a download error, the
error message will appear in a sub window in the IDE shown in Figure 2.14. Table 2.1 shows
a list of the common problems and their error messages. Each problem and its solutions are
discussed in this section.

Table 2.1: Problems and Error Messages

Problem Error Message
Compiler Errors [Error] HelloWorld.java…

Javelin Not Responding

Error [IDE – 0056] Possible Javelin on COM 1 did not
respond.
Error [IDE – 0054] Unable to find Javelin on any COM
port.

Javelin Not Detected Error [IDE – 0054] Unable to find Javelin on any COM
port.

Compiler Errors

If you did not enter the program correctly (Java is case sensitive), the IDE might display an
error message below your program. In Figure 2.14, the word Class should have been typed
class in lowercase letters. You can double click the error message to get a hint from IDE as
to what the error is. Notice how the word “Class” is highlighted. This is because the Java
Error message that appeared below the program was double clicked.

Sometimes the majority of the code you typed will be highlighted when you click the
compiler error. Check to make sure you didn’t leave out one of the braces { }. Other times,
there is more than one mistake. You might find that the next time you click the Program

2: Javelin Quick Start

Page 30 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

button, a different compiler error is displayed. Keep on fixing the errors. After each one is
fixed, try clicking the Program button again. When all the errors are fixed, a “Compile
successful” message will appear briefly at the bottom of the Javelin Stamp IDE window.
Once the program syntax is correct, the Javelin will attempt to download the program.

Keep in mind that one bad line of Java code can create lots of errors, so always look at the
first error in the list. After fixing that first error, try to run the program again (by clicking the
Run button). It might run right away, or you may see more errors.

Figure 2.14
If you made
a mistake.

Javelin Stamp Not Responding

If you get two messages, one of them stating that there is a possible Javelin found on COM 1,
COM 2, etc, and the second stating that there is no Javelin found on any COM port, check
your power supply. If everything compiles without errors, but you still have a communication
problem, you’ll see the progress indicator change to “Linking Program” and then “Resetting
Javelin Stamp” – but then you’ll see an error message (such as, “Javelin Stamp not found on
serial port” or “Error reading from the serial port (timeout)”.

sdill
Comment [8]: This picture is not current

2: Javelin Quick Start

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 31

In some cases a BASIC Stamp or other device may be connected to one of your other serial
ports. The software may interpret these devices as Javelins that are not responding. You can
instruct the software to look on a particular COM port by clicking the IDE’s Options button.
The Window shown in Figure 2.14 will appear. Next, click the Debugger tab. You can
choose from the known COM ports by clicking the serial port field. There is a button with
“...” on it next to the Serial Ports field. If you want to add a serial port to the list, click this
button. Then enter the number into the Com# field and click add. You can also delete a
COM port by clicking one of the known ports buttons in the list, then clicking Delete.

Figure 2.15
Debugger page of
the Global Options

window

Javelin Not Detected

If the Javelin Stamp IDE did not detect a Javelin on any of the known COM ports, try the
following:

• Make sure your serial cable is properly connected to your Javelin/carrier board and
to your computer’s serial port.

• Verify that you are not using a null modem cable or adaptor.
• If you are using the Javelin Stamp Demo Board, make sure your serial cable is

connected to the port labeled “JIDE port”.
• Make sure other software such as a BASIC Stamp Editor/Debug Terminal is using

the COM port.
• If you have more than one COM ports on your computer, try connecting your Javelin

Stamp to a different COM port. Make sure the Debugger shown in Figure 2.15 is set
to either auto or to the correct port.

• If you have a Palm or other PDA, see below.

If You Use a Some software – notably hot sync programs for Palm computers and other

2: Javelin Quick Start

Page 32 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Palm or
PDA

handheld PDA’s – will hold the serial port open even when you are not
actively using it.

• If you are using Microsoft’s ActiveSync with your PDA you may
also have a conflict. If your PDA is on a USB port, you will need
to right click on the ActiveSync icon in your task bar. Then select
Connection Settings and make sure you disable the COM port.

• If your PDA uses a serial cable and you’re using MS ActiveSync

you can try specifically selecting a specific COM port by using the
same method as above. If you still have problems, disable or exit
the software.

Another thing to consider if your Javelin Stamp is not detected is that many older computers
can’t use COM1 and 3 (or COM2 and 4) at the same time. If you use a modem, for example,
try disconnecting from the Internet (or other online service) and see if that helps. A serial
mouse can also cause a problem since they are always in use by Windows. If you have a
mouse on COM1, COM3 may not be available for the Javelin’s IDE or any other program.

If you are using any adapters, unusual devices, or odd cables on the serial port, you should
double check to make sure the cable you’re using connects straight through and passes at least
the TX, RX, DTR, and GND signals Figure 2.3. If possible, try using a computer that will not
require any special adapters and remove all unusual hardware connected to the serial port.

One final thing to recheck is power. Be certain that you have the Javelin Stamp adequately
powered. If you don’t, the Javelin Stamp IDE will not be able to communicate with it, and
will report an error similar to a communications error.

If you tried all the suggestions in this section, and your Javelin still did not run the program,
try one more thing: Install the software on a different PC, connect the Javelin and attempt to
run the program. If this solves the problem, there may be some peculiarity in the BIOS
settings of the first PC.

If all else fails, there are many ways to contact Parallax Technical Support for assistance; see
inside cover for details.

Where to Next?
Now that you have a working system, you can take several paths to further your
understanding of the Javelin Stamp. If you are fairly new to both Java and circuits, continue
to the next chapter and follow through the chapters sequentially. BASIC Stamp programmers

2: Javelin Quick Start

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 33

are also encouraged to take the same path because Chapter 3 is a first introduction to Java
programming, and Chapter 4 circuit examples and Java examples to make them work. If you
are an experienced Java programmer, skip to Chapter 4.

3: Beginners Guide to Embedded Java Programming

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 35

This chapter contains explanations and examples to get you started, even if you have never
programmed in Java before. Make sure to read the explanations and use your Javelin to run
the example programs. Remember that all example programs in this manual are available for
download from the www.javelinstamp.com web site and also come with a standard Javelin
Stamp IDE install in the projects\examples\manual_v_1_0\ directory. Keep in
mind that this is a starting point, and that many of the concepts and techniques introduced
here are discussed in more detail in Chapters 6 through 8. Also, keep in mind that you can
use this manual’s table of contents and index to look up and learn more about the keywords,
terms, and concepts introduced in this chapter.

The Class Wrapper and Main Method
There are several elements that must be present for a Java program to run:

• The program must be contained within a class definition
• The program must contain a main method
• Java commands are ended by semicolons

Think of the class definition as a wrapper for your program. After your class declaration
public class ClassName, you must place an opening brace {. At the very end of the
class, must also be a closing brace }. Your entire program, shown here as … is contained
between these two braces.

public class HelloWorld {
 ...
}

The main method must appear within the opening and closing braces of the class definition. It
is declared using the Java keywords public static void main(). As with the class
definition, the main method has its own opening and closing braces, and within these braces
you can place Java commands.

 public static void main() {
 ...
 }

Here is an example of an executable Java file with two commands within its main method.

Program Listing 3.1 - Hello World Revisited

public class HelloWorldAgain {
 public static void main() {

sdill
Comment [9]: Update: This will change

3: Beginners Guide to Embedded Java Programming

Page 36 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 System.out.println("Hello world!");
 System.out.println("Hello world again!");
 }
}

Always remember that the class name must match the program file name, and that both are
case sensitive. Case sensitive means that capitalization matters. If you name your program
HelloWorld but declare the class to be helloWorld, the compiler will give you error
messages, and you cannot run the program until they are fixed.

Declaring Constants, Variables, and Arrays
Most programs work with two different types of quantities: variables and constants.
Variables are numbers or characters that your program reads from an external source,
computes, or changes in some way during execution. Constants are known at the time you
write the program and never change.

Let’s try declaring some variables of type int. In normal PC based Java, an int variable is
32-bits; in the Javelin Stamp, an int is 16-bits. A 16-bit int can be used to store signed
integers between –32,768 and 32,767. To create an integer, you could write:

int abc;

However, the integer’s contents are unknown until you assign a value to it:

abc = 10;

You can also declare an int variable and assign its value all in one step:

int xyz = 20;

To make a constant, simply use the final keyword with a variable declaration that includes
an assignment. This prevents you from accidentally modifying the constant and also allows
the compiler to generate code more efficiently since it knows the constant can’t change. Here
is an example constant:

final int invalidFlag = -1;

Program Listing 3.2 - Display Variables

public class DisplayVariables{

3: Beginners Guide to Embedded Java Programming

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 37

 public static void main(){
 int abc;
 abc = 10;
 System.out.println(abc);
 int xyz = 20;
 final int invalidFlag = -1;

3: Beginners Guide to Embedded Java Programming

Page 38 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 System.out.println(xyz);
 System.out.println(invalidFlag);
 }
}

We have already seen one method, the main() method. Additional methods that perform
specific tasks can be added to a program, and they are introduced later in this chapter. If a
variable is declared inside the main method, another method can not use that variable.
Likewise, if a variable is declared inside a special purpose method, other special purpose
methods and the main() method cannot use that variable either. In Javanese, the “scope” of
such a variable is called “local”.

You can also declare a “global” or “class” variable, which is visible to all methods within the
class. Instead of declaring the variable inside a method, you have to declare it outside of any
method, but within the class. You also have to use the static keyword. Program Listing
3.3 shows an example of a class variable declaration. This will make the variable accessible
to any method within the class.

Program Listing 3.3 - Global Variables

import stamp.core.*;

public class GlobalVariable {

 static int myVar = 20;

 public static void main() {
 System.out.println(myVar);
 }
}

The Javelin Stamp supports the following fundamental (primitive) data types: boolean,
byte, char, int, and short. You will see some of them used in the examples in this
chapter, and they are discussed in more detail in Chapter 6. Program Listing 3.4 declares and
displays an example of each of these types.

Program Listing 3.4 - Display Primitive Types

public class DisplayPrimitiveTypes{

 static boolean logicValue = true;
 static char character = 'a';
 static short number = 900;
 static int anotherNumber = -2000;

3: Beginners Guide to Embedded Java Programming

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 39

 public static void main(){
 System.out.println(logicValue);
 System.out.println(character);
 System.out.println(number);
 System.out.println(anotherNumber);
 }
}

You can also declare arrays of primitive data types. Program Listing 3.5 declares and
displays values from an int array.

Program Listing 3.5 - Example Array

public class ExampleArray{

 static int [] storeNumbers = {5000,4000,3000,2000,1000};

 public static void main(){
 for (int i = 0; i <= 4; i++){
 System.out.print(i);
 System.out.print(" ");
 System.out.println(storeNumbers[i]);
 }
 }
}

Performing Calculations
Once you have variables, it is natural to want to perform calculations with them. You can
form expressions containing variables, constants, and literals. Consider this bit of code:

int result, temporary;
final int scale = 100;
temporary = 14*2+3;
temporary = temporary/10;
result = temporary*scale;

The first two lines define variables and constants. The 3rd line performs a computation
completely with literal numbers. In reality, the compiler will perform this computation at
compile time. Since Java multiplies (and divides) before it adds (or subtracts), the result will
be 31 (not 70). See Table 6.4 for a complete list of the order of operations.

3: Beginners Guide to Embedded Java Programming

Page 40 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

The 4th line performs math with a variable “temporary” and the literal number, “10”.
Notice that it is common to use a variable to compute a new value for itself. This is so
common that Java has a special way to write an expression like this:

temporary/=10;

Of course, you can use terms like: *=, -=, and +=, and other Java operators too. See Chapter
6 for a complete list.

The 5th line multiplies a variable and a constant and stores the result in a variable. You can
write arbitrarily complex expressions and use parenthesis to indicate grouping. So while it is a
bit harder to read, you might have written:

result=(14*2+3)/10*scale;

This would compute the exact same result. Try Program Listing 3.6 to see these
computations. Also, try experimenting with different values and note the results.

Program Listing 3.6 - Math Example

public class MathExample {

 static int result, temporary;
 final static int scale=100;

 public static void main() {
 temporary = 14*2+3;
 System.out.println(temporary);
 Temporary = temporary/10;
 System.out.println(temporary);
 Result = temporary*scale;
 System.out.println(result);
 Temporary /= 10;
 System.out.println(temporary);
 Result = (14*2+3)/10*scale;
 System.out.println(result);
 }
}

Making Decisions
One common task in programming is taking action based on the value of a variable or an
expression. For example, what if you wanted to print a message if a variable was greater than
100? You can do this with the if statement:

3: Beginners Guide to Embedded Java Programming

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 41

if (x>100)
 System.out.println("Limit exceeded!");

Notice that the test expression is in parenthesis. You can also test for equality (two equal
signs; ==), less than (<), less than or equal to and greater than or equal to (<= or >=), and not
equal (!=). These operators all return boolean values, either true or false. You can
also put any expression that returns a boolean in the parenthesis such as a boolean variable.

The statement after the parenthesis will only execute if the expression in parenthesis is true.
If you want more than one statement to be executed if the condition is true, you’ll need to
surround the multiple statements with braces:

if (x>100) {
 System.out.println("Limit exceeded!");
 System.out.println("Please press reset");
}

It is allowable to use braces even if you have one statement. In fact, this is a good idea since
you are less likely to mistakenly add extra lines later and forget the braces.

You can use the else keyword to specify a statement (or block of statements in braces) to
execute if the condition is false. So:

if (x>100) {
 System.out.println("Limit exceeded!");
 System.out.println("Please press reset");
}
else {
 System.out.println("Process nominal.");
}

You may want to test several different conditions together. You can join boolean expressions
with the && (logical and) and || (logical or) operators. You can also reverse the sense of a
boolean expression with the ! (not) operator. This code fragment tests that x is greater than
zero and also less than 100:

if (x>0 && x<100) System.out.println("In range");

3: Beginners Guide to Embedded Java Programming

Page 42 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

For efficiency, the program will stop testing values as soon as it is certain what the end result
is. For example, suppose x is 0 in the above example. The program will test x>0. Since this
is not true (the test is > not >=) and the next expression is joined with an && operator, the
program will immediately stop testing and go to the next statement (not shown in the
example). In this case, that isn’t very important, but if the second part of the statement was a
method call or had time consuming side effects this approach to evaluating boolean
expressions can really come in handy.

The logical or (||) operator, of course, quits evaluating expressions as soon as one of the
expressions returns true. You can write arbitrarily complex expressions and use parenthesis
to indicate grouping:

if (x>0 && (x<100 || runFlag==false)) . . .

Program Listing 3.7 demonstrates how the if/else code discussed earlier behaves when it
encounters a true condition and when it encounters a false condition.

Program Listing 3.7 - Decision Example

public class DecisionExample{

 static int x = 50;

 public static void main(){

 if (x>100) {
 System.out.println("Limit exceeded!");
 System.out.println("Please press reset");
 }
 else {
 System.out.println("Process nominal.");
 }
 System.out.println(" ");

 x = 150;
 if (x>100) {
 System.out.println("Limit exceeded!");
 System.out.println("Please press reset.");
 }
 else {
 System.out.println("Process nominal.");
 }
 }
}

3: Beginners Guide to Embedded Java Programming

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 43

Repetitive Operations
One of the strengths of computers is that they can repeat steps over and over again. Java has
many ways to control program loops. This sections introduces the do…while and while
loops followed by discussion of the for loop and flow control using break and continue.

The do…while loop always executes once. At the end of each execution, the program
decides if it should execute the loop again or continue with further processing. A while
loop decides before executing any code. That means it is possible for a while loop to never
execute if the condition required for it to execute is never met.

Here is a do loop that counts to 10:

int i=0;
do {
 System.out.println(i);
 i=i+1;
} while (i<=10);

If you initialized the i variable at, say, 100, the loop would print 100, compute a new i (101)
and then exit the loop since 101 is not less than or equal to 10. Adding one to a variable is so
common that Java has a shortcut for it, the increment ++ operator. You can use the increment
operator in place of i-i+1:

int i=0;
do {
 System.out.println(i);
 ++i;
} while (i<=10);

The ++i expression adds one to the value of i. It also returns the new value for use in an
expression (a fact the code above doesn’t use). That means this could be written even more
simply as:

int i=0;
do {
 System.out.println(i);
} while (++i<=10);

Technically, since this loop only has one statement, the braces are not necessary. However, it
is a good idea to include them anyway to avoid future mistakes.

3: Beginners Guide to Embedded Java Programming

Page 44 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

The same principles apply to a while loop:

int i=0;
while (i<=10) {
 System.out.println(i);
 ++i;
}

In this case, the test occurs before the loop. You don’t want to use ++ in the loop since that
would cause i to equal 1 during the first loop execution (unless that’s what you wanted, but
in this case you want it to match the do loop). If you change this example so that i starts out
at 100, nothing will print since the loop will never execute. Program Listing 3.8 shows both
loops doing the same thing, counting from 0 to 10.

Program Listing 3.8 - While Loop Examples

public class WhileLoopExamples {

 public static void main() {

 int i=0;
 do {
 System.out.println(i);
 } while (++i<=10);

 i = 0; // Reset the
value of i
 while (i<=10) {
 System.out.println(i);
 ++i;
 }
 }
}

Java also supports a more powerful loop construct known as a for loop. The for loop has
three parts or clauses. The first clause executes code before the loop starts for the first time.
The second clause tests for loop completion. The third clause executes after every loop.
Semicolons separate the clauses. So if you wanted to count from 0 to 10 (as the above
examples do) you might write:

int i;
for (i=0; i<=10; i++){

3: Beginners Guide to Embedded Java Programming

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 45

 System.out.println(i);
}

You can even declare the variable in the first clause (as long as you only need it within the
loop):

for (int i=0;i<=10;i++)
 System.out.println(i);

The first clause defines the variable and sets it to zero. The second clause tests the variable
and the third increments the variable at the end of each loop. If you want to control more than
one statement, you should use braces as before (and you can use them even if you only have
one statement in the loop).

There is nothing magic about the clauses – you can use any appropriate expression. For
example, suppose you wanted to increase the count by 2 each time instead of one. You could
write:

for (i=0;i<=10;i=i+2)
 System.out.println(i);

You can omit any of the clauses you don’t need. For example, you might write:

int i=0;
for (;i<=10;i++) System.out.println(i);

You can even write endless loops using any of the three loop primitives:

for (;;) { . . . }
do { . . . } while (true);
while (true) { . . . }

Sometimes you want to exit a loop early. You can do this with the break keyword. For
example:

for (i=0;i<=10;i++) {
 if (i == 3)
 break;
 System.out.print(i);
}
System.out.println(“Skipping 3 and above”);

3: Beginners Guide to Embedded Java Programming

Page 46 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

The break statement works with any loop, not just for loops. Of course, you usually use
break in conjunction with if since an unconditional break would just terminate the loop
unconditionally.

You can also cause a loop to proceed to the next iteration (if any) by using continue.
Suppose you wanted to count from 0 to 10, but you want to skip 5. There are many ways you
might write this, here’s one way:

for (i=0;i<=10;i++) {
 if (i==5) continue; //
proceed to i=6
 System.out.println(i);
}

Program Listing 3.9 demonstrates for loops and the break, and continue keywords.

Program Listing 3.9 - For Loops

public class ForLoops{

 public static void main(){

 int i;
 for (i=0;i<=10;i++){
 System.out.println(i);
 }

 for (int j=0;i<=10;i++) System.out.println(i);

 for (i=0;i<=10;i=i+2) System.out.println(i);

 i=0;
 for (;i<=10;i++) System.out.println(i);

 for (i=0;i<=10;i++) {
 if (i == 3) break;
 System.out.println(i);
 }
 System.out.println("Skipping 3 and above");

 for (i=0;i<=10;i++) {
 if (i==5) continue; // proceed to
i=6

3: Beginners Guide to Embedded Java Programming

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 47

 System.out.println(i);
 }
 }
}

Displaying Messages from the Javelin
Many of the earlier examples have demonstrated how you can use System.out.println
to print a line to the Javelin debug window. You can also use System.out.print to print
data without appending a new line. For example, consider this program:

public static void main() {
 System.out.print("Hello ");
 System.out.println("World");
}

The first statement prints “Hello” but does not start a new line. The second statement prints
“World” directly following the first text and then starts a new line.

The print and println statements will accept most data types (for example, integers) and
perform the necessary conversion to a String. So this small program is legitimate:

public static void main() {
 for (int i=0;i<10;i++) System.out.print(i);
}

Of course, there are times you might want to print the ASCII representation of a number (65,
for example is a capital A). You can do this by casting the integer variable to a character,
using (char) before the variable:

for (int i=65;i<70;i++) System.out.println((char)i);

Although it’s not recommended for anything but a few initialization commands, in simple
cases you can use the + (concatenation) operator to string items together, as in this example:

int t=100;
System.out.println("The threshold is " + t + " degrees.");

CAUTION

The Javelin does not support garbage collection and the compiler will
create strings that the Javelin can never recover. If you use a command
that uses the + (concatentaion) operator within a loop, you will run out of

3: Beginners Guide to Embedded Java Programming

Page 48 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

memory very quickly.

The above snippet has been re-written with separate print lines to achive the same result
without having to worry about the lack of garbage collection.

int t=100;
System.out.print(“The threshold is “);
System.out.print(t);
System.out.println(“ degrees.”);

Another approach is to use a StringBuffer object:

StringBuffer buf=new StringBuffer(32); // 32
byte string
buf.append("The temperature is ");
buf.append('7');
buf.append('0');
buf.append(" degrees");
System.out.println(buf.toString());

In this way, you can use the buf variable again (unlike the compiler-generated temporary in
the first example, which is not reused).

You can also use the CPU.message method to send a character array to the Messages from
Javelin window. This requires fewer resources than the System.out.print method, but
it is also less flexible since this method only accepts a character array. Here’s an example:

String test="Parallax Javelin";
CPU.message(test.toCharArray(),test.length());

Notice that a String is not a character array, so the toCharArray call is required to
perform the conversion. The second argument to message is the length of the array (which
in this case is the same as the length of the String).

The CPU.message call does not automatically start a new line. You can include a new line
(“\n”) in the string to force a new line, as in this example:

String test="\nParallax Javelin\nWow!";
CPU.message(test.toCharArray(),test.length());

3: Beginners Guide to Embedded Java Programming

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 49

Notice that the System and CPU objects are static. You don’t need to create these
objects before using them. They are always present. However, if you don’t use an import
stamp.core.* or similar statement, you’ll have to refer to the CPU object by its full name:
stamp.core.CPU.

Keep in mind that the debug terminal only exists when the Javelin is physically connected to
the PC. If the Javelin is running while disconnected from the PC, these messages are not
displayed. Program Listing 3.10 shows these examples in action.

Program Listing 3.10 - Assorted Messages

import stamp.core.*;

public class AssortedMessages{

 public static void main() {

 for (int i=0;i<10;i++){
 System.out.print(i);
 }

 for (int i=65;i<70;i++) System.out.println((char)i);

 StringBuffer buf=new StringBuffer(32); // 32 byte
string
 buf.append("The temperature is ");
 buf.append('7');
 buf.append('0');
 buf.append(" degrees");
 System.out.println(buf.toString());

 String test="Parallax Javelin";

 CPU.message(test.toCharArray(),test.length());

 test="\nParallax Javelin\nWow!";
 CPU.message(test.toCharArray(),test.length());
 }
}

Sending Messages to the Javelin
Sending messages to the Javelin Stamp was first introduced in the Running the Javelin Stamp
IDE and Loading a Test Program section of Chapter 2, see Figure 2.9. The Terminal
allows you to either read a character, or determine if any characters are waiting to be read.

3: Beginners Guide to Embedded Java Programming

Page 50 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Here is a simple example that just waits for you to press any key. The program doesn’t care
which character you press, so it doesn’t record the value:

public static void main() {
 System.out.println("Press any key to continue");
 Terminal.getChar();
 for (int i=1;i<=10;i++) System.out.println(i);
 System.out.println("Press any key to exit");
 Terminal.getChar();
}

Program Listing 3.11 reads characters and converts them to uppercase. Remember that the
messages from Javelin window can be used for bi-directional communication. Figure 2.9 in
Chapter 2 shows the transmit terminal at the bottom of the Messages from Javelin Window.
After running Program Listing 3.11, simply click the transmit terminal. Next, try typing a few
characters. The characters will appear in the transmit terminal, and they will also be echoed
in the messages window above. Immediately after each echoed character, you will also see
the Javelin Stamp’s converted character.

Program Listing 3.11 - Capitalize

import stamp.core.*;
public class Capitalize {

 public static void main() {
 char c;
 System.out.println("Begin");
 do {
 c=Terminal.getChar(); // Get character from keyboard
 if (c>='a' && c<='z') { // Test if it’s not a capital
 int tmp=(int)c; // Create and assign ‘tmp’ the
char c as an int
 tmp=tmp-32; // Convert lower case to upper by
subtracting 32
 c=(char)tmp; // Assign int tmp into char c
 } // end if
 System.out.print(c); // Output character
 } while (c!=27); // Do the above until escape key
is pressed
 } // end main
} // end Capitalize

There is never a need to create a terminal object, it is always available. You must import
stamp.core or use the full name stamp.core.Terminal. Keep in mind that the

alindsay
Comment [10]: Insert reference

sdill
Comment [11]: If we move this line up above the end
if then it will not print to capital letters, just one, and l/c
with the convert

3: Beginners Guide to Embedded Java Programming

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 51

debug terminal only exists when the Javelin is connected to the PC. If the Javelin is running
while disconnected from the PC, a debug window will not be available to you to accept input.

The getChar method stops your program’s execution
until a key is ready for reading. The
Terminal.byteAvailable() method returns true
if there is at least one character waiting to be read. This
method allows you to decide whether or not to perform
other processing while waiting for keyboard input.

Creating a Method
Once you start writing programs, you’ll find there are things you want to use over and over in
your program, but you don’t want to keep rewriting the same program steps. Not only is
rewriting the same steps tedious, it is not a very efficient use of the Javelin’s resources. The
solution for this problem is to use methods.

Any method must be within a class, and not within another method. So, your program might
look like this:

import stamp.core.*;
public class MyExample {

 // Custom methods could go here

 public static void main() {
 // Your main program
 // contains code that makes use of your custom methods.
 }

 // Custom methods could go here
}

The simplest method is one that performs a task, but does not expect information or returns
any information. The void before the name of the method means that the method is not
returning information, and the empty parentheses () indicates that the method does not expect
to receive any information either.

 static void startMessage(){
 System.out.println("This program performs some
calculations.");

3: Beginners Guide to Embedded Java Programming

Page 52 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 }

A command inside the main method can then “call” this method, for example:

public static void main (){
 …
 startMessage();
 …
}

A method can also receive information and act on it, but not return anything. Here is a
method that receives a number, multiplies it by 5, and then displays it. Note that a variable is
declared to receive the value.

 static void display5X(int i){
 i = i * 5;
 system.out.println(i);
 }

A command in the main method that wants to display 5 X 5 could then send a 5 to the
display5X method by placing a 5 inside the parentheses of the method call:

 public static void main (){
 …
 display5X(5);
 …
 }

A method can send back a value without receiving one. In this case, the method itself is
declared to be an int value, but the parentheses are empty. If a method is sending back a
value, it must do so using the return keyword.

 static int sendBackValue(){
 i = 20;
 return i;
 }

A command in the main method that wants to receive this value can do so by setting a
variable equal to the method call.

3: Beginners Guide to Embedded Java Programming

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 53

 public static void main (){
 …
 int x;
 x = sendBackValue();
 …
 }
A method can both receive and return a value as shown here. Note that only one local
variable was declared for the incoming variable. In this case, the method multiplies the value
it receives by 9 and returns the answer.

 static int performOperation(int j){
 j = 9*j;
 return j;
 }

A command in the main method that wants to send this method a value (such as 7) and
receive the answer would look like this:

 public static void main (){
 …
 int y;
 y = performOperation(7);
 …
 }

A method can receive more than one value. Here is a method that averages five numbers:

public static int avg(int n1, int n2, int n3, int n4, int n5)
{
 return (n1+n2+n3+n4+n5)/5;
}

Notice that the method is named avg and it expects five arguments and returns the avereage,
an int value. The parentheses in the return statement’s expression are required because
Javelin would otherwise divide before adding.

You don’t necessarily have to set a variable equal to the method to capture the value. For
example, a command in your main method, or another method in the same class, can simply
use println to display the value returned by the avg method:

System.out.println(avg(10,13,99,7,12));

3: Beginners Guide to Embedded Java Programming

Page 54 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

You can also provide variables or expressions:

System.out.println(avg(10+x,13/y,z1,z2,12));

You can even combine this method with other items in expressions:

sigmaT=avg(a,b,c,d,e) + 100/x;

Program Listing 3.12 demonstrates the use of some of the methods and method calls just
discussed.

Program Listing 3.12 - Method Example

public class MethodExample{

 static int sigmaT, a = 1, b = 1, c = 3, d = 4, e = 5;

 static void startMessage(){
 System.out.println("This program performs some calculations.");
 }

 static void display5X(int i){
 i = i * 5;
 System.out.println(i);
 }

 static int sendBackValue(){
 int i = 20;
 return i;
 }

 static int performOperation(int j){
 j = 9*j;
 return j;
 }

 public static int avg(int n1, int n2, int n3, int n4, int n5) {
 return (n1+n2+n3+n4+n5)/5;
 }

 public static void main(){
 startMessage();
 display5X(10);
 int x;

3: Beginners Guide to Embedded Java Programming

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 55

 x = sendBackValue();
 System.out.println(x);
 int y;
 y = performOperation(7);
 System.out.println(y);
 System.out.println(avg(10,13,99,7,12));
 SigmaT = avg(a,b,c,d,e) + 100/x;
 System.out.println(sigmaT);
 }
}

Creating and Using a Library Class
A method does not have to be in the same file as the program you are writing. You can call a
method from your main method that exists in a separate file. That method can call a method
in yet another file, and so on… You can also write classes that contain methods to perform
various operations. Here is a simple library file that was saved as LibraryFile.java in
the projects\examples\manual_v1_0 folder. It has no main methods, just two
methods that some other program can call.

Program Listing 3.13 - Library Class: Library File

package examples.manual_v1_0;

public class LibraryFile{

 public static void countToTen(){
 for (int i = 0; i<=10; i++){
 System.out.println(i);
 }
 }

 public static void countToTwenty(){
 for (int i = 0; i <= 20; i++){
 System.out.println(i);
 }
 }
}

Program Listing 3.13 is an example program that you can run that uses the coutnToTen()
method in LibraryFile.java. The programmer has to do a few different things to make the
methods in LibraryFile available. Before the class declaration, there is a compiler directive
that tells the Java compiler to import all the files in the examples.manual_v1_0.* folder.

import examples.manual_v1_0.*;

sdill
Comment [12]: Update: This will change

3: Beginners Guide to Embedded Java Programming

Page 56 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

This means that any class in the examples.manual_v1_0 folder can be accessed without
having to refer to the class by path and name. This makes declaring a LibraryFile object
easier because instead of writing:

 static Projects.examples.manual_v1_0 myLib;

You can simply write:

 static LibraryFile myLib;

This declaration creates an instance of a LibraryFile object named myLib. Now, you
can use the methods in the instance of LibraryFile.java named myLib. How? Just use the
term myLib, followed by a dot, followed by the method you want to call within
LibraryFile.java. For example:

 myLib.countToTen();

If LibraryFile had public constants and variables, they would also be at the programmer’s
disposal using the same technique. shows how to make a new LibraryFile object and call one
of its methods.

Program Listing 3.14 - Library Class: Executable Uses Library File

import examples.manual_v1_0.*;

public class ExecutableUsesLibraryFile{

 static LibraryFile myLib;

 public static void main(){
 System.out.println("Library file displays count to 10:");
 myLib.countToTen();
 }
}

The ability to access reuseable code in library files is one of Java’s most powerful features.
Chapter 4 makes extensive use of library files. The library files in the lib\stamp\core
folder contain library files with methods designed to make it easy to use the Javelin Stamp to
read sensors, control circuit outputs, communicate with peripherals, and more. This folder
and its collection of library files is referred to as a package, the core (or stamp.core) package
in this case.

3: Beginners Guide to Embedded Java Programming

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 57

The core package is introduced in Chapter 4, and documented in Chapter 9. There are many
other packages available, such as java.lang, java.io, stamp.util, and so on. The library classes
in these packages are discussed in Chapters 7 and 8. The library files that come with the
Javelin Stamp install are also documented in HTML format and can be accessed following the
Online Help link after clicking the Help button in the Javelin Stamp IDE. You can also view
Online Help by loading C:\Program Files\Parallax Inc\Javelin Stamp
IDE\lib\index.html into your web browser’s address field.

4: Application Examples – Circuits and Programs

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 59

Circuits and Example Code
This chapter has a few circuits and example program listings for you to try. There are two
other chapters in this manual where you can find circuits and accompanying program listings:

• Chapter 2: Quick Start Guide
• Chapter 9: Javelin Stamp Hardware Reference

The beginning of Chapter 3 contains some recommendations for those new to Java on how to
use the explanations and examples. Similar recommendations apply for material in this
chapter, and they are listed below:

• All example programs in this manual are available for download from the
www.javelinstamp.com web site and also come with a standard install in the
Projects\examples\manual_v_1_0\ directory.

• Many of the concepts and techniques introduced here are discussed in more detail in
Chapters 6 through 9.

• You can use this manual’s table of contents and index to look up and learn more
about the concepts introduced in this chapter.

About Solderless Breadboards
If you haven’t built circuits on a solderless breadboard before, it’s easy once you know what’s
underneath the surface of the breadboard. Figure 4.1 (a) shows the top view of the
breadboard and prototyping area on the Javelin Stamp Demo Board while (b) shows the
connections underneath the breadboard. Each row of five holes on either side of the slot
running through the center of the breadboard is electrically connected underneath. If you
want to connect two components together, just plug into the same row of five sockets.

Andrew Lindsay
Comment [13]: Take inventory of circuit
examples in text and list here.

sdill
Comment [14]: Update: This will change

4: Application Examples – Circuits and Programs

Page 60 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Figure 4.1 Javelin Stamp Demo Board Solderless Breadboards

X3

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Vm

 13 12

Black

Vdd VssVinVm

X3

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Rev B

Vm

X4 X5

13 12

Black

Vdd VssVinVm

(a) Top View (b) Underneath View of

Connections

Also note the sockets to the left of the breadboard labeled P0, P1…P15. These give you
access to the Javelin’s 16 general purpose I/O pins. The sockets above the breadboard are
labeled Vdd, Vm, Vin, and Vss. Here is what each of these labels stands for:

• Vdd = + 5 V, used as the positive supply terminal for most of the circuit examples
shown in this manual.

• Vm = motor voltage. You can connect this to either Vdd or Vin to supply the
positive terminal for your servo port (header labeled X5). If you are using the
Javelin Stamp Starter Kit, which comes with a 1000 mA supply, connect Vm to
Vdd. If you are using a 6 V battery pack like the one that comes with the Parallax,
Boe-Bot, connect Vm to Vin.

• Vin = the positive terminal of the unregulated input voltage coming from the DC
Power Supply or battery pack. Be careful, DC Power Supplys labeled 9 V DC
often deliver a much higher voltage, like 12 or even 15 V when the current draw is
low.

• Vss = Ground, 0 V, the negative supply terminal for the examples shown in this
manual.

4: Application Examples – Circuits and Programs

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 61

Pushbutton and LED Revisited
Program Listing 4.1 below revisits Figure 2.13 in Chapter 2. When the switch is pressed, the
program lights the LED for a predetermined time interval. The switch, on pin 1, connects to
ground. There is a 10 k pull up resistor between the pin and +5 V. Therefore, when the
switch is open, the input reads as a one. Pushing the switch causes the Javelin to read a zero.

Program Listing 4.1 - LED Push Button

import stamp.core.*;

public class LEDPushButton {

 // Define Variables & Constants
 final static int LED = CPU.pin0; // To control the
L.E.D.
 final static int SWITCH = CPU.pin1; // To control the
Button
 final static boolean ONSTATE = false; // Button Pressed Down
 final static boolean OFFSTATE = true; // Button Normal State

 public static void main() {
 CPU.writePin(LED,OFFSTATE); // Turn LED off
 while (true) { // Do loop forever
 if (CPU.readPin(SWITCH)==ONSTATE) { // Was button pressed?
 CPU.writePin(LED,ONSTATE); // Turn LED On
 CPU.delay(25000); // Wait (while LED on)
 CPU.writePin(LED,OFFSTATE); // Turn LED Off
 } // end if
 } // end while
 } // end main
} // end LEDPushButton

Notice that instead of placing the pin constants in the program, LEDPushButton defines
several constants (marked with the final keyword). This allows you to easily change the
1I/O definitions. The ONSTATE and OFFSTATE constants allow you to easily adapt the
program to use a switch and LED that are active with a logical 1 state.

The main program uses writePin to make sure the LED is off. There is no need to
explicitly set the pin to an output (or input). All pins are inputs when the Javelin resets. Any
call to writePin (or other output methods) will automatically turn the affected pin (or pins)
into an output.

4: Application Examples – Circuits and Programs

Page 62 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Next, the main program loops forever using while(true). This is not uncommon in
embedded programs. The program tests for the switch closure, and when it detects it, it lights
the LED, pauses, and turns the LED off again. The loop resumes waiting for another switch
depression. Of course, if you hold the switch down, the loop will immediately turn the LED
on again. This happens so fast, that it will appear the LED stays on as long as you hold the
button down.

4: Application Examples – Circuits and Programs

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 63

Digital to Analog Conversion
The Javelin can generate voltages on any of its output pins with the addition of some simple
circuitry. The Javelin doesn’t really generate a voltage. Instead, it generates a train of pulses
that you can average with a resistor and capacitor as shown in Figure 4.2.

Figure 4.2
Circuit for use

with DAC
object

Vss

1 uF

P14
1 k

Analog Output

This program creates an analog output on pin 14. Then it ramps the voltage up by calling
update inside a loop. A value of 0 generates a 0 voltage, and a value of 255 generates 5 V.
Values in between generate a proportionally different voltage.

Because of the delay, you can watch the voltage change on an ordinary voltmeter. If you
have access to a fast scope, reduce the delay value and watch the ramp on a scope.

Program Listing 4.2 - Make Voltage

import stamp.core.*; // Import Javelin’s classes

public class MakeVoltage { // class declaration

 public static void main() { // main declaration
 DAC dac = new DAC(CPU.pin14); // create new DAC object
 while (true) { // do while loop forever
 for (int i=0; i<255; i++) { // loop 0v to +5v
 dac.update(i); // Update DAC with new
voltage
 CPU.delay(1000); // Delay
 } // end for
 for (int j=255; j>=0; j--) { // loop +5v to 0v
 dac.update(j); // Update DAC with new
voltage
 CPU.delay(1000); // Delay
 } // end for
 } // end while
 } // end main
} // end class declaration

4: Application Examples – Circuits and Programs

Page 64 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Analog to Digital Conversion
Delta Sigma Analog to Digital Conversion is one of the more exciting new virtual peripherals
on the Javelin. It lets you read an analog voltage from any I/O pin using just a few passive
components. Figure 4.3 shows the circuit for use with Program Listing 4.3. You can connect
any value between 5 V to 0 V, and the ADC object will return a number between 0 and 255
corresponding with the input voltage. This number corresponds to the duty cycle required to
keep the voltage at P9 at the 2.5 V CMOS logic threshold.

Vss

1 uF

22 k
Analog Input

22 k
P8

P9

Figure 4.3 Circuit for use with ADC object

Program Listing 4.3 - ADC Test

import stamp.core.*;

 public class ADCTest {

 final static char CLS = '\u0010';
 static int ADCValue;
 static ADC voltMeasurer = new ADC(CPU.pin9, CPU.pin8);

 public static void main() {

 while(true){
 CPU.delay(5000);
 ADCValue = voltMeasurer.value();
 System.out.print(CLS);
 System.out.println("ADC value is: ");
 System.out.println(ADCValue);
 } // end while
 } // end main
} // end class
declaration

Measuring Resistive and Capacitive Elements

4: Application Examples – Circuits and Programs

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 65

rcTime has been used by BASIC Stamps to measure resistive and capacitive values for over
10 Years now. Resistive and capacitive sensors are very common, and rcTime offers an
easy inexpensive way to get measurements from these sensors. Reading an rcTime value
depends on either R or C remaining constant while the other component’s value (a sensor)
varies. In Figure 4.4, the 1 µF capacitor is constant, and the photoresistor varies with light
exposure. As the value of R varies with light, the value of R×C varies as well. The fact that
R×C varies is crucial, because it changes the speed at which the voltage at the capacitor’s
lower plate responds to changes. In this example, the Javelin Stamp is used to measure this
response time. The technique shown in the Program Listing 4.4 below is simple. It takes two
commands to set up the rcTime measurement:

 CPU.writePin(CPU.pins[4],true);
 CPU.delay(10);

These commands apply voltage to the circuit so that the voltage at the RC connection
approaches 5 V.

Then, the command:

 dischargeTime = CPU.rcTime(10000,CPU.pins[4],false);

performs the measurement and saves it in the dischargeTime variable.
CPU.rcTime(10000,CPU.pins[4],false) changes P4 from an output to an input
and starts tracking time, waiting for the voltage at the capacitor’s lower plate to drop below
the 2.5 V logic threshold. This amount of time is proportional to R×C, and the math is
discussed in the documentation for the rcTime() method in Chapter 9.

Figure 4.4
Circuit for use
with rcTime

P4
220

Vdd

Vss

1.0 µF

Photo-
resistor

4: Application Examples – Circuits and Programs

Page 66 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Program Listing 4.4 - Photo Resistor

import stamp.core.*;

public class PhotoResistor {

 final static char CLS = '\u0010';
 static int dischargeTime;
 static int chargeTime;

 public static void main() {

 while(true){
 System.out.print(CLS);
 CPU.writePin(CPU.pins[4],true);
 CPU.delay(10);
 dischargeTime = CPU.rcTime(10000,CPU.pins[4],false);
 System.out.print("RC rise time is: ");
 System.out.println(String.valueOf(dischargeTime));
 CPU.delay(10000);
 }
 }
}

Controlling a Servo with a Background PWM Object
The PWM object can be used to vary the brightness of a lamp or LED (assuming the device
doesn’t exceed the Javelin’s drive capability). With appropriate drive electronics you can also
use this command to control the speed of a DC motor or the brightness of lights that are too
large to drive directly. However, the Javelin requires an external driver (like a transistor or
FET) to handle the current required by a motor or a large light.

Sending Control Pulses to a Servo Motor
Many robotic and motion projects use servo motors to provide motive force. These motors
are convenient since they accept a digital logic input and all the power control electronics are
onboard. Typically, these motors don’t rotate. Instead, they move between two extremes.
However, there are many ways to modify the servos to achieve continuous rotation.

The servo’s digital input requires a pulse. The details may vary depending on the type of
servo you have. However, a typical servo requires a 1.5 ms high pulse to go to the center
position (this corresponds to standing still for a modified servo). You must supply a pulse
roughly every 20 ms to tell the servo what position you want or else the servo will not supply
much force to hold its position (for most servos, at least). The range of pulse widths for a
typical hobby servo range from 1.0 to 2.0 ms. Pulses shorter than 1.5 ms will cause the shaft

4: Application Examples – Circuits and Programs

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 67

to move in one direction away from the center and longer pulses will cause the shaft to rotate
in the other direction. If the servo runs continuously, short pulses will cause the shaft to rotate
in one direction and long pulses in the other. The more difference between the input pulse
and the reference 1.5 ms pulse will affect the speed of the motor in this case.

If you are building this circuit on the Javelin Stamp Demo Board, use a wire to tie Vm to Vdd
on the power header (X3). Then, plug the servo into the servo port labeled 12. Make sure
that the black (ground) wire for the servo lines up with the Black label next to the servo port.

Red

Black
Servo

White

Vdd

Vss

P12

Figure 4.5 Circuit for use with DAC object

It is easy to use the PWM class to control a servo. This class allows you to specify the on time
and the off time of a pulse. Program Listing 4.5 allows you to enter characters into the
Messages from Javelin terminal to control the position (or rotation) of a servo. When you run
the program, the Messages from Javelin window will appear and prompt you to enter one of
three characters to adjust the servo’s position to either right, left, or center. Click the field
below the messages window and enter your characters there (See
Figure 4.6).

4: Application Examples – Circuits and Programs

Page 68 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Figure 4.6
Entering

Messages into the
Terminal Window

Program Listing 4.5 - Basic Servo Control

import stamp.core.*;

public class ServoControl {

 static PWM servo = new PWM(CPU.pin12,173,2304);

 public static void main() {

 System.out.println("Welcome to Servo Control: ");
 System.out.println(" r - right");
 System.out.println(" l - left");
 System.out.println(" c - center");

 while (true) {
 switch (Terminal.getChar()) {
 case 'r':
 servo.update(130,2304);
 break;

 case 'l':
 servo.update(220,2304);
 break;

 case 'c':
 servo.update(173,2304);
 break;
 }
 }

4: Application Examples – Circuits and Programs

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 69

 }
}

You can also use the PWM class in the same way you use the DAC class. The output voltage is
proportional to the ratio between the on time and the off time. Usually the DAC class is more
convenient for this purpose.

Communicating with Peripheral ICs
The DS1620 (Figure 4.7) is a one of many ICs on the market that the Javelin Stamp can
communicate with using the CPU class shiftIn and shiftOut methods. This particular
IC reports the temperature it measures in ½-degrees Celsius increments. Program Listing 4.6
makes use of a DS1620 class that comes in the stamp.peripheral.sensor.temperature package.
Every library class listing has an HTML page that describes the methods you can call from
the code you are writing. To view this HTML page:

ü Click the Help button in the Javelin Stamp IDE.
ü Click the Online Help Link.

– or –

use your we browser to view:
C:\Program Files\Parallax Inc\Javelin Stamp

IDE\lib\index.html

ü Click the stamp.peripheral.sensor.temperature link.
ü Click the DS1620 link.

The first datum on this HTML page is the path to the DS1620.java file. Program Listing 4.6
uses this information to import this file using the compiler directive:

import stamp.peripheral.sensor.temperature.DS1620;

The information in the constructor summary and constructor detail is used to declare a new
DS1620 object:

DS1620 indoor = new DS1620(CPU.pin4,CPU.pin5,CPU.pin6);

Now, the methods of the DS1620 class, which are also described on the HTML page, are
available to the programmer. For example, the setTempLo() method is called using the
command:

4: Application Examples – Circuits and Programs

Page 70 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

indoor.setTempLo(68,'F');

and the getTempF() method call is nested inside another method call that appends the
temperature returned to the end of a StringBuffer object named msg:

msg.append(indoor.getTempF());

So that you can see the shiftIn() and shiftOut() methods at work, Program Listing
4.7 performs the temperature measurement without making use of a library class. The circuit
is the same for both programs. Use Figure 4.7 to build your circuit, and make the following
I/O pin connections between the Javelin and the DS1620:

• dataPin to P4
• clockPin to P5
• enablePin to P6

4: Application Examples – Circuits and Programs

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 71

Figure 4.7
DS1620 Circuit

DS1620

1

2

3

4

8

7

6

5

DQ

CLK
/CONV

RST

GND

VDD

THIGH

TLOW

TCOM

dataPin

Vss

highThermostat

Vdd

1 k

clockPin

enablePin lowThermostat

combinedThermostat

Program Listing 4.6 - Simple DS1620

import stamp.core.*;
import stamp.peripheral.sensor.temperature.DS1620;

public class testDS1620_2 {

 final static char HOME = 0x01;

 public static void main() {

 DS1620 indoor = new DS1620(CPU.pin4,CPU.pin5,CPU.pin6);
 StringBuffer msg = new StringBuffer(128);

 // set A/C thresholds
 indoor.setTempLo(68,'F');
 indoor.setTempHi(78,'F');

 while(true) {
 // get temps (build msg)
 msg.clear();
 msg.append(HOME);
 msg.append(" F \nInside.... ");
 msg.append(indoor.getTempF());
 msg.append(" F \n\nA/C....... ");

4: Application Examples – Circuits and Programs

Page 72 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 // check A/C settings
 if (indoor.tempLo())
 msg.append("Heat");
 else if (indoor.tempOk())
 msg.append("Off ");
 else if (indoor.tempHi())
 msg.append("Cool");
 else
 msg.append("? ");

 System.out.println(msg.toString());
 CPU.delay(10000);
 }
 }
}

Program Listing 4.6 communicates with a DS1620 without the use of a library class, and it
demonstrates how numeric values are sent back and forth between the Javelin Stamp and the
DS1620 using the shiftIn() and shiftOut() methods. Compared to Program Listing
4.6, Program Listing 4.7 really highlights how much simpler and more powerful your code
can be when you use a library class to do the job.

The segment of code below is from the dsTemp() method in Program Listing 4.7, and it is
important because it uses shiftIn() and shiftOut() to communicate bi-directionally
with the DS1620. Before communicating with the DS1620, its enablePin must be set to
true. Then a command, hexadecimal AA for report temperature, is sent to the DS1620
using the shiftOut() method. Next, the variable data is set equal to the shiftIn()
method. Since 9 bits of data are shifted in LSb-First into the 16-bit data variable, the shift
right operator >>7 is used to shift the data another 7-bits to the right. The extra shift is
always necessary when shifting in LSb-first or shifting out MSb-first. For more information
on the shiftIn() and shiftOut() methods, see Chapter 9.

 CPU.writePin(enablePin,true);

CPU.shiftOut(dataPin,clockPin,8,CPU.POST_CLOCK_LSB,command);
 data =
((CPU.shiftIn(dataPin,clockPin,9,CPU.SHIFT_LSB)>>7));
 CPU.writePin(enablePin,false);

Program Listing 4.7 - Shift DS1620

import stamp.core.*;

4: Application Examples – Circuits and Programs

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 73

public class ShiftDS1620 {

 // declare I/O pins connected to DS1620

 final static int dataPin = CPU.pin4;
 final static int clockPin = CPU.pin5;
 final static int enablePin = CPU.pin6;

 // Home character used for placing the cursor in the Messages from
Javelin Window

 final static char HOME = 0x01;

 // DS1620 codes for initialization and for requesting temperature
measurement

 final static int WRITE_CONFIG = 0x0C;
 final static int WRITE_TL = 0x02;
 final static int START_CONVERT = 0xEE;
 final static int READ_TEMP = 0xAA;

 static int DSValue, sign, i, data;
 static int[] setup = {WRITE_CONFIG,WRITE_TL,START_CONVERT};

 // Using a loop, the dsInit method (below) accesses values in the
setup array
 // (above). The shiftOut command is what clocks each value into
the DS1620.

 static void dsInit(int config[]) {
 CPU.writePin(enablePin,false);
 CPU.delay(10);
 for (int i = 0; i < config.length; i++) {
 CPU.writePin(enablePin,true);
 CPU.shiftOut(dataPin,clockPin,8,CPU.SHIFT_LSB,config[i]);
 CPU.writePin(enablePin,false);
 } // end for
 } // end dsInit

 // The dsTemp method accepts commands from the main routine and
uses
 // the shiftOut() method to send this value to the DS1620. Then
the shiftIn()
 // method is used to shift in the temperature data from the DS1620.
The
 // positive or negative value is returned to the main routine.

4: Application Examples – Circuits and Programs

Page 74 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 static int dsTemp(int command){
 CPU.writePin(enablePin,true);
 CPU.shiftOut(dataPin,clockPin,8,CPU.SHIFT_LSB,command);
 data = ((CPU.shiftIn(dataPin,clockPin,9,CPU.POST_CLOCK_LSB)>>7));
 CPU.writePin(enablePin,false);

 sign = data >> 8;
 if (sign == 1) {
 return -data;
 }
 else
 return data;
 } // end dsTemp

 // The main routine calls the dsInit method to initialize the
DS1620,
 // then it gets the temperature value from the dsTemp method and
displays it.

 public static void main(){

 dsInit(setup);
 while (true){
 System.out.print(HOME);
 System.out.println ("Celsius temperature: ");
 System.out.println(dsTemp(READ_TEMP)/2); // Divide by 2
for deg-C
 CPU.delay(5000);
 } // end while
 } // end main
} // end class
declaration

Communicating with Other Computers
Using the built-in Uart virtual peripheral, it is easy to communicate with a PC or other
microcontroller. Since virtual peripherals always run in the background, you don’t have to
constantly poll for serial input. If input arrives while your program is doing something else,
the virtual peripheral will buffer the data for you until you decide to process it. Each Uart
object handles communication in one direction, so for two-way communications, you’ll need
two Uart objects.

You can find more information about the Uart class in
Chapter 9.

4: Application Examples – Circuits and Programs

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 75

Figure 4.8(a) shows the connection diagram for a full duplex hardware flow controlled
UART. You can connect this to a serial cable via an RS232 transceiver like the MAX 233 or
you can use the COM port connections on the Javelin Stamp Carrier board as shown in Figure
4.8(b). Program Listing 4.8 will use this connection to communicate with you through your
PC’s HyperTerminal program. If you are using the Javelin Stamp Carrier Board, make sure to
connect the serial cable used by HyperTerminal to the port labeled COM Port.

4: Application Examples – Circuits and Programs

Page 76 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Figure 4.8 COM Port Connections

P1

P3

P2

P0

RS232
Transceiver

3

2

7

8

Javelin Stamp
I/O pins

(a) using an RS232 chip (b) using Javelin Stamp Demo Board

If you want to build your own driver circuit, use Figure 4.9 as a reference for the connections
made in Figure 4.8. Keep in mind that this COM port is designed to connect to a computer’s
COM port. If you want to communicate with a peripheral instead of a PC, you will need to
add a null modem adaptor. See the next section entitled Communicating with Peripheral
Devices for more information.

1234

6

5

79 8com
port

9
8
7
6

4
3
2
1

Vss

1
2
3
4
6
7
8
9

1
2
3
4
6
7
8
9

TTL Level Signals:
0 to 5 V

Rs232 Level Signals
+12 to -12 V

This COM port is connected
to a PC serial port using a
straight-though serial cable.

- OR -

It can be connected to a
peripheral (modem, mouse,
etc.) using a null modem
adaptor.

Sp237

Figure 4.9: Javelin Stamp Demo Board COM port Connection Diagram.

If you are using one cable for both HyperTerminal and Javelin Stamp IDE, you will need to
close the Javelin Stamp IDE after you load the program into the Javelin. Then, open

4: Application Examples – Circuits and Programs

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 77

HyperTerminal and start a new session. For connection, choose Direct to the COM port you
will be testing. Select Properties from the File menu, then select the Configure icon from the
Connect To tab. Choose the following settings:

• Bits per second 9600
• Data bits 8
• Parity No
• Stop bits 1
• Flow control Hardware

When your Javelin Stamp is running Program Listing 4.8 and HyperTerminal is connected
(select Call from the Call menu), you can press and release the Javelin’s Reset button to
restart the program. Then, follow the prompts that appear in HyperTerminal for entering
messages. If your JIDE port and COM port can be connected to two separate serial ports on
your PC, use Debug and take a look at the contents of the buffer fields inside the UART
objects.

Program Listing 4.8 - Bi-directional Communication with HyperTerminal

import stamp.core.*;

public class HyperTermCOM { // COM Port (9-
pin serial)

 final static int SERIAL_TX_PIN = CPU.pin0; // 2
 final static int SERIAL_RTS_PIN = CPU.pin1; // 7
 final static int SERIAL_CTS_PIN = CPU.pin2; // 8
 final static int SERIAL_RX_PIN = CPU.pin3; // 3

 static Uart txUart = new Uart(Uart.dirTransmit, SERIAL_TX_PIN,
Uart.dontInvert,
 SERIAL_RTS_PIN, Uart.dontInvert,
Uart.speed9600,
 Uart.stop1);

 static Uart rxUart = new Uart(Uart.dirReceive, SERIAL_RX_PIN,
Uart.dontInvert,
 SERIAL_CTS_PIN, Uart.dontInvert,
Uart.speed9600,
 Uart.stop1);

 static StringBuffer buffer = new StringBuffer(128);
 static char c;

4: Application Examples – Circuits and Programs

Page 78 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 static void bufferMessage(){
 c = 0xff;
 while (c != '\r'){
 if(rxUart.byteAvailable()){
 c = (char)rxUart.receiveByte();
 buffer.append(c);
 }
 }
 } // end
bufferMessage

 public static void main(){
 do{
 buffer.clear();
 txUart.sendString("Type a message, the press enter: \n\r");
 bufferMessage();
 txUart.sendString("The message you sent was: \n\r");
 txUart.sendString(buffer.toString());
 txUart.sendString("\n\rDo you want to enter another message?
(y/n) \n\r");
 c = (char) rxUart.receiveByte();
 } while(c == 'y' || c != 'n');
 txUart.sendString("Goodbye!\n\r");
 } // end main
} // end class
declaration

Communicating with Peripheral Devices
You can use the Javelin Stamp to communicate with one or more asynchronous serial
peripheral devices. Some of the more interesting and useful serial devices that can be
incorporated into embedded applications include:

• LCDs
• Mice
• Camera modules
• GPS units
• Phone modems

Without the null modem adaptor, the COM port on the Javelin Stamp Demo Board is
designed to be connected directly to a computer’s serial port. In this configuration the port
will behave just like any other serial peripheral device. If you want to connect the Javelin
Stamp to a serial peripheral device, simply attach the null modem adaptor to the Javelin
Stamp Demo Board’s COM port, then attach the peripheral to the null modem adaptor. This

4: Application Examples – Circuits and Programs

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 79

makes, the Javelin Stamp Demo Board’s COM port behave like a computer, and it can
communicate with a serial peripheral device.

ü Connect a serial modem to the null modem adaptor included in the Javelin Stamp
Starter Kit.

ü Connect the null modem adaptor to the Javelin Stamp Demo Board’s COM port (not
to the JIDE port)

ü Use the previous example’s circuit (Figure 4.8).
ü You can use Program Listing 4.9 to call the Javelin Stamp at Parallax.

txUart.sendString("ATDT19166240160\r");

Note: If you do not live within the 916 area code, a long distance toll charge will apply. A
simple test that you can do and avoid the long distance charge is to substitute your own phone
number for the Parallax Javelin’s phone number. Most modems will send a BUSY message
back to the Javelin Stamp.

ü Run Program Program Listing 4.8 to communicate with the serial modem.

Program Listing 4.9 - Modem Test

import stamp.core.*;

public class ModemTest {

// On Demo board's X4
// connect pin 0 to DB9-2
// connect pin 1 to DB9-7
// connect pin 2 to DB9-8
// connect pin 3 to DB9-3
// The Demo board has a level converter

 final static int SERIAL_TX_PIN = CPU.pin0;
 final static int SERIAL_RTS_PIN = CPU.pin1;
 final static int SERIAL_CTS_PIN = CPU.pin2;
 final static int SERIAL_RX_PIN = CPU.pin3;

 static Uart rxUart = new Uart(Uart.dirReceive, SERIAL_RX_PIN,
Uart.dontInvert,
 SERIAL_CTS_PIN,Uart.speed9600,
 Uart.stop1);
 static Uart txUart = new Uart(Uart.dirTransmit,
SERIAL_TX_PIN,Uart.dontInvert,
 SERIAL_RTS_PIN, Uart.speed9600,

4: Application Examples – Circuits and Programs

Page 80 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 Uart.stop1);

 public static void main() {

 /* You can use this phone number to call a Javelin Stamp
 * connected to a modem at Parallax. A long distance charge will
apply.
 *
 * A simple test that costs little or nothing is to use your own
phone
 * number. The modem typically sends the Javelin Stamp a BUSY
message
 * since the Javelin Stamp is dialing the same number it is
calling.
 */

 txUart.sendString("ATDT19166240160\r");

 // display modem's response (if any)
 while (true) {
 System.out.print((char)rxUart.receiveByte());
 }
 }
}

Figure 4.10 shows what’s inside the null modem adaptor. Note that it re-routes transmit lines
to receive pins and visa-versa.

Figure 4.10
Null modem

adaptor
connection

diagram

1

X X

6

2

3

4

7

8

9 9

7

8

1

6

5

2

3

4

Db9 Connector
on Javelin Stamp

Demo Board
Labeled:

COM Port

Peripheral device

5

5: Using the Javelin Stamp IDE

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 81

The Javelin Stamp IDE (Integrated Development Environment) provides a work environment
where you can write, run, and debug your Javelin Stamp programs. In addition, you can view
the javadoc documentation from within the IDE.

Starting the IDE
You can run the IDE by selecting the icon from your Start menu. From Windows, press on
the Start button on your menu bar. Mouse up to Programs, scroll over and mouse to the
Javelin Stamp, scroll over once more and select the IDE and the program will begin. You
may wish to maximize the window (double click on the title bar, use the system menu on the
left-hand side of the title bar, or use the maximize button to the right-hand side of the title
bar).

By default, you’ll see two command areas just below the title bar. The first area holds the
main menu (which has items for File, Edit, etc.). The second area is a toolbar that has small
icons to execute common methods. Below the tool bar, you’ll see a tab that reads
Untitled.java. This is the name of the file you are editing. If you open multiple files, each
will have its own tab and you can switch between them by clicking on the tabs. The area
below the tab is where the text will appear. The gray area to the left will contain indicators
while debugging, as you’ll see shortly.

Setting Global Options
Before you get started, it is a good idea to review the option settings found within the Global
Options… under the Project menu. The dialog (see Figure 5.1) that appears has three tabs.
The first tab, Compiler, should contain the Class Path and the path to the compiler. Having
the correct Class Path is vital so that the IDE can find the library files required for your
programs. Be careful not to change the settings unless you are certain you know what you are
doing (you’ll learn more about changing the Class Path at the end of this chapter).

Figure 5.1 Global Options for IDE

5: Using the Javelin Stamp IDE

Page 82 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

(a) Compiler (b) Debugger (c) Documentation

The Debugger tab has a single option that allows you to set the COM port you’ve used when
connected your Javelin Stamp. The IDE uses this port to communicate with the Javelin
Stamp. You can press the Auto button and the IDE will attempt to detect the Javelin Stamp
automatically.

The final tab, Documentation, allows you to set the path to the javadoc files and the javadoc
program. You’ll read more about javadoc later in this chapter.

If you change things inadvertently, you can push the Default button to restore everything to its
original state. For now, the only thing you should change is the COM port setting on the
Debugger tab.

Starting a Project
To start a project, you can just begin defining a class in the Untitled.java window. However,
it is easier if you use the Insert Template under the File menu to insert a prototypical class
into the editor workspace.

Here is the code inserted by the Insert Template command:

import stamp.core.*;

/**
 * Put a one line description of your class here.
 * <p>
 * This comment should contain a description of the class.
What it

5: Using the Javelin Stamp IDE

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 83

 * is for, what it does, how it use it.
 *
 * You should rename the class and then save it in a file with
 * exactly the same name as the class.
 *
 * @version 1.0 Date
 * @author Your Name Here
 */
public class MyClass {

 // Put variables here.
 static int myVar;

 public static void main() {
 // Your code goes here.
 }

}

You’ll need to change MyClass to an appropriate name. You’ll also want to alter the
comments and myVar variable to suit your program. Java requires that each file have only
one public class and that the class have exactly the same name as the Java file (including the
case of the name). So if your class is MyFirstClass, you should save the file as
MyFirstClass.java Save or Save As under the File menu.

You can also ask the IDE to help you write your code by invoking specific templates. If you
press CONTROL+J while editing a file, you’ll see a list of templates you can insert. For
example, if you select the for (count) template, this will appear in your file:

for (int i = 0; i <; i++) {

}

If you’ve already typed a partial statement, pressing CONTROL+J will automatically insert
the correct template without displaying a list. For example, if you enter if and then press
CONTROL+J, the IDE will automatically insert the code template for if.

Table 5.1 shows the available templates and the keywords that will automatically invoke
them.

5: Using the Javelin Stamp IDE

Page 84 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Table 5.1: Javelin Templates
Menu Item Menu Item Menu Item
Template Keyword Example
Array declaration Arrayii int [] = {1, 2, 3};
Class declaration Class public class {

}

Class declaration (with
extend)

Classes public class extends
Object {

};

Complete program Program See above example
For statement For for (; ;) {

}

For statement (count) Forc for (int i = 0; i <; i++) {

}

If If if () {

}

If else Ife if () {

}
else {

}

Try/catch Tryc try {

}
catch () {

}

sdill
Comment [15]: Do something better with this table

5: Using the Javelin Stamp IDE

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 85

Table 5.1: Javelin Templates
Menu Item Menu Item Menu Item
Try/catch/finally Tryf try {

}
catch () {

}
finally {

}

While While while () {

}

Do while Whiled do {

} while ();

Switch statement switch switch () {
case a:
break;

case b:
break;
}

Switch statement (with
default)

switchd switch () {
case a:
break;

case b:
break;

default:

}

sdill
Comment [15]: Do something better with this
table

5: Using the Javelin Stamp IDE

Page 86 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Table 5.1: Javelin Templates
Menu Item Menu Item Menu Item
Method declaration method /**

*
*
* @param
* @return
*/
void () {

}

Method declaration
(public)

methodp /**
*
*
* @param
* @return
*/
public void () {

}

Method declaration (with
throws)

methodt /**
*
*
* @param
* @return
*/
public void () throws
Exception {

}

Field declaration field /**
*
*/
int ;

Debugging output debug System.out.println("");

Building your Program
There are several ways to build your program depending on what you want to do with it. On
the Project menu you’ll find five important menu items:

sdill
Comment [15]: Do something better with this table

5: Using the Javelin Stamp IDE

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 87

• Compile – This option simply converts your source code into a class file. This will
catch any compile-time errors, but it won’t send any code to the Javelin Stamp.

• Link – Linking takes all the class files referred to by your program and binds it
together for transmission to the Javelin Stamp. However, it doesn’t actually send
any code to the Javelin Stamp either.

• Program – This is the most common option. It compiles, links, and downloads
your program to the Javelin Stamp.

• Debug – This command is similar to the Program command, but it also adds the
necessary code that allows the IDE to debug your program.

• Resume Debug – If you are debugging a program and you get interrupted (perhaps
you shut your computer down and restart it later), you can start a new debugging
session without having to recompile, relink, and download. This does not resume
your previous debugging session. It simply allows you to start a new one without
reprogramming the Javelin Stamp.

When you use the Program option, the Javelin Stamp will run the program by itself. If you
use one of the Debug options, the Javelin Stamp will require commands from the IDE to
execute, so you’ll want to use Program before you detach the Javelin Stamp. The Compile
and Link options are handy for testing your program’s syntax before downloading it to the
Javelin Stamp.

Dealing with Errors
Of course, sometimes you’ll have compile-time errors (such as syntax errors) that will prevent
any of the above commands from working. For example, suppose you left the static
keyword off of the two variable declarations in the example program:

Program Listing 5.1 - My Test Class (Dealing With Errors)

// (This program contains intentional errors)

import stamp.core.*;

class MyTestClass {
// Put variables here.
int pause=5000;
boolean state=false;

 public static void main() {
 while (true) {
 CPU.writePin(CPU.pin0,state);
 state=!state;
 CPU.delay(pause);

5: Using the Javelin Stamp IDE

Page 88 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 }
 }
}

The two variable declarations should really look like this:

// Put variables here.
static int pause=5000;
static boolean state=false;

When you try to compile, run, or debug the program a window appears at the bottom of the
IDE. This window will contain four error messages (see Figure 5.2). The error message
shows the type of error, the file name, the line number, and the actual error message. In
complex programs, compiling one file may cause other files to compile, so pay close attention
to the file name, as it may not be the same as the current file name.

Regardless of the file name, double clicking one of the error messages will take you to the
part of your program where the compiler detected the error. Notice that this is not always the
same place as where you created the error.

In this case, for example, the first error message is:

 The name “state” does not denote a class (static) variable

This error appears on the CPU.writePin line. However, the real error is not on this
line. The mistake here is that the state variable is an instance variable while the main
method is (by necessity) static. A static method can’t directly access instance
variables, so an error occurs. All by itself, there is nothing wrong with creating an instance
variable named state, so the compiler can’t guess that this line is in error. That’s because
syntactically it isn’t in error. The only reason the line is incorrect is because the program uses
the variable contrary to its declaration and the compiler detects the error when the program
tries to use the variable. The real mistake, of course, is in the declaration and that is where
you’ll have to fix the program.

5: Using the Javelin Stamp IDE

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 89

Figure 5.2
Error

Messages

The other three errors follow the same logic. Even though there are four errors on three
different lines, only two things require repair and they aren’t on any of those lines at all. Of
course, you need to make the two variable declarations static. You could also elect to
have main create a new MyTestClass object and call an instance method (which could
then directly refer to non-static fields). However, that’s a major change to the program’s
design, not a repair.

Using the Debugger to Look Inside the Javelin
In a perfect world, you would write your program, download it to the Javelin, and be finished.
In real life unfortunately, it isn’t unusual for a program not to behave as you expected.
Luckily, the Javelin’s built-in debugger makes it very easy to troubleshoot misbehaving
programs.

Of course, debugging won’t help you locate syntax errors and other problems that prevent
your program from compiling. You can find these by reading the messages the compiler and
linker generate. However, just because the compiler thinks your program is correct doesn’t
mean the program does what you think it does. The compiler can accept a program that
doesn’t do what you want it to do (that is, your program contains an error in it’s logic). That’s
where the debugger comes into play.

5: Using the Javelin Stamp IDE

Page 90 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

To start the debugger (Figure 2.11), press the Debug button on the toolbar (or press
CONTROL+D or select Debug from the Project menu). The debugger window that appears
has several useful buttons and tabs:

• Run – This button starts your program executing under the debugger. The program
will stop at a breakpoint, if any are set. You can set a breakpoint clicking in the gray
area to the left of a program line, using CONTROL+B, or using the Toggle
Breakpoint from the Debug menu (in the main Javelin window). A line with a
breakpoint appears highlighted in red and has a red dot in the left margin.

• Stop – If the program is running, the Stop button will cause execution to halt as
though a breakpoint had occurred.

• Step Into – When the program is stopped, this will cause one line of program code
to execute. If the line makes a method call, the new stop location will be inside the
called method.

• Step Over – When the program is stopped, this will cause one line of program code
to execute. If the line makes a method call, the Javelin will attempt to execute the
entire method before stopping again. Notice that some program lines make multiple
method calls, so the stop position will appear not to move until you press the Step
Over button multiple times.

• Toggle Breakpoint – Push this button to place (or remove) a breakpoint on the
current line. When the program executes this line, the debugger will stop and wait
for further user commands.

• Reset – Press this button to restart the program from the beginning.
• Show Message Window – This button displays the window the Javelin uses to

display messages.
• Call Stack – This tab shows you the method calls that are currently active. So if the

main method calls method A, and method A calls method B, you’ll see main, A,
and B in the display window when this tab is active. The window also shows local
variables and fields.

• Static Variables – This tab allows you to examine the static variables of each class in
your program. Click on a ‘+’ sign to expand the display to see details, then click the
‘-’ sign to hide those details again.

• Memory Usage – Use this tab to display statistics about how much memory your
program is using.

The easiest way to learn to use the debugger is to load a simple example program and start the
debugger. Use the Step Over and Step Into commands while examining the different tabs in
the debugger window. Set a breakpoint on a line and use the Run command.

sdill
Comment [16]: Is this expected behavior or is it a
bug?

5: Using the Javelin Stamp IDE

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 91

The compiler can detect your syntax errors, but it can’t find mistakes in the logic of your
program – only you can do that. That’s why the IDE was programmed to have sophisticated
debugging support to help you examine what your program is actually doing and make it
easier to spot mistakes.

Once you clean up any compile errors you can begin to debug the program. Select Debug
under the Project menu (or CONTROL+D) to begin the debugging process. Once the IDE
downloads the program to the Javelin Stamp, you’ll see a green bar indicating the first line of
your program that will execute. You’ll also see a debugging window (see Figure 5.3).

Figure 5.3 Javelin Stamp IDE and Debugger

The debugging window has a toolbar that mimics the method on the main Debug menu
(covered shortly). It also has three tabs: Call Stack, Static Variables, and Memory Usage.
The Call Stack tab shows the current method executing, along with the return path from
methods that are in the middle of calling this method. The Static Variables tab shows you the
name and value of all static variables. Finally, the Memory Usage tab allows you to examine
how much memory your program is using and how much of that memory is code or data.
You can also use the table at the bottom of the debug window to examine memory usage for
each class in your program. If the debug window is small, you may have to increase its size
vertically (by dragging the window border) to make the table visible.

sdill
Comment [17]: ANDY: This is an old screen
shot, we need a new one.

5: Using the Javelin Stamp IDE

Page 92 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

If you lose the debug window accidentally, you can always get it back by selecting Show
Debug Window from the Debug menu. In addition, you can make the message window
visible by selecting Show Message Window from the Debug menu. The message window
shows any output your program sends using System.out or CPU.message. You can use
System.out.println to write debugging messages to the message window to help you
debug your program.

There are several ways to execute your program. If you select Run from the Debug menu (or
the green arrow in the toolbar, or F9) then the program will execute normally. To stop the
program, you can select Stop from the Debug menu (or the double red bars in the toolbar, or
F8).

If you want the program to stop at a particular spot, you can do this by setting a breakpoint.
Place the cursor on the line in question and select Toggle Breakpoint from the Debug menu
(CONTROL+B), or use the stop sign on the toolbar. You can also click on the gray area to
the left of the line. In any event, you’ll see a red stop sign icon appear in that left-hand area to
indicate the breakpoint. Repeating the step will turn the breakpoint off and make the stop sign
icon disappear.

Sometimes you don’t know where you want the program to stop. In that case, you can single
step through the program. The Step Into menu item (on the Debug menu) causes your
program to execute one line of source, and steps into method calls. Step Over is the same,
except that any method calls will run to completion. The green execution bar will show you
which statement will execute next. You can use F7 for Step Into and F8 for Step Over. On
the toolbar, these operations show a small box with an arrow pointing into the box (Step Into)
or jumping over the box (Step Over).

While stepping through the program or if you are stopped at a breakpoint, you can always
resume execution with the Run command. This will cause the program to continue until it
ends or it encounters another breakpoint.

The only other command on the debug menu is Reset (CONTROL+F2). This causes the
Javelin Stamp to prepare to run the program again. In other words, a Step Into, Step Over, or
Run command will start the program at the beginning after a Reset.

An Example Debugging Session
Using the DebugExample (see Program Listing 5.1) type it in exactly as you see it (if you
think you see a mistake, leave it as it is). Save the file in DebugExample.java. The
intent of this program is to blink an LED with a 2 second off time and a half-second on time.
The idea is to use a half-second (that’s 5000 100us periods) time base and only turn the LED

sdill
Comment [18]: Verify if VP’s run while the program
is stopped

5: Using the Javelin Stamp IDE

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 93

on every fifth count. Of course, you can wire the LED so that the LED will be off every fifth
count and on the remainder of the time – the important point is that the LED will be in one
state for a single 500 ms period and in the opposite state for 2 seconds.

You can run the program by selecting Program from the Project menu. However, it doesn’t
work. Why not? You might be able to find the answer by inspecting the program, but often
debugging is easier.

To prepare for debugging, select Debug from the Project menu (or press CONTROL+D).
Your screen should look like the one in Figure 5.4. The green bar and arrow in the source
code tells you that you the next line that will execute. The Call Stack tab in the debug
window shows you that you are in the main method.

Figure 5.4
Stepping
through
Code

Use F7 to step through the program a line at a time. Notice that the Call Stack tab also shows
the local variables (like i and test). Press F7 until you make one pass through the loop and
notice the state of the local variables at each step.

On the first loop (where i is 0) everything seems to work, as you’d expect. On the second
pass however, pay particular attention to the if statement. Press F7 until the green bar rests
on the if statement (and i is equal to 1). Before executing the if statement, the test
variable is false. That’s right because 1 is not evenly divisible by 5 so i%5 is not equal to

5: Using the Javelin Stamp IDE

Page 94 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

0. Now press F7 to step through the if statement. Suddenly, test is now true and the
incorrect branch of the if executes. Do you see why?

Careful observation of the if statement shows that there is only one equal sign! Instead of
testing to see if test is true, this statement sets test to true and therefore assures that
the else clause will never execute. The answer – or at least, one answer – is to change the
single equal sign to two equal signs. On the other hand, you could rewrite main like this:

public static void main() {
 for (int i=0;i<1000; i++) {
 CPU.writePin(CPU.pin0,(i%5)==0);
 CPU.delay(5000);
 }
}

Editing Text
The IDE text editor window works the same as any other Windows editor. You can use the
File and Edit menus as shown in Table 5.2 and Table 5.3.

Table 5.2: File Menu Commands

Menu Item Command Shortcut
New Start a new document CONTROL+N
Insert Template Insert a sample class definition CONTROL+J
Open… Open an existing file CONTROL+O
Reopen Opens a recently used file ALT, F, R
Save Save the current document CONTROL+S
Save As… Save the current document with a new

name
ALT, F, A

Close Close the current document CONTROL+F4
Print Print the current document CONTROL+P
Exit Ends IDE ALT, F, E

You can also use common Windows shortcuts to perform common editing operations shown
in Table 5.3.

Table 5.3: Edit Menu Commands

Menu Item Command Shortcut
Undo Undo the last editing action CONTROL+Z

5: Using the Javelin Stamp IDE

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 95

Cut Remove the selection to the clipboard CONTROL+X
Copy Copy the selection to the clipboard CONTROL+C
Paste Paste the clipboard contents to the

document
CONTROL+V

Select All Select all text CONTROL+A
Find and Replace… Find or find and replace text CONTROL+F
Find Again Repeat last find operation F3

Toolbars and Menubars
You can move the main menu to different locations by grabbing the double vertical bar to the
left-hand side of the menu and dragging. You can move the menu anywhere horizontally, and
you can move the menu to two different vertical locations.

You can also drag the toolbars around in this fashion. In addition, you can drag the toolbars
into the main window area to convert them into floating windows. If you want to restore
them to their bar state, you can drag them to the top window border and they will stick. By
grabbing the double bar to the left-hand side of the toolbar, you can move the toolbar to
different locations.

Another way to issue commands is to right click on the file’s tab at the top of the editor
screen. Right clicking will display a menu that will allow you to compile, debug, program,
manipulate projects (covered shortly), or close the current file. Note that the menu commands
always apply to the current document, even if you right click another document’s tab.

Class Path Considerations
One of the most critical aspects of working with any Java or Java-like development tools is
the CLASSPATH. Each time you name a class in your program, the compiler searches for
the appropriate class file by searching the directories named in the CLASSPATH (you’ll find
more about this topic in Chapter 3).

It is crucial that the directories in the CLASSPATH refer to the correct class files, and not
class files aimed at another target system (like the PC, for example). In addition, if you create
your own libraries of code, you’ll want to place the correct directories for that code in the
CLASSPATH.

Selecting Global Options under the Project menu will give you a Global Options window.
You can select the Compiler tab to view the CLASSPATH variable. You can directly change
the string you find there if you like. It is simply a list of paths separated by semicolons. The
paths should be absolute (e.g., c:\myclasses\lib1 instead of ..\lib1).

5: Using the Javelin Stamp IDE

Page 96 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

However, it is easier to change the CLASSPATH by pressing the … button next to the path
(see Figure 5.5). Here, you can change each part of the path separately. You can use the …
button to browse your files and the up and down arrow buttons to alter the order of each
directory in the CLASSPATH. The order is important, because the compiler begins searching
with the first directory, and proceeds in order. Once it finds a suitable class file, it stops
searching, so if two directories in the CLASSPATH contain class files named the same, the
first one mentioned in the CLASSPATH will override any subsequent directories.

Figure 5.5
Class Path

Settings

Working with Packages
If you make a class or a group of classes that you want to reuse, you might consider putting
them in a package. First, at the start of the java files that contain your classes, you’ll put a
package statement. The convention is to use your inverted Internet domain name (for
example, com.parallaxinc) to begin the package name. After that, you can use as many words
as you like separated by periods.

For example, consider this class:

package com.parallaxinc.testlib;

public class doubler {
 private int val;
 public doubler(int v) { val=2*v; }
 public int value() { return val; }
}

This class (doubler) is part of the com.parallaxinc.testlib package. You need to save the file
(or at least the class file) in a file that is in several subdirectories. In particular, the file name
must be com\parallaxinc\testlib\doubler.java. This is a relative path name.

5: Using the Javelin Stamp IDE

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 97

The compiler will look in the current directory and in all the CLASSPATH directories for this
directory structure. So imagine that your CLASSPATH had a single directory in it
(c:\classes) and that the current directory is c:\projects. The compiler will look for
com.parallaxinc.testlib.doubler in the doubler.java file. It will search for
that file in:
 c:\projects\com\parallaxinc\testlib and in
c:\classes\com\parallaxinc\testlib

To use the doubler class, you’d need to refer to its entire name, or use an import
statement. For example, you might write:

com.parallaxinc.testlib.doubler dbl = new com.parallaxinc.testlib.doubler(20);

Notice that you have to use the entire name every time you refer to the object. This is not
very convenient so you’ll usually use an import:

import com.parallaxinc.testlib.doubler;

doubler dbl = new doubler(20);

Remember, the packaged class must be in the correct directory tree and that directory tree’s
root directory must be in the CLASSPATH.

Working with Projects
You can organize your work into projects. From the main file of the project, you can select
Make Project from the Project menu. You can also right click the file’s tab and select Make
Project from the resulting menu (if this option is gray, you have not saved the file yet).

Once you’ve made a project, the tab for that file will have a file folder icon to the left of the
file name. One project can be active at a time. The active project will have a green
checkmark in the file folder.

Projects are useful when you want your Java file to have its own options. The active project
has its own private options that you can access by selecting Project Options from the Project
menu. From here you can set the class path for compilation, the debugger settings, and
packages you want to include in the javadoc documentation. You can also specify the
directory where the IDE will create documentation.

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 99

This chapter details the Java language as it is used with the Javelin Stamp. Java, is a language
developed by Sun Microsystems, and many find its syntax and structure similar to C++
(which is an object-oriented extension to C). However, there are two major differences:

1. Java is strictly an object-oriented system. You can use C++ without using objects,
but Java requires you to use objects at all times.

2. Java handles some of the more error-prone parts of programming to reduce the
burden on the programmer.

If you don’t know object-oriented programming, don’t worry. It does require you to change
how you approach programming a little, but the payoff is well worth the effort. If you’ve
programmed in virtually any other language, you’ll find Java is simple to learn. If you’ve
looked at books about Java before, you may have been put off by the complexity of the
example programs. That’s because most books concentrate of graphical user interfaces,
which are complex by their very nature. In an embedded system, programs are usually much
more straightforward.

Java Differences
If you are an experienced PC Java programmer – or you plan to read about Java – you should
be aware that the Javelin Stamp uses a subset of Sun Microsystems’ Java 1.2 class libraries.
The Javelin Stamp also does not encompass certain variable types and object behaviors that
PC Java programmers may expect to see. These differences are necessary to allow the Javelin
Stamp to execute your programs on such a small computer and to ensure that embedded
programs behave properly.

This manual shows you how to develop embedded applications using the Javelin Stamp.
Experienced Java Programmers should consult Chapter 10, Summary of Java Differences
before continuing. Java programmers are also encouraged to review the example programs in
this manual for a clearer understanding of the scope of Javelin Stamp embedded projects and
the way the Javelin Stamp utilizes a subset of Java for project development.

Getting Started
Every Java program consists of at least one public class. Of course, larger programs may
consist of many classes of different types. To make your class executable, it must contain a
static main method. You can generate a templatefrom the IDE program by selecting Insert
Template from the File menu. Be sure to replace MyClass in the generated code with a
unique name. Save your new class file with the same name as the name you used in the class
definition. For example, the class MyClass is saved as a file named MyClass.java..

6: Javelin Stamp Programmers Reference

Page 100 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Java statements can extend to multiple lines and must end with a semicolon. This is similar to
C or C++ and is referenced as a code block. You can have nested blocks of code, in fact there
is no limitation to how many blocks of code you can have nested within blocks of code.

What About the Braces?
In Java, curly braces surround groups of statements. This group is called a code block.
Consider the if statement. This statement evaluates a boolean expression and executes the
following statement if the expression is true. If you want to execute multiple statements,
you must enclose them in braces so the compiler will see them as a single code block.

Of course, you can enclose a single statement in braces, if you like. In other words, these two
if statements are the same:

if (x==0)
 System.out.println("zero value");

if (x==0) {
 System.out.println("zero value");
}

Using the second form helps prevent a common mistake. Often, you’ll go back to add code to
the if (or similar statement) and forget to add the braces, which are now necessary. For
example:

if (x==0)
 System.out.println("zero value");
 System.out.println("Please restart”);

The indenting of the code makes it appear that the if controls both println statements.
However, this is not correct. The compiler doesn’t actually pay attention to indentation –
that’s just to make your code more readable. In this case, the “Please restart” message will
always appear no matter what the value of x is. The correct code is, of course:

if (x==0) {
 System.out.println("zero value");
 System.out.println("Please restart”);
}

Some code must be grouped. For example, the code in a class declaration must be within
braces. However, for if, for, while, and similar statements you can omit the braces if

Jim Ewald
Comment [19]: We’re really talking about the use of
white space here. We should address the use of white
space to enhace the readability of the source code. I just
can’t figure out where to put it without a ton of rewrites.

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 101

(and only if) the statement controls only one other statement. If there are multiple statements,
you must surround them in braces. Notice that you don’t place a semicolon after the closing
brace.

The compiler doesn’t really care about the indentation level. It also doesn’t pay attention to
where you place your braces. Many Java programmers follow the standard borrowed from
the C language. This standard places the opening brace at the end of the line and then indents
the following lines. The closing brace then appears on a line by itself, indented to the same
level.

Some programmers have adopted one of two newer styles of writing braces. In both of these
styles, both braces appear on their own lines. The only difference is how the braces indent.
Consider these two examples:

if (x==0)
{
 System.out.println("Ready");
}

if (x==0)
 {
 System.out.println("Ready");
 }

Regardless of what style you use, you should pick one and stick to it. Using consistent braces
and indentation will help you visually inspect your code for mismatched braces.

Variables, Types, and Constants
Variable store values, such as numbers or letters, or references to objects. Objects will be
discussed later in the chapter. Each variable has a characteristic, called a data type, which
describes what kind of data will be stored in the variable. The Javelin Stamp supports five
fundamental data types, listed in Table 6.1 below.

Table 6.1: Fundamental Data Types

Type Description
boolean True/False value
char 8-bit ASCII (not Unicode) character (‘\u00’ : ‘\uFF’)
byte 8-bit signed integer (127 : -128)

6: Javelin Stamp Programmers Reference

Page 102 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

short 16-bit signed integer (32767 : -32768)
int 16-bit signed integer (32767 : -32768)

In Program Listing 6.1 you can see the variable declaration (int i;) and an assignment
statement that computes a value and stores the result in i. Names are case-sensitive in Java,
so it is possible (although not a good idea) to have another variable named I. Having two
variables I and i makes reading the code much more confusing.

You can assign a value when you declare a variable as in this example:

int i=10;

You can also define multiple variables of the same type in a single line of code:

int i,j,k=33,loopctr=0;

You can create literal characters by using single quotes around any ASCII character. For
example:

char stop=’X’;

Let’s look at the Calculate class in Program Listing 6.1. Notice that there are two places
where variables are declared. The usecount variable is declared outside of the main()
method, but inside of the Calculate class declaration. The variable i is declared within
the main() method. The difference between these declarations has to do with something
called scope. Scope defines the area of your code where a declaration is visible. The i
variable is visible only to the code in the main() method. Other methods in the
Calculate class cannot access it. The i variable is created when the main() method is
called and destroyed when main() returns.

The usecount variable is declared outside of any method, so it can be accessed by the
methods within the class. This variable is declared at the class level. Variables declared at this
level are called Fields. Fields are discussed in more detail later in this chapter.

Program Listing 6.1 - Calculate

public class Calculate { // class Declaration

 int usecount; // Variable Declaration

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 103

 public static void main() { // main Declaration
 int i; // Create i variable to
store calculation
 i=33*9; // Perform calculation
 System.out.println(i); // Print result
 } // end main
} // end class declaration

Constants
Sometimes you’d like to make a variable that has a constant value. For example, you might
want to write:

int scale = 100;

However, let’s say that your program should never change the value. It is a constant. In the
line above, your program could, perhaps by accident, change the value of scale. The Java
compiler has no way to know that the value should never change, and it might be able to
generate better code if it knew that was the case.

To solve this problem, you can modify the type of the variable by declaring the variable to be
final . This tells the compiler that the value of the variable is permanent and can’t be
changed. A final variable is always initialized with a value when it is declared, because you
can’t change the value after it has been declared. For example, the declaration:

final int scale= 100;

defines an integer constant equal to 100.

Table 6.2 shows some escape sequences used to generate special characters (like a single
quote, or a new line). You can also use a C-style escape, \ddd (where ddd is the octal value
of a character. String literals follow the same rules, but you enclose them in double quotes,
not single quotes.

Table 6.2: Escape Sequences
Sequence Meaning

\b Backspace
\f Form Feed
\n New line
\r Carriage return

6: Javelin Stamp Programmers Reference

Page 104 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

\t Tab
\u0013 Clear Screen
\\ Backslash
\’ Single quote
\” Double quote
\xxx Any character

(xxx is octal
number)

Number Bases
You can also specify literal integers in octal (base 8) or hexadecimal (base 16) form. Octal
numbers have a 0 (zero) prefix, while hexadecimal (or hex) numbers have a 0x (zero x)
prefix. This can be tricky. Consider this code fragment:

int x=010;
System.out.println(x);

The result printed is 8, because the leading zero marks the literal 010 as an octal number.

Expressions
When you write x=10+3, x=x+1, or even x=0 you are assigning an expression to the x
variable. Expressions combine variables and constants using operators (see Table 6.3).

Table 6.3: Basic Java Operators

Operator Definition Operator Definition
++ Pre or post increment < Less than
-- Pre or post decrement <= Less than equal to
~ Bitwise invert > Greater than
! Boolean invert >= Greater than equal to
* Multiply == Equal to
/ Divide != Not equal to
% Remainder from integer division & Bitwise AND
+ Addition, String concatenation) ^ Bitwise exclusive OR
- Subtraction | Bitwise OR
<< Left shift && Logical AND
>> Right shift with sign extension || Logical OR
>>> Unsigned right shift ?: Conditional (ternary)

Jim Ewald
Comment [20]: We talk about a couple of the
operators in more detail later in this chapter. I think we
should probably treat all of them with a small paragraph,
plus an example.

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 105

Consider this line of code:

 x=5+3*2

The value of x depends on the order in which the expression is evaluated. If the addition is
performed before the multiplication, the result would be 16. However, if the multiplication is
performed before the addition, the result is 11. The correct answer is 11. You can see that the
order in which the expression is evaluated is very important. Java addresses this issue by
applying a set of precedence rules to the expression. It evaluates the parts of an expression
starting with operators with the highest precendence. It then moves down the list until the
entire expression has been evaluated. Table 6.4 shows the precedence of the various
operators.

6: Javelin Stamp Programmers Reference

Page 106 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Table 6.4: Order of Operations

Priority Operations
Highest [] . (params) expr++ expr--

 ++expr –expr +expr –expr ~ !
 new (typecast)
 * / %
 + -
 << >> >>>
 < > >= <= instanceof
 == !=
 &
 ^
 |
 &&
 ||
 ?:

Lowest = += -= *= /= %= >>= <<= >>>= &=
^= |=

Let’s look at the way that Java evaluates the expression x=5+3*2. The operator with the
highest precedence is located and evaluated. In our example, the multiplication operator (*)
is higher on the list than the plus (+) operator. When this is evaluated, the expression
becomes x=5+6. The operator with the next highest precedence is evaluated and the
expression becomes x=11. There is nothing left to evaluate, so Java assigns the value of 11
to the variable x and moves on to the next line of code.

You can override the evaluation order of an expression by using parenthesis. For example, if
you wanted the answer to be 16, you could write:

x=(5+3)*2

When Java encounters operators of equal precedence, it evaluates the operators from left to
right in the expression. For example, 4+2+9 produces the same result as (4+2)+9. It’s a
good coding practice to place parenthesis in expressions that has any complexity.

Special Operators

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 107

For the most part, the Java operators will be familiar to you if you’ve used any other
programming language. A few, however, may seem odd if you haven’t used C or C++ before.

For example, the ++ and -- operators can be confusing. These special operators increment
or decrement (that is, increase by one or decrease by one) the variable they alter. Instead of
writing:

foo = foo + 1

You might write:

foo++;

That doesn’t seem like a big improvement, but you can also use these operators within other
expressions. If the ++ occurs before the variable, the increment occurs before Java uses the
value. If it occurs after the variable, the increment occurs after Java uses the value. You’ll
understand how this works if you consider the following code:

int x=10;
int y=3*++x; // y = 33 and x=11
int z=2*x++; // z = 22 and x=12

If you want to increase the value by more than just one, you can write:

x=x+10;
or
x+=10;

This also works with +, -, /, and * operators.

Another operator that is unusual is the conditional operator.

boolean expression ? true expression : false expression

This operator requires three arguments. The first is a boolean expression. If the expression
evaluates to true, the result of the second expression is returned. Otherwise, the result of
the third expression is returned. For example, the following statement assigns 0 to x if y is
equal to 10, otherwise, x is assigned a value of 100:

6: Javelin Stamp Programmers Reference

Page 108 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

x=(y==10)?0:100;

Notice that two equal signs is the operator that tests for equality (y==10). A single equal
sign is for assignment only.

You might wonder about the difference between the & and && operators (or the | and ||
operators). The single character operators do bitwise operations. In other words, & takes the
bits of its two arguments and ands them together. The double character versions only work on
boolean values.

Comments
It is always a good idea to add comments to your code. This helps other people understand
your program and might even help you figure out what you were doing when you return to
your code a few weeks or months after you wrote it.

Java allows you to start a comment with two slash characters (//). After the two slashes,
Java ignores everything else on that line. If you want to make multi-line comments, start
them with /* and end them with */.

However, /** is a special type of comment known as a Java Doc comment. A special
program (javadoc) can scan Java source code and use special commands embedded in Java
Doc comments to automatically create documentation in HTML or other formats.

Control Flow
All programming languages need a way to control the program’s flow. Otherwise, your
programs would be just a list of commands.

The Javelin supports decision statements such as if and switch and loop control
statements for, while and do. These work nearly the same as their C counterparts.
Program Listing 6.2 shows a simple program that uses a for loop. The first expression in the
for statement sets the initial conditions. The second expression tests for the end of the loop,
and the final expression modifies the loop variable at each loop.

Program Listing 6.2 - for Demo

public class forDemo { // class Declaration

 public static void main() { // main Declaration
 int i; // Create ‘i’
integer

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 109

 for (i=0;i<10;i++) System.out.println(i); // For loop, from 0
to 9
 } // end main
} // end class
declaration

Even if you are used to C or C++, Java’s strong typing can throw you a few curves. For
example, in C++ you might write:

int t;
t = someroutine();
if (t)
 dosomething(); // call if t is not zero
else
 dosomethingelse(); // call if t is zero

This won’t work in Java. Why not? The variable t is an integer but the if statement expects
a boolean value. You’d have to write:

int t;
t = someroutine();
if (t==0)
 dosomething(); // call if t is not zero
else
 dosomethingelse(); // call if t is zero

Another place where Java differs from C is in the break and continue statements. With
the Javelin Stamp, as in C, you use these statements to either end a loop (in the case of
break) or go directly to the next iteration of the loop (for continue). However, these
statements have extra features in the Javelin Stamp’s language.

Consider this loop:

for (i=0;i<10;i++) {
 System.out.println(i);
 if (func(i)==3) break;
 if (i%2==0) continue; // don’t do any more for even
 // numbers
 System.out.println(“Odd number”);

6: Javelin Stamp Programmers Reference

Page 110 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

}

The break statement, if executed, immediately terminates the loop. The continue
statement, just moves on to the next iteration of the loop (in this case, that prevents even
numbers from getting to the bottom of the loop).

Unlike C, Java allows you to include a label as the target of a break or continue. This
lets you terminate or continue nested loops. For example:

Loop0:
for (x=1;x<10;x++) {
 for(y=1;y<20;y++) {
 .
 .
 .
 if (checkexit()==true) break Loop0;
 }
}

The for loop above, by the way, is functionally the same as this code:

int i=0;
while (i<10) {
 .
 .
 .
 i++;
}

There are many times when you want to test a value against several constants and take
particular actions depending on the value. You could write a series of if statements.
However, Java provides the switch statement, which is more succinct. Program Listing 6.3
shows an example of using switch. Notice that once a match occurs, the code executes
from that point – even if it encounters another case statement. This allows you to cascade
several cases that share the same code. However, most often you want each case to be
separate and you’ll want to write a break statement at the end of each case.

Program Listing 6.3 - Switch Demo

import stamp.core.*;

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 111

public class SwDemo { // class
declaration

 public static void main() { // main
declaration

 while (true){ // do while
loop forever
 System.out.print("Select 1-4: "); // Output
 switch (Terminal.getChar()) { // run code
based on getChar
 case '1': // execute if
‘1’
 System.out.println("Number one"); // Output
 break; // exit switch
 case '2': // execute if
‘2’
 case '3': // execute if
‘3’
 System.out.println("Either 2 or 3"); // Output
 case '4': // execute if
‘4’
 System.out.println("Either 2, 3, or 4"); // Output
 break; // exit switch

 default: // execute if
no match above
 System.out.println("You didn't enter 1-4!"); // Output

 } // end switch
 } // end while
 } // end main
} // end class
declaration

Classes and Objects
Up to this point, we have talked about objects and classes without saying too much about
what they are. You already know how to use data types such as int or char. Classes allow
you to define new data types, also know as a reference types. In the example below, we have
declared a class of type Thermostat. The Thermostat data type has fields, to store data and
methods, that can perform operations on that data. Now you can declare a variable that uses
this new data type:

int counter;
Thermostat myTemp;

6: Javelin Stamp Programmers Reference

Page 112 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

A class does not actually do any work. That role is reserved for objects. An object is an
instance of a class.

For example, consider a class that represents a thermostat used in a building’s air conditioning
system. The class might have fields to represent the current set point temperature and the
current actual temperature. In addition, there might be methods that request an update of the
current temperature or a manual override to turn the system on and off. You can see an
excerpt of this imaginary class in shown below.

Class Thermostat {
 private int id;
 private int setpoint=20;
 public Thermostat(int _id) { id=_id; }
 public void setTemp(int temp) {
 . . .
 }
 public int getTemp() {
 .
 .
 .
 }

All by itself, this class does nothing. If you want to represent a particular thermostat, you’ll
have to instantiate the object. First, you’ll declare a variable of the object’s type:

Thermostat t1;

This isn’t an object yet; it is simply a reference to an object. What’s the difference? The
variable t1 holds a reference (or pointer) to the Thermostat
object. We haven’t actually created the Termostat object yet,
so the value of t1 is null or undefined. To create (or instantiate) a new
Thermostat object, you would write:

t1=new Thermostat;

This line of code creates a Thermostat object and stores a reference to the new object in
t1. You might also write:

Thermostat t2=t1;

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 113

Now t2 and t1 refer to the exact same object. That means you can change the object using
either t1 or t2 and it will have the same effect.

This has an odd effect when testing for equality. If you test to see if t1 and t2 are equal
(using ==) the result will be true if an only if the two references point to the same object. For
thermostats, that is probably the right thing to do. On the other hand, consider objects like
String (the built-in object for handling text strings). You don’t care that the strings are the
same object. You are more interested to know if the strings have the same contents. Using
== tests to see if the variable refer to the exact same object, and s1 and s2 will not tell you
whether the contents of the two strings are the same. Many objects (including String)
provide an equals method that tests for logical equivalence. Then, you can use a statement
like s1.equals(s2) to test and see if the two strings have the same contents.

Methods and Parameters
The equals method is a common method that exists in every class. Of course, you can
write your own methods. Each method belongs to a class and returns a value. Methods can
also take arguments or parameters. You can have two methods in the same class that have the
same name as long as they accept different parameters. For example, you might have a
method known as print that accepts an integer argument and another one that accepts a
String. From Java’s point of view, these are two entirely different methods.

Methods return values (using the return statement). If you don’t need to return anything,
you can define the method as a void type. If you don’t specify void, then you must use a
return statement or you’ll get a compile error.

Classes can contain special methods that have the same name as the class. These special
methods are constructors and have no return type. They can, however, accept arguments.
You can have multiple constructors with different argument lists.

Consider the simple class in Program Listing 6.4. Here the construct object has three
fields. The intval field can store an integer value and the strval field stores a string.
The which field tells which of the two values were set (if any). Notice there are three
constructors. One takes no arguments (the default constructor). The other two take
arguments of the appropriate type. Each constructor sets the correct field and the which
field as appropriate.

Program Listing 6.4 - construct

6: Javelin Stamp Programmers Reference

Page 114 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

// This program is a Library Class and must be called by another
program
public class construct { // class
Declaration

 // Variable Initialization
 final int NONE=0;
 final int INTEGER=1;
 final int STRING=2;
 int intval;
 String strval;
 int which;

 public construct() { // default
construct
 which=NONE; // no value set
 } // end construct

 public construct(int value) { // int construct
 intval=value;
 which=INTEGER;
 } // end
construct(int)

 public construct(String value) { // String
construct
 strval=value;
 which=STRING;
 } // end
construct(String)
} // end class
declaration

When you use new to create a new instance of an object, you can provide arguments, as in:

c1 = new construct(10);

The Javelin Stamp does not have garbage collection. Once you allocate memory for an
object, it remains allocated until you reset the processor. That means you have to be careful
allocating objects in response to external events, or timers. A good strategy is to allocate all
the objects you will use early in your program and refrain from allocating any more from
other points in your program.

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 115

Another place to be careful is when Java automatically creates objects on your behalf. For
example, consider this:

String a = new String(“Hello ”);
String b = new String(“Parallax”);
a = a + b;

How many objects do you see? Two? The answer is four. There is the object that a refers to
(it contains “Hello Parallax”). There is also the object that b refers to (that string contains
Parallax). However, there is also the original string that contains “Hello ” – your program no
longer refers to it, but it still takes up space in the Javelin Stamp’s memory. In fact, the Java
interpreter also creates a StringBuffer object to perform the actual concatenation, so
that’s another object for a total of four.

Where are the Pointers?
If you are familiar with C++ or assembler language, you might wonder how the Javelin Stamp
handles pointers. A common misconception is that Java doesn’t have pointers. This is not
really true. In Java, every time you use an object you are using a pointer to the object. That’s
why you say an object variable is a reference, not the object itself.

For example, suppose you want to create a linked list. Each item in the list has a reference to
the next element. Program Listing 6.5 shows a simple class that implements the elements.
The test main method builds a simple list with 4 elements. Notice that the program has only
one variable that holds a reference to a list element (head).

Program Listing 6.5 - List

public class List {

 static List head=null; // pointer to
first item
 String value;
 List next;

 // create list element (not linked)
 List(String s) {
 value=s;
 next=null;
 } // end List

 // insert item in list
 void insert() {

6: Javelin Stamp Programmers Reference

Page 116 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 List ptr, last;
 if (head==null) {
 head=this;
 return;
 } // end if

 // this code finds the last item in list
 last=head;
 for (ptr=head;ptr!=null;ptr=ptr.next)
 last=ptr;
 last.next=this;
 } // end insert

 static void printList() {
 List ptr;
 for (ptr=head;ptr!=null;ptr=ptr.next)
 System.out.println(ptr.value);
 } // end printList

 static public void main() {
 new List("One").insert();
 new List("Two").insert();
 new List("Three").insert();
 new List("Four").insert();
 List.printList();
 } // end main
} // end class
declaration

Every object has a special pseudo reference known as this. You can use this to refer to the
current object. You can see this in Program Listing 6.5. Where the List object’s insert
method sets the next link.

There are a few more interesting points to Program Listing 6.5. First, notice that head is
static. There is only one head reference no matter how many list items are in use. What’s
more the printList method is also static. This is for the same reason – it applies to the list
as a whole. The for statements that scan the list are a good example of using a for loop in
a non-numeric situation. Remember, the first clause initializes the loop (ptr=head). The
second clause tests for the end condition (ptr==null) and the third clause sets up the next
iteration of the loop (ptr=ptr.next). These clauses are not the usual numeric
expressions, but they still work.

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 117

In the test main program, you’ll see four new statements that create objects. They look a bit
peculiar because the program doesn’t store the object reference anywhere. Instead, it simply
calls insert directly. Since the program no longer needs the objects, there is no need to
retain a reference to them. To print the list, the program uses the printList method.

6: Javelin Stamp Programmers Reference

Page 118 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Arrays
Java also supports array data types. You can create arrays of basic types (like int) or you
can create arrays that contain object references. All arrays in Java are objects. Create them
using syntax similar to an object:

int [] x; // reference to array
x = new int[33]; // create array with 33 elements

You can also use an alternate syntax to declare the array reference:

int x[];

Given the above declaration and new statement, you could refer to the first element of the x
array as x[0]. The last element is x[32]. You can use these just like any other variable:

x[2]=17;
system.out.println(x[2]);

Since arrays are really objects, they may have fields. The one you’ll find particularly useful is
the length field. This allows you to determine how many elements the array contains. This
is very useful when you want to loop through the entire array with a for loop (see Program
Listing 6.6).

Program Listing 6.6 - An Array

public class AnAry { // class declaration
 public static void main() { // main declaration
 String [] testary; // Create reference
to testary
 String [] testary2 = {"One","Two","Three"}; // Cerate and fill
testary2
 testary=new String[5]; // Create testary
with 5 elements
 int i; // Create variable i

 // initialize testary
 for (i=0;i<testary.length;i++)
 testary[i]=String.valueOf(i*2);

 // print both arrays
 System.out.println("testary");
 for (i=0;i<testary.length;i++)

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 119

 System.out.println(testary[i]);

 System.out.println("testary2");
 for (i=0;i<testary2.length;i++)
 System.out.println(testary2[i]);

 } // end main
} // end class
declaration

Notice in Program Listing 6.6 that testary2 uses a set of constants enclosed in brackets as
an initializer. This is known as an array constant.

Strings
You usually don’t think of strings as relating to microcontrollers, but these days many
embedded systems do manipulate strings. You might want to write to an LCD, or receive
commands from a PC or to a modem.

Strings are objects, but they are so prevalent in many programs that Java makes a special
concession to them. You can create String objects using new like any other object. You
can also assign a string literal to a String. For example:

String modemprefix = “AT”;

Like all objects, String objects have fields and methods. If you are C programmer, you
might think of String as similar to an array. However, in Java, strings have very little in
common with arrays.

One surprising feature of String is that once set, the actual String object never changes.
That’s not to say that the reference can’t change, but the actual object stays the same. This
can lead to performance problems if you are not careful. For example, suppose you have a
method named getC that retrieves a character from some source. You might write this code
to build a String object in the s variable:

String s = new String();
for (i=0;i<1000;i++) s=s+getC ();

This will work, but it is very inefficient. When you compute s+getC(), you create another
String object. Then you set the String reference s to point to that new object. That
means the original string now has no references, and will be lost to the Javelin. Throughout

sdill
Comment [21]: This might something that is
now allowed in the newest version of JAVA, if so
should we still state it
here?……………………..Yes, if you can run it here,
we should stat it here.

6: Javelin Stamp Programmers Reference

Page 120 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

this loop you’ll create and discard 1000 String objects! Remember, the Javelin Stamp
can’t reclaim this memory, so you’ll quickly run out of memory.

To prevent this problem, Java also provides a StringBuffer object. These objects are
similar to String objects, but they allow you to manipulate characters in place. Once you
are done, you can convert the StringBuffer into a proper String.

StringBuffer sb = new StringBuffer(1000);
String s;
for (i=0;i<1000;i++) sb.append(getC());
s=sb.toString();

The String object has several useful methods (see Table 6.5). Most of these are
straightforward, although many people have trouble with substring. The substring
method has two versions. One takes the starting index and returns the substring from that
index to the end of the string. The other version takes a starting index and an ending index.
This version returns the string starting at the first index, and ending at the character before the
second index. Consider a string that contains “Javelin Stamp”. The index arguments start at
0, so if you call substring with arguments of 2 and 4, the call will return “ta”, not “tam” as
you might expect. You’ll find out more details about all of the Javelin Stamp’s objects in
Chapter 7 and Chapter 8.

Table 6.5: Object Methods

Method Description
equals Test objects for equality
hashCode Returns id number (hash) for this object
toString Returns a string representation of the object
clone Duplicates object

Extending Classes
The biggest benefit to object-oriented programming is the ease with which you can reuse
code. One thing that makes this possible is inheritance. The idea behind inheritance is that
each class extends another class and inherits methods and fields from this base class. Suppose
you have a class that represents a temperature probe:

public class Probe {
 public Probe(int portnum) { . . . }
 public int getTemp() { . . . }
 public void setOptions(int a) { . . . }

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 121

}

Later, you update the sensor to include a wind speed indicator. Instead of maintaining two
copies of the temperature code, you can create a new class DeluxSensor that extends the
temperature sensor code. In this way, all the code and fields in the original code are available
in the new class. If you make changes to the original code, the new object will inherit the
same changes automatically. In this case, the original sensor object is the base class. The
new object is said to extend (or derive from) the base class.

public class DeluxSensor extends Probe {
 public DeluxSensor(int portnum) { . . . }
 public int getWindSpeed() { . . . }
 public int getWindDir() { . . . }
 // getTemp and setOptions are inherited from Probe
}

It is possible to extend this hierarchy to any number of levels. For example, you might extend
DeluxSensor into WeatherStation that integrates several instruments and an LCD
interface. However, unlike some languages, Java only allows you to derive from a single
class, it is not possible to derive directly from more than one class.

If you don’t specify a base class, your class will extend the default Object class. That
means that all objects, no matter what their type, will have the basic methods that belong to
Object (see Table 6.5). Remember, classes that extend other classes (including Object)
can (and often do) replace methods with custom versions. For example, quite a few classes
override toString to provide a more meaningful string representation of their contents (the
default toString doesn’t print any of the object’s contents). Many objects (like String)
override equals to test the object’s contents instead of the actual object.

Usually, you’ll want to allow others to extend your classes and inherit members (that is,
methods and fields). However, you can control what other classes can access. If you name
certain fields or methods private they will not be accessible by code in any other class
(including classes that extend this class). If you mark members public, any code can access
them. You can also specify members as protected. Classes that extend your class can
freely access protected members, but other classes have no access. If you don’t specify
any of these access modifiers (that is, private, public, or protected) then the
member is accessible to any code in the same package. You’ll read more about packages
shortly, but for now consider it as one subdirectory. In addition to making certain members

6: Javelin Stamp Programmers Reference

Page 122 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

private, you can also mark a class as final. This will prevent other classes from extending
your class.

Just because a base class provides members doesn’t mean the derived class has to use them.
You can override methods (or fields) when you want to provide replacements. You can still
call the base class version by using the super keyword. This can be useful if you want to
make a minor modification to an object. For example, suppose your temperature sensor class
operates using Fahrenheit temperatures. Later, you decide you want to create a version to do
Celsius temperatures. You can simply extend the original class and override the getTemp
method. Instead of rewriting it totally you can still call the original class method:

int getTemp() {
 return 5*(super.getTemp()-32)/9;
}

This is a common theme in embedded programming. For example, you might have a base
class that represents a serial port. You could extend the class to represent instruments that use
the serial port. That way all the serial port code resides in the main class and the other
derived classes can share that common code.

An important consequence of using derived classes is polymorphism. Polymorphism is a
simple concept for such a fancy word. Suppose you’ve built the serial port class and extended
three other classes from it: Temp, Wind, and Humid. These classes – of course – represent
different instruments that all use a serial port for communications. What if you want to keep a
list of these items in an array? Since they are all derived from SerialPort, you can treat
them as if they are SerialPort objects. Once you place the objects in the instruments
array, you can’t use members that belong to the derived classes. In other words, calling
instruments[0].getTemp() is not legal. However, you can access anything that
belongs to SerialPort. For instance, if SerialPort defines an init method, you
could call it using any (or all) of the elements of the array. If any of the specific objects
override the init method, Java will call the correct override.

public class Instruments {
 public SerialPort[] instruments = new SerialPort[3];
 public Instruments() {
 instruments[0]=new Temp(1); // on port 1
 instruments[1]=new Wind(2);
 instruments[2]=new Humid(3);
 }

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 123

}

This is not true, however, of fields. If the SerialPort object defines a field named port
and Humid overrides it, you’ll access different fields depending on if you are using a
SerialPort variable or a Humid variable. That’s true even if the SerialPort variable
really refers to a Humid object. Remember, variables are just references to objects and it is
legal for a base class variable to refer to a derived class object.

If you want to force an object reference into another type of object, you can use a cast, which
is simply the name of the object in parenthesis. You can only cast an object to a correctly
related class. For example, you can cast any object to Object since it is a base class of all
objects. You can also cast an object back to its original class. However, you can’t cast an
object to a class that doesn’t appear in the object’s class hierarchy.

Suppose you have class B that extends class A. You also have class C that doesn’t extend any
other class (except, of course, Object which is the default). Further suppose that you have
the following declarations:

B b = new A();
B b1;
A a;
C c = new C();

The following assignments are legal:

a=(A) b;
b1=(B)a;

However, the following is not legal:

a=(A)c;

Because class A and class C are not related. You also could not make the following
assignment:

b1=(B)new A();

Constructors present a special problem. Each class has to provide its own constructors. Then,
if you don’t do anything special, Java calls the default constructor for each base class, starting

6: Javelin Stamp Programmers Reference

Page 124 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

with Object (which is the ultimate base class of every object) and working down the class
hierarchy until, finally, the most specific constructor executes.

If you think about this, it makes sense. After all, a derived class might need to use methods in
the base class that require that the base class’ constructor has already executed. However,
there are a few cases where this chaining of constructors doesn’t work correctly. For
example, suppose the base class doesn’t have a default constructor? The same situation might
arise when the derived class needs to call a non-default constructor.

The answer is to make the first line of the derived constructor a call to super. This special
keyword calls the base class constructor explicitly.

 class BaseClass {
 private int val;
 public BaseClass(int x) { val=x; }
 public int getVal() { return val; }
 }

 class Extender extends BaseClass {
 private int val2;
 public Extender(int a, int b) {
 super(a);
 val2=b;
 }

 public int getAltVal() { return val2; }
}

Basic Type Classes
Nearly every data type you can use in Java is an object. Since all objects derive from
Object, that means you can depend on a certain number of methods being available in all
objects. For example, toString, a method in Object, returns a string representation of
any object. Many objects override toString so they can return a meaningful
representation.

What about the basic types like int? Often, it is useful to have a class that represents one of
these types. However, you don’t want the overhead of using an object just to perform simple
operations. Therefore, Java uses simple types for most purposes, but also provides
corresponding objects. For example, the Integer class wraps an int value.

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 125

This has several benefits. First, you might want to treat a basic type as an object so you can
put it in an object array with other objects. Also, these objects act as a central clearinghouse
for methods related to the type. Remember, Java has no real global variables or methods –
everything has to belong to a class.

Numeric Conversions
You’ll often use the wrapper classes to convert strings to the appropriate type. For example,
Integer has two methods (parseInt and valueOf) that convert strings to integers. The
parseInt method returns an int whereas the valueOf method returns an Integer
object. You can also specify an optional radix if you want, for example, hex or octal
interpretations.

In the opposite direction, you can use toString to convert an integer to a string. To
convert the basic types, you can use a cast:

int n=100;
byte fn = (byte) n;

Statics
Numeric conversions are one of the uses of the wrapper classes – Java uses them as containers
for what might otherwise be global methods. It does this using static methods. This allows
you to refer to a method without having to actually create an instance of an object. Suppose
you have an integer variable x. You can’t call toString on an int because it isn’t an
object. You could construct an Integer object to contain the int, but that’s a lot of work
just to do a string conversion.

Luckily, Integer provides toString as a static member, so you can call it like this:

String s = Integer.toString(x);

You can make methods or fields static. Be aware that a static method can’t access any normal
fields or methods directly, because there is no object instance associated with the static
method. Therefore, there is no this reference. That also means, in the case of fields, that
there is only one copy of the variable no matter how many object instances exists. That
makes static fields useful for creating a kind of global variable. If you make the field
public, any other part of your program can access the variable (using the class name as a
prefix). If you make the field private or protected, the variable will still be like a
global variable, but it won’t be accessible from other objects (or unrelated objects in the case
of protected).

6: Javelin Stamp Programmers Reference

Page 126 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Abstraction
Sometimes, it is useful to write a class that represents an imaginary object that will never
exist. For example, suppose you had classes that represented a serial port, a printer port, and
an USB port. You’d like to share code between them, but what’s the common base class?
Printer ports are not serial, nor are they a kind of USB port.

The answer is to make an abstract class that represents ports in general. It doesn’t make sense
to instantiate this class because there is no such thing as a generic port. Abstract classes can
contain reusable code that subclasses can inherit, but they can’t be instantiated directly. You
must use a derived class.

Program Listing 6.7 - Library Class Example

//This program is a Library Class and must be called by another
program

abstract class GenericPort {
 protected byte [] buffer;
 protected int buffp;
 protected int bufflen;
 protected int portnum;
 protected int irq;
 public void init();
 public int getData(byte [] data); // returns bytes read
 public void sendData(byte [] data, int len);
 public GenericPort() { buffer=new byte[256]; buffp=0; bufflen=0;}
 public byte getByte() {
 if (bufflen==0) {
 bufflen=getData(buffer); // read chunk (assume
this never fails)
 buffp=0;
 } // end if
 return buffer[buffp++];
 } // end getByte
} // end class declaration

Exceptions
Java supports a modern idea known as exception handling. Simply put, an exception is a way
for your code to signal some event to other parts of your programs. Java uses exceptions
frequently in its own library and you may also use them as part of your own programs.

Often, but not always, an exception indicates an error has occurred. Suppose you are writing
a general purpose routine that performs a simple calculation based on input parameters. The

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 127

computation might divide by zero, depending on the input parameters. Of course, you could
test for a zero denominator before dividing, but what do you do if you detect this condition?
You could print an error message, but that presupposes your program can display a message
(remember, I said this routine was general-purpose).

A common solution is to return an error code to the calling method. This is not always good,
though. What if the calling program is another general routine? It will have to propagate the
error condition somehow. What if the calling program doesn’t check for an error condition?
You can solve these problems with exceptions.

When an event occurs, like a division by zero, Java throws an exception. Your code can
handle the exception by wrapping the code in a try block see Program Listing 6.8. In this
case there isn’t much advantage to using exceptions. However, suppose the equation inside
the try block called other methods to do its work.

Program Listing 6.8 - Exceptions Ex1

public class Ex1 {
 public static void main() {
 int x=0;
 int y=20;
 int z;
 try {
 z=y/x;
 } // end try
 catch (Exception e) {
 System.out.println("Divide by zero");
 } // end catch
 } // end main
} // end class
declaration

Even if code in these other methods divided by zero, the catch block beneath the try
would be activated (unless, of course, the called methods provided their own try block.
Consider this example.

Program Listing 6.9 - Exceptions Ex2

public class Ex2 {
 static int docomp(int a, int b) {
 return a/b;
 } // end docomp
 public static void main() {

sdill
Comment [22]: This code might have some
issues, I tried adding println’s in the try and in the
catch and got some errors from it. See Twiki

sdill
Comment [23]: This may need re-work as well

6: Javelin Stamp Programmers Reference

Page 128 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 int x=0;
 int y=20;
 int z;
 try {
 z=docomp(y,x);
 } // end try
 catch (Exception e) {
 System.out.println("Divide by zero");
 } // end catch
 } // end main
} // end class
declaration

This is the real value to exceptions. It allows code that is interested in some event to handle
that event, no matter what caused it. Code that doesn’t care about an event can simply ignore
the event.

Dividing by zero is an example of an unchecked exception. Since it could happen at almost
any time, Java does not force you to handle the exception. If you remove the try and
catch blocks, the code will still compile, but it will cause an abnormal termination of the
program.

Many exceptions, however, are checked exceptions. That means that the Java compiler
ensures that you handle the exception wherever it may occur. If your code calls a method that
may throw an exception, you have to either mark your method as throwing the same
exception, or you must handle it yourself. You indicate which checked exceptions your
method may throw by using a throws clause.

You can find an example in Program Listing 6.10. Here, there is a custom exception
(ScaleError) that extends Exception. When the calculation detects a zero divisor, it
throws the custom exception, which can be caught by any of the interested caller. Of course,
the docalc method could catch the divide by zero exception and simply convert it to the
special exception by throwing it in the catch clause.

Program Listing 6.10 - Scale Error (Extends Exception)

class ScaleError extends Exception {
 // no methods or fields required
}

public class Ex {
 static int docalc(int a, int b) throws ScaleError {

sdill
Comment [24]: Verify code

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 129

 if (b==0) throw new ScaleError();
 return a/b;
 }

 public static void main() {
 int x=0;
 int y=20;
 int z;
 try {
 z=docalc(y,x);
 }
 catch (ScaleError e) {
 System.out.println("Scale Error");
 }
 catch (Exception e) {
 System.out.println("Unknown exception");
 }
 }
}

Notice that there are multiple catch clauses. The first one is the most specific type of
exception. The last one catches any Exception object including objects that derive from
Exception. That’s why that clause must come last. If it were first, it would match the
ScaleError exception and the second catch clause would never execute. Try removing
the try and catch block and rebuilding the program. You’ll find that the compiler rejects
the program because it sees that there is an unchecked exception. Of course, you could mark
main so that it throws a ScaleError exception. Then the exception would terminate the
program like an unchecked exception.

Packages and CLASSPATH
When Java must locate a class file, it searches the directories listed in the CLASSPATH
environment variable. This is a list of directories separated by semicolons.

Even with multiple directories, you’d quickly clutter each directory with class files. For that
reason, Java supports packages. Packages are somewhat like subdirectories that contain class
files. For example, suppose your CLASSPATH variable contains a single directory named
C:\Classes. When you attempt to load an ordinary class, the IDE will search in the
C:\Classes directory.

However, some classes belong to a package, a group of related classes. For example, you
might want to refer to a Cache object. That object is in the stamp.util package, so to
declare it, you could write:

sdill
Comment [25]: ANDY: Should the title
Classpath be CLASSPATH instead?

6: Javelin Stamp Programmers Reference

Page 130 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

stamp.util.Cache = new stamp.util.Cache();

The JVM would look for the Cache.class file in a subdirectory of one of the
CLASSPATH directories. In this case, there is only one directory (C:\Classes) so the
class file should be in C:\Classes\javelin stamp\util\Cache.class. Of
course, if there were more directories listed in the CLASSPATH variable, the IDE would also
search those directories, always looking in the javelin stamp\util subdirectory.

It wouldn’t be very convenient to have to write stamp.util.Cache every time you
wanted to use it. By default, if you use a class name, it can only reside in one of the top-level
CLASSPATH directories or in the special package java.lang. However, you can use the
import statement to mark certain packages that you want to behave as though they were
local.

If you wanted to use the name Cache instead of stamp.util.Cache, you can add the
following line at the start of your java source file:

import stamp.util.Cache;

You can also get all the classes in stamp.util by writing:

import stamp.util.*;

Keep in mind that you never have to use import. If you prefer, you can simply use fully
qualified class names everywhere. Still, using import makes your programs much more
readable so you’ll want to use it where appropriate. A common mistake beginning Java
programmers make is to try something like this:

import System.out.println;
println(“Hello World”);

This won’t work! That’s because System is an object (part of the java.lang package),
but out is a static field of this object. This field is an object reference that has a method
called println. The import statement only works with classes. You can’t import a field
or method.

Summary

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 131

You could read an entire book on Java – there are plenty around. However, this chapter,
along with the examples in the next few chapters, will give you a lot of practice with Java.
You can also find many online tutorials, books, and documentation on Java. Be sure to check
out the online resources section for more information. Be aware, though, that many books
and other materials will focus on writing graphical programs, not embedded systems.

This chapter may leave you wondering why use Java. In the next chapter, however, you’ll see
that Java’s networking capability is a real winner. And Java’s cross platform ability will
serve you well in a networked environment.

Online Resources
http://java.sun.com

 Java’s home on the Web. Free downloads of the JDK, tutorials, news, and
more.

http://www.norvig.com/java-iaq.html
Java Infrequently Asked Question (IAQ) list.

http://mindprod.com/gotchas.html
Java gotchas

http://www.afu.com/javafaq.htm
Java programmer’s FAQ

http://www.mindspring.com/~chroma/docwiz/
Adds java doc comments to your code

http://uranus.it.swin.edu.au/~jn/java/style.htm
Automatically format your Java code

Javelin Stamp Keyword Reference

abstract
The abstract keyword has two possible methods. You can mark a method as abstract
to indicate that the class contains no code for the method. That implies that you can’t
instantiate the class, only extend it. Classes that extend the class must either implement the
abstract method, or also be an abstract class.

You can also mark an entire class as abstract – any class that contains at least one abstract
method is an abstract class.

Examples:

abstract class AbaseClass {
 abstract void someMethod();
}

6: Javelin Stamp Programmers Reference

Page 132 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

boolean
The boolean data type can contain the values true or false.

Example:

boolean limit = false;

break
When you are executing a loop (that is, a for, a do, or a while loop), you may find it
useful to exit the loop prematurely. That’s the purpose of the break statement. You can
optionally provide a label that will cause the break statement to exit to an outer level of
nested loops.

You can also use a break statement to stop execution inside a switch statement. This is
useful to end a block of code that handles one condition (see switch for more details).

Example:

outside: // label
for (x=0;x<10;x++) {
 for (y=0;y<10;y++) {
 f(x,y); // do something with x and y
 if (CPU.readPin(CPU.pin2)) break; // skip to
next X early
 if (CPU.readPin(CPU.pin3)) break outside; // stop both
loops
 }
 }
See Also: continue, do, for, switch, while

byte
You can use the byte type to store any 8-bit quantity. The byte type is signed, so it can
store values from –128 to 127. The signed nature of bytes can lead to common compile
errors. For example, you can’t assign 0xFF (255) into a byte, because it is out of range and
the compiler won’t allow it. You can cast the value, however (see the examples below). If
you really want an unsigned byte, consider using a char.

Examples:

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 133

byte x = 10;
byte y = 0x55;
byte z = (byte)0xFF;

You can’t directly assign 0xFF (255) into a byte, because it is out of range and the compiler
won’t allow it. However, you can assign numbers greater than 127 into a byte with a cast:

byte fullvalue = (byte) 0xFF;

See Also: char

case
See switch

catch
See try

char
The char data type stores a single byte character. This type can hold a single ASCII
character, or you can use it as an unsigned alternative to byte.

Example:

char c = '@';

See Also: byte

class
Classes are templates that create objects. You’ll introduce each class definition with the
class keyword.

See Also: extends, private, protected, throws

continue
When you are executing a loop (that is, a for, a do, or a while loop), you may find it
useful to jump directly to the next iteration of the loop prematurely. That’s the purpose of the
continue statement. You can optionally provide a label that will cause the continue
statement to exit to an outer level of nested loops.

Example:

6: Javelin Stamp Programmers Reference

Page 134 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

outside: // label
for (x=0;x<10;x++) {
 for (y=0;y<10;y++) {
 if (CPU.readPin(CPU.pin2)) continue; // skip
this value of Y
 if (CPU.readPin(CPU.pin3)) continue outside; // skip to
next X
 f(x,y); // do something with x and
y
 }//end if
 }//end for y
}//end for x

See Also: break, do, for, switch, while

default
See switch

do
Use the do loop construct to perform a statement (or statements) a repeated number of times.
The do construct always executes the loop once before performing the end of loop test.

Example:

do {
 CPU.writePin(CPU.pin8,getNext());
} while (CPU.readPin(CPU.pin5)); // continue until pin5 goes
low

See Also: break, continue, for, switch, while

else
See if

extends
When you define a class, by default, it extends the Object class. However, you can make it
extend any class you like by specifying extends. When an object extends a base class, it
can override the base class methods and fields. It can also access the base class protected
members.

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 135

Example:

class ParallaxDemo extends GenericDemo {
 . . .
}

See Also: class, throws

final
When you declare something final you indicate that it can’t be changed. For example,
declaring a variable final makes it a constant. You can also declare a class as final to
prevent others from extending it.

Example:

final int x = 33;

final class TheEnd {
 . . .
}

finally
See try

for
The for statement allows you to execute a group of statements multiple times. Each for
statement has three parts separated by semicolons. The first part initializes the loop, the
second part tests for the end of the loop, and the third portion specifies code to execute after
each loop completes.

There are many variations on the for loop. Consider this example:

int i;
for (i=0;i<10;i++) System.out.println(i);

This initializes the i variable to 0 and then executes the loop until i is less than 10. At the
end of each loop, the for statement adds one to i (i++). In this case, only one statement is
part of the loop (System.out.println(i)), but often you’ll see multiple statements
enclosed in braces.

6: Javelin Stamp Programmers Reference

Page 136 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Notice that if the test (the second part of the loop) fails right away, the code never executes.
For example:

int k;
for (k=0;k>0;k++) System.out.println(k);

This loop never executes because k is not greater than 0.

As a special case, the for statement allows you to declare the loop variable right in the
statement:

for (int j=0;j<100;j+=2)

In this example, the loop variable (j) increases by two on each pass through the loop.

You can omit any (or all) of the portions of the for loop:

for (;;j++) { . . . }
for (j=0;j<10;) { . . . }
for (;;;) { . . . }

The first example assumes j is already set, and will continue forever
(presumably the loop will contain a break statement). However, at the end of
each loop, j’s value increases by one. The second example doesn’t change
the value of j at all. In this case, some code within the loop would probably
assign a value to j. The final example loops forever (unless something inside
the loop uses the break statement). This is useful when you want a loop to
run without stopping (although you could also use while(true) to get this
same effect.

The for statement is very versatile. You don’t have to directly refer to the
loop variable in any of the clauses. For example, suppose you want to call a
method f on each element of an array until you find an array element that
contains a –1. You could write:

for (j=0;ary[j]!=-1;j++) f(ary[j]);

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 137

Here’s another example that loops until the input on pin 0 is high (and counts
the number of seconds it is low):

for (ct=0;CPU.readPin(CPU.pin0);ct++) CPU.delay(10000);

Notice that the test does not involve the loop variable at all.

Sometimes it is useful to use more than one loop variable. Here is an example
that declares two variables (x and y), initializes them, and changes them on
each loop:

for (int x=0,y=0;x<10;x++,y+=2) System.out.println(x+y);

Notice the commas separate the different portions of the for loop. In C this is
known as a comma operator and you can use it anywhere. However, in Java
there is no general-purpose comma operator – you can only use this syntax in
a for loop.

Examples:

for (n=0;n<ary.length;n++) f(ary[n]);
for (x=0;x<10;x++) f(x);

See Also: break, continue, do, while

if
The if statement allows you to conditionally execute a statement (or a group of statements
surrounded by braces). The if statement requires an expression that returns a boolean in
parenthesis. If this expression evaluates to true, the following statement executes. If it is
false, execution continues with the next statement.

In addition, you can specify an optional else clause. The statement (or statements)
following the else will only execute if the if condition is false. Often it is useful to use
multiple if/else statements. For example, consider this code:

if (x==10) System.out.println("Condition A");

6: Javelin Stamp Programmers Reference

Page 138 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

if (x<20)
 System.out.println("Condition B");
else
 System.out.println("Condition C");

This code will output both “Condition A” and “Condition B” if x is 10. You probably meant
to write:

if (x==10) System.out.println("Condition A");
else if (x<20) System.out.println("Condition B");
else System.out.println("Condition C");

This prints one line, depending on the value of x.

Examples:

if (x==10 && y<0) break;

if (CPU.readPin(CPU.pin1)) func(100);

See Also: switch

import
The import statement is a directive to the compiler that tells it to search for class names in
different packages. When you name a class, by default the compiler looks in your current
package (essentially, the current directory) and in the default java.lang package. If you
want something from another package, you must fully qualify the name. For example, you
might write java.util.Random to access random numbers.

This is cumbersome if you need to access the object frequently. You can place any number of
import statements at the beginning of your file. Each import names a class you plan to use
in your code. Then you can refer to the class using an ordinary name. In addition to naming
specific classes, you can also use an asterisk to refer to the entire package. So importing
java.util.Random allows you to use the Random class, but importing java.util.*
imports all classes in the java.util package.

Examples:

import java.util.Random;
import java.util.*;

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 139

See Also: package

int
The int data type defines 16-bit signed integers. Integers can hold between –32768 and
32767. Notice that the limit of 32767 precludes directly writing hex constants greater than
0x7FFF. If you need a number greater than 0x7FFF you’ll either need to compute the
equivalent negative (two’s compliment) number or break the number into parts. Moreover, if
you break the number into parts, you’ll have to keep the compiler from realizing the
expression is constant or else it will resolve it at compile time.

As an example of this, suppose you want to pass 0x80A0 to a method named f. You might
try this:

f(0x80A0);

However, this won’t work because the compiler decides it is too large to be an integer
constant. Next, you might try:

f(0x80<<8+0xA0);

That’s the right idea, but the compiler realizes it can calculate 0x80A0 at compile time and
you wind up with the same problem. One possible way around this is to define a method to
prevent the compiler from resolving the expression. So you might write this method:

int bytes2hex(int hi, int lo) {
 return hi<<8+lo;
}

Now the call to method f is simply:

f(bytes2hex(0x80,0xA0));

Another solution is to subtract one from the number and invert it. This will give you the
magnitude of the equivalent negative number. So 0x80A0 minus 1 is 0x809F. Inverting this
results in 0x7F60 (32608 decimal) so -32608 is the same as 0x80A0 and this code will
correctly compile:

f(-32608); // 0x80A0

6: Javelin Stamp Programmers Reference

Page 140 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Examples:

int x;
int num = 100;

new
When you declare an object variable, it is simply a reference to an object. Using new creates
an object that you can assign to an object reference. Following new, you’ll specify the class
name followed by any constructor arguments required (in parenthesis). Of course, the class in
question must have a visible constructor that matches the arguments. Even if you don’t want
to supply any arguments (that is, you want to use the default constructor) you’ll still need to
provide an empty set of parenthesis.

Usually, the variable on the left side will have the same type as the argument to new as in:

SomeObj anObj = new SomeObj();

However, it is possible to assign the object to a variable of a base class of the object. Since
Object is a base class of all objects, for example, you might write:

Object anObj = new SomeObj();

The object is still a SomeObj, but your program will treat it as an Object until you cast it to
the more specific type.

Examples:

pid = new PIDController(10,1,"Unit 1");

LED led = new LED(CPU.pin3);

null
Uninitialized object references have the null value. You can also assign null to an object
reference to mark the value as empty once you are done with the object the variable refers to.

Example:

if (anObj != null) anObj.doSomething();

package

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 141

You can organize your classes into packages. By placing code in a package, you not only
group similar classes together, but you also avoid the risk of naming a class something that is
already in use by other code (that is presumably in another package). In addition, you can
specify fields and methods that are only accessible by other code in the package. This is
similar to having private data or methods, but any class in your package can access the
members.

Each class that belongs to a package must include a package statement. This tells the
compiler that the class is a member of the package and makes it implicitly search the package
for any unresolved class names. The package statement must appear before any class
declarations in the file (it is usually the first non-comment line in the file). You may only use
one package statement per file.

Package names may be hierarchical. For example, you might make a package named
robot.wheels and another named robot.sensors. If you expect to widely distribute
your packages to the public, you should consider following a widely-used convention to avoid
conflict. The idea is to use your Internet domain name (assuming you have one, of course)
but with the top-level domain name first (and in upper case). So, a fictitious package from
Parallax, might be: COM.parallax.fictitious.

Class files that belong to the package must reside in a subdirectory that matches the
package name (replacing dots with slashes). So the above example would be the
fictitious subdirectory of the parallax directory, which would be in the COM directory.
The COM directory would be a subdirectory of one of the directories in the CLASSPATH
environment variable.

You should note that if you are simply writing programs, you don’t need to use package at
all. This statement is for either organizing very large programs or distributing code for others
to use. Small programs that only you will use do not really need package although you can
use it if you like.

Example:

package COM.parallax.fictitious;

See Also: import

private, protected, public
You can use the private keyword to mark fields and methods. A member that is private
can’t be used except in the class that defines it. Marking a member public has the opposite

sdill
Comment [26]: This relates to the above

sdill
Comment [27]: format

6: Javelin Stamp Programmers Reference

Page 142 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

effect. A public member is accessible by all code. A member that uses protected is
visible only to code in the class that defines the member and any classes that extend that class.

If you don’t use any of the three keywords (private, protected, or public) the
member has package visibility. That means that the member is public to any class in the same
package, but private to all other code.

You can also mark classes as public. Any class that is not public will have package access.

Example:

public class A {
 int pack_var; // package visible
 public int pub_var; // public variable
 protected int prot_var; // protected variable
 private int keep_out; // private variable

 // all of the following is OK
 void test() {
 pack_var=0;
 pub_var=0;
 prot_var=0;
 keep_out=0;
 }

 private class B {
 void testB() {
 A aobj = new A();
 aobj.pub_var=10; // Ok
 aobj.keep_out=3; // error
 aobj.prot_var=9; // error
 aobj.pack_var=5; // OK (same package);
 }
 }

 private class C extends A {
 void testC() {
 prot_var=77; // ok – C can access A variables
directly
 keep_out=33; // error!
 }

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 143

 }

return
When you call a method that returns a value (that is, it is not a void method) you’ll need to
return a value. This is the purpose of the return statement. It returns control to the calling
part of your program and specifies the return value of the method (which the calling program
may discard, of course). The expression you use with return must match the method’s
return type. If the method returns void, you may use the return statement alone to end the
method early. Otherwise, a void method will return automatically when it encounters the
final closing brace.

Examples:

void a(int n) {
 if (n==0) return;
 f(n);
} // automatic return

int b() {
 System.out.println("Processing B");
 return 0;
}

See Also: void

short
The short data type is the same as an int.

Example:

short value=33;

See Also: int

static
You may declare fields and methods static. This means that, unlike other members, they
apply to the class as a whole. You don’t need to instantiate the object to use a static
member. Also, a static method can’t access non-static members of the class directly.

6: Javelin Stamp Programmers Reference

Page 144 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

A static member is useful for cases where you would normally use a global variable or
method. For example, suppose you have a CommLink class that handles communications
with the outside world. You might have several CommLink objects, each representing a
different port. However, you want to track the total number of errors for all ports.

You might write:

class CommLink {
 private static int errct = 0;
 public static void reportError() { errct++; }
 public static int errorCount() { return errct; }
 private int portNumber;
 .
 .
 .
}

Notice that the two static methods can access errct only because it too is static.
Any attempt by these two methods to access, for example, the portNumber field would
cause a compile-time error.

From outside the object, your code could call CommLink.errorCount to fetch the error
value. There is no need for the program to actually create an instance of CommLink using
new first. One common case where this is useful is in the class’ main method. It is static
because when the program starts, there is no instance of the class. Since main is static,
that doesn’t present a problem.

Another common use for static fields is to provide named constants for use elsewhere in
your program. For example, you might have an entire class consisting of static constants:

public class Bitmasks {
 final public static int bit0=1;
 final public static int bit1=2;
 final public static int bit2=4;
 .
 .
 .
 final public static int bit7=128;
}

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 145

Then your program could refer to Bitmasks.bit7 to retrieve the value 128.

Examples:
public static void main(String args[]) {
 . . .
}

static int errct;

super
You can use the super keyword to call the base class constructor of a class from within a
class constructor. If you don’t supply the super keyword as the first statement of the
constructor, Java will call the base class default constructor. This could be a problem if the
base class does not have a default constructor, or if you need to pass the base class constructor
arguments.

You can also use super in any non-static method. In this case, super acts like the this
reference, except that it acts as a reference to the base class. This is useful if you want to call
a base class method or access a base class field that you have hidden in the derived class.

Example:

class Base {
 int z=10;
}

class Other extends Base {
 int z=100;
 void test() {
 System.out.println(z); // prints 100
 System.out.println(super.z); // prints 10

 // another way to do this
 Base otherBase = (Base)this;
 System.out.println(otherBase.z); // prints 10
 }
}

See Also: this

switch

6: Javelin Stamp Programmers Reference

Page 146 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

You’ll use the switch statement to compare a value to a group of constants and execute
code based on the value. Within the switch statement you can place any number of case
statements. When the case statement matches the test value, execution begins at that point.
It continues until the code reaches a break, return, or throw. Notice that execution does
not stop when reaching another case statement. You may also specify a default clause
that will match any value.

Example:

switch (n) {
 case 1:
 System.out.println("One");
 break;
 case 2:
 case 3:
 System.out.println("Two or Three");
 case 4:
 System.out.println("Two, Three, or Four");
 break;
 default:
 System.out.println("Huh?");
 break;
}

See Also: break, case, default, if

this
Every non-static member method has access to a pseudo-variable named this. The this
variable is simply a reference to the current object. This can be useful if you want to pass a
reference to another method, for example. You can also use it to access an object field if it is
hidden by a local variable or formal parameter. For example, it is not uncommon to see an
object with the following constructor code:

class ConstDemo {
 int x;
 ConstDemo(int x) { this.x = x; }
}

Example:

Object [] objs = new Object[10];

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 147

objs[0]=this;

See Also: super

throw, throws
The throw statement allows you to create an exception. An exception consists of an object
that extends Throwable. In general, nearly all exceptions extend subclasses of
Throwable. In particular, exceptions derive from RuntimeException or Error (for
an unchecked exception) or Exception (for a checked exception). A method that may
throw a checked exception must use the throws keyword in the method declaration.

When you call a method that may throw a checked exception, your code must either catch the
exception (using try) or use the throws statement to indicate that your code may also
throw the same exception. Unchecked exceptions do not have to be caught, but if one occurs,
your program’s execution will terminate.

Example:

class EmptyArgumentException extends Exception {
 EmptyArgumentException() {
 super("Argument must not be empty");
 }
}

public class SomeClass {
 public void aMethod(String s) throws EmptyArgumentException
{
 if (s==null || s.equals("")) throw new
EmptyArgumentException();
 .
 .
 .
 }
}

See Also: try

try
When you perform an operation, there is always a chance it might throw an exception.
Unchecked exceptions (like dividing by zero, for example) can happen at any time, and the

6: Javelin Stamp Programmers Reference

Page 148 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Java compiler does not require you to catch them. However, many exceptions are checked –
the compiler requires you to either catch the exception, or mark that you may throw the same
exception (using the throws keyword).

To catch an exception, enclose the code that might cause the exception in a try block. If the
code executes without any exceptions, nothing special happens. However, if an exception
occurs, the compiler scans the adjoining catch statements, looking for a matching type.
You can catch broad categories of exceptions by writing catch statements for a base class
(like Exception, which will catch all checked exceptions). You can have any number of
catch statements as long as each catch handles a different type. You should place specific
catch statements before more generic ones.

If there is no appropriate catch statement, the exception propagates to the calling method. If
it is executing within a try block, the search continues. If there is no match, or no try
block, the exception propagates to the next caller, continuing until a catch is found, or there
is nowhere else to search (at which point, the program terminates).

You can also place a finally block after the catch statements. The code in the
finally block will execute whenever execution leaves the try block. That means the
finally code will execute if no exceptions occur, or if an exception occurs (even if it is not
caught), or even if the code within the try block executes a return.

Example:

class BadArgumentException extends Exception {
 BadArgumentException() { super("Bad Argument"); }
}

public class TryTest {
 void test() {
 try {
 test1();
 }
 catch (BadArgumentException e) {
 System.out.println(e);
 }
 finally {
 System.out.println("Done!");
 }
 }

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 149

 void test1() throws BadArgumentException {
 test2(-1); // try changing this value
 }

 void test2(int n) throws BadArgumentException {
 if (n==-1) throw new BadArgumentException();
 System.out.println(n);
 }

 public static void main(String[] args) {
 TryTest t=new TryTest();
 t.test();
 }
}

See Also: throw, throws

void
The void type is used for methods that return no value.

Example:

void f(int n) {
 .
 .
 .
}

See Also: return

while
Use the while loop construct to perform a statement (or statements) a repeated number of
times. The while construct always tests for the end of the loop before it executes the loop.
Therefore, it is possible that the loop will never execute.

Frequently, you’ll write a while loop with no statements simply to wait for some condition.
For example: while (CPU.readPin(CPU.pin5); will wait for pin 5 to go high.

Example:

6: Javelin Stamp Programmers Reference

Page 150 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

while (CPU.readPin(CPU.pin5)) { // continue until
pin5 goes low
 CPU.writePin(CPU.pin8,getNext());
}

See Also: break, continue, do, for, switch

Javelin Stamp Operator Reference

[]
The bracket operators define or use an array. Javelin Stamp arrays can only be one-
dimensional and always start at index 0.

Examples:

// The next two lines are the same; you can use either syntax
int [] x = new int[10];
int y[] = new int[10];
x[2]=0;
y[1]=x[2];

++, --
The ++ and – operators perform slightly different methods depending on their position.
Consider ++ first. It always adds 1 to the variable it is next to (known as an increment
operation). However, it also returns a value used in the expression. If the ++ precedes the
variable, the increment occurs before the value is taken. If the ++ is after the variable, the
increment occurs after taking the value. The -- operator works the same way but it
decrements (subtracts 1) instead of incrementing.

Examples:

int x=5, y;
y = ++x; // y=6, x=6
y = x++/3; // y=2 (6/3), x=7
y = --x*2; // y=12 (6*2), x=6

(type)
You can force a value of one type into another type using the cast syntax (type). Some casts
don’t make sense, and the compiler won’t allow them. For example, you can’t convert an

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 151

object type (including String) into, say, an integer. You also can’t cast a type to another
unrelated type.

Often, the compiler will automatically cast values where it can be sure it is safe. For example,
while you can cast a short to an integer, you don’t have to, because the compiler knows
it can always fit a short into an integer. On the other hand, you do have to explicitly
cast an integer into a short because it is possible that the integer will be too big, and
your program will use the wrong value after the cast. The cast is the compiler’s way of
making sure you really want to do the conversion. The same holds true for objects. You
don’t need to make an explicit cast to convert an object to one of its base classes. However,
you do need a cast to convert an object to a more specific type. Consider this example:

Object o = new SomeObject(); // no cast required, because
Object must
 // be a base class
SomeObject so = (SomeObject)o; // cast required here

Examples:

short s=20;
int n;
n=(int)s; // cast not required here
n=n*3+7;
s=(short)n; // cast required

+, -, *, /, %, ()
These operators represent the usual math operators: addition (+), subtraction (-),
multiplication (*), division (/), and remainder from integer division (%). Parenthesis can
override precedence.

Java evaluates these operators using the normal order of operation (multiplication and
division first, followed by addition and subtraction). So 4+3*2 is equal to 10, not 14. You
can override the order using parenthesis, so (4+3)*2 is 14.

Don’t forget that division is integer-only on the Javelin Stamp. So 10/3 is 3 (and 10%3 is 1,
the remainder). You may want to rearrange your computations to make sure division occurs
in such a way that it doesn’t affect your results. For example, suppose you read a value from
an A/D converter. To get the correct answer in volts, you need to multiply by 5/256. You
don’t want to write this so that 5/256 is computed first since that result will always be zero.
So don’t write:

6: Javelin Stamp Programmers Reference

Page 152 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

y = 5/256*x;

Instead, you want to write:

y = (5*x)/256; // parenthesis not necessary, but added for
clarity

Even writing it this way, any value below 52 will result in a 0 result. You might prefer to
compute decivolts (1/10 of a volt units) instead by scaling everything up by 10. For example:

y = (50*x)/256;

If you need to find the volts, you can use the / operator. The % operator could determine the
fractional (1/10) volt units. For example:

System.out.println("Volts = " + y/10 + "." + y%10);

Examples:

y = 10 + 33 / 17 % 3 * 100; // answer is 110

<<, >>, >>>
These operators all shift their left argument to the left (<<) or right (>> and >>>) the number
of times specified by their right argument. Shifting to the left is equivalent to multiplying by
powers of two, and shifting right is the same as dividing by a power of 2. So writing 100>>4
is the same as writing 100/16 (because 2 to the 4th power is 16). In addition, shifting is
typically faster than multiplication and division.

It is possible to rewrite certain common multiplication statements as sums of shifts to realize
faster execution. For example, when working with decimal numbers, you’ll often need to
multiply by 10. Observing that 10 is actually 8+2, you can rewrite 10*x as
(x<<3)+(x<<1).

The << operator always sets the least-significant bit of the result to zero. The >> operator
preserves the most significant bit (which represents the sign). This makes positive numbers
stay positive and negative numbers stay negative. If you really want to zero fill the most
significant bit, use >>> which is a true unsigned shift.

Examples:

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 153

x = 10<<3; // x = 80

<, >, <=, >=, ==, !=

The relational operators allow you to test two values and get a boolean value (true or
false). Each operator makes a particular test:

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to

You have to be careful when using == and != with objects. For objects, these operators only
test that the object references are the same. In many cases, you may want to treat objects that
are not the same as though they are equal. For example, suppose you have a String object
that contains the word "END" and another String object that you read from an RS-232
device. Suppose the RS-232 string also contains "END" and you compare them. Since the
objects are not the same identical object, they are not equal (as far as == is concerned).
Instead, use the equals method (part of Object) to make the test. The default version of
equals is no different than ==, but many classes (including String provide different
versions of equals that behave the way you would expect).

Examples:

if (x==10) done();
while (y!=33) {
 perform(y);
}

&, |, ^
These operators perform logical operations on binary numbers stored in int, short, or
other integral types.

To understand how these operators work, consider their arguments as binary numbers. For
example, 100 decimal is 01100100 binary and 7 decimal is 00000111 binary (assuming byte

6: Javelin Stamp Programmers Reference

Page 154 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

data types). If you and these numbers together, the result will only have a 1 where both
arguments have a 1. So the result would be 00000100 (or 4 decimal). An OR operation will
have a 1 where either or both arguments have a 1. So using or on these two numbers will
result in 01100111 (or 103 decimal). Exclusive or results in a 1 where there is a one in either
argument, but not both. So the result for exclusive or would be 01100011 (or 99 decimal).

Examples:

int x=100, y=7, z;
z = x & y;

&&, ||
These operators are superficially similar to the & and | operators. However, while & and |
operate on integers, && and || operate on boolean values. This is especially useful in if,
do, and while statements.

Examples:

if (x==3 && y!=5) doit();

boolean b = x==100;
boolean c = y!=55;

while (b && c) go();

~, !
These operators perform the invert method. The ~ operator inverts integers bit by bit. So a
byte with a value of 100 decimal (which is 01100100 binary) will invert to 10011011
binary. The ! operator is strictly for boolean data. So it turns true into false and vice
versa.

Example:

if (!CPU.readPin(CPU.pin3)) break;

?:
The conditional operator, unlike other operators, requires 3 arguments. The first evaluates to
a boolean. If this value is true, the operator evaluates its second argument. Otherwise, it
evaluates the third argument. In other words q = x==10?-1:2*x; will set q to –1 if x is
10. Otherwise, q will be set to 2*x.

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 155

It is important to realize that only one of the last two arguments will execute. That means that
any side effects (like ++ or --) will not occur in the unused argument. For example:

int x=10, z=5, q;
q = x == 10?-1:++z;

This code will set q to –1 and not change z at all. On the other hand, this code would change
z:

int x=10, z=5, q;
q = x == 10? ++z: -1;

Or:

int x=10,z=5,q;
q = x!=10?-1:++z;

Examples:

x = y!=3?5:10;
=, +=, -=, *=, /=, %=, >>=, <<=, >>>=, &=, ^=, |=
The = operator, of course, assigns a value into a variable (as in x=10;). It is not the equality
operator (which is ==). The other related operators all perform the indicated operation on
their left-hand argument and their right-hand argument while storing the result back in the left
hand argument. That is to say, x+=5; is the same as x=x+5; for practical purposes.

Examples:

x *=10;

instanceof
The instanceof operator returns true if its first argument is an instance of the class
named in the second argument. An object is considered an instance of a class even if the
object uses the class as a base class. So, for example, all objects are instances of Object
(although null is not an instance of Object).

You can use instanceof to ensure safe casting. For example, consider this code:

class bar {

6: Javelin Stamp Programmers Reference

Page 156 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 . . .
}

class foo extends bar {
 . . .
 void f(Object o) {
 if (o instanceof foo) {
 foo fooobj = (foo) o; // will definitely work
 . . .
 }
 if (o instanceof bar) { // true even for objects
of type foo
 bar barobj = (bar) o; // will definitely work
 . . .
 }

Examples:

if (obj instanceof Error) procErrorObject(obj);

Unused Keywords
The IDE compiler currently recognizes a group of Java reserved words (keywords) that are
unsupported in the Javelin Stamp. Some of these words are reserved for historical reasons
and are not currently used in regular Java or the Javelin. You should not use these keywords
in your programs. While the compiler will accept their use, the Javelin Virtual Machine will
fail to recognize them.

Unsupported Reserved Words:
const, double, float, goto, implements, interface, long, native,
synchronized, transient, volatile

7: Working With Objects

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 157

Objects are a key part of the Java programming language. You can benefit right away from
using other people’s objects. For example, the Javelin Stamp has quite a few objects that act
as UARTs or interact with peripheral devices. You don’t need to know anything about how
they work internally. That’s the power of objects, you just use them. However, you’ll get the
most out of objects when you understand how to create new ones yourself and reuse them
later or share them with others.

You can hardly use Java without some understanding of objects. In the last chapter, you read
a little about objects. In this chapter, you’ll dive a little deeper into the objects oriented
system that makes the Javelin Stamp so flexible and powerful.

What's an Object?
Let’s start right at the beginning. What's an object? In simple terms, an object is an entity
that has "state", meaning that it can store information across sessions. The information isn't
lost or reset each time your program code refers to the object.

An object can perform operations on itself, via methods. Consider this example. In a non-
object programming language (like PBASIC for the Basic Stamp) you have functions that
read and write serial data (SEROUT and SERIN). These functions are related, but only
because you know they are related. PBASIC recognizes no special relationship between
them. Setting the baud rate for SERIN, for example, doesn’t affect calls to SEROUT. In fact,
since the calls have no state, it doesn’t even affect subsequent calls to SERIN. You might
write:

baudrate var word
serialpin var nib
baudrate = 84
serialpin=16
serout serialpin, baudrate, …

Your program, in this case is keeping track of the serial port state (the baud rate and pin
number to use). With the Javelin Stamp, you’d perform the same operation using a Uart
object from the stamp.core package. This object handles the methods you’d expect using
SERIN and SEROUT, but it also remembers the state of the serial port. Once you create the
object, it even listens for serial input while your program is doing other things.

In this case, the Uart object contains all the methods and fields required to do serial I/O.
When you want to do serial I/O, you know everything you need is within the Uart object.
When you construct a Uart you provide all the initial conditions:

7: Working With Objects

Page 158 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Uart xmit = new Uart(Uart.dirTransmit, CPU.Pin0,Uart.invert,
 Uart.speed9600, Uart.stop1);

7: Working With Objects

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 159

The object then remembers the parameters. To write to the port, you’d simply call:

xmit.sendByte(v1);

In traditional object-oriented parlance, you send messages to an object to tell it what to do.
With Java, sending a message means calling a member method. So you might say, the above
example sent the sendByte message to the xmit object.

One advantage of objects is that your access to them is strictly through public members.
Therefore, you might replace the Uart object with, for example, a Uart422 object that you
wrote to handle RS422 communications. As long as the new object supports all the same
public members as Uart, you’d only have to change the call to create the object.

Your program creates objects based on a class that you define. Think of a class as a cookie
cutter. You don't eat the cookie cutter, but it makes the cookies. A class is just a blueprint for
an object. When you instantiate the object (for example, by using the new keyword in Java),
you create a particular object that follows the plan laid out by the class.

The real trick to object-oriented design is deciding what constitutes an object. You could
write your entire program in one object, but that probably isn’t the best idea. A good object is
a focused representation of some entity in your design. Good objects have a well-defined and
limited scope. For example, suppose you're developing a system that operates an automated
testing machine. Developing a single class to represent the machine, the device under test,
and the user isn't an example of focus. Instead, you might decide to write one class to
represent the testing machine, one for the device under test, and another to represent the user.

Of course, too much focus can be burdensome, too. Creating objects to represent each
individual component in the device under test is probably going too far.

Encapsulation

One of the key features of object-oriented programming is encapsulation. Encapsulation is
the process of hiding as much internal detail of your object as possible, so that others can use
your object without having to know how it works.

Java, along with other object-oriented languages, allows you to declare each method and
variable either public or private, with the public and private keywords. Anything public can
be used by the rest of your program to manipulate the object. Anything private is used by the
object for its own internal workings. If you think of the automated tester example, the switch
that starts testing is public but the electrical wiring inside the machine is private. How that

sdill
Comment [28]: Reword sometime in the not to
distant future.

sdill
Comment [29]: Does this code exisit? If so
where?…………..Steve, it is discussed a few
paragraphs before, is it a snippet? Give me a piece
of it to search for..

7: Working With Objects

Page 160 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

switch works is not important. However, it's important that the public part of your object (the
switch in this case) always behaves in the same way.

Suppose you develop a data acquisition system that reads flow data from a sensor and
displays the results in gallons per minute. However, the manufacturer of the flow sensor goes
out of business and you have to switch to another flow meter that reads in liters per minute.
With object-oriented design, solving this problem is easy. You can rewrite the way the class
communicates with the sensor to do the appropriate conversion. As long as the new class still
supports the original public methods and fields (in gallons per minute), you won't have to
change anything else in the rest of your program. That's the power of encapsulation.

In a sense, an object acts like a black box to the rest of your program. Objects hide the
internal mechanisms of related methods, and expose only the parts that the rest of your
program needs. As long as you don't alter the public interface, you're free to change the
private methods and variables without fear of breaking the entire system. You can add new
things to the public interface, if necessary, but you shouldn't delete or change anything you've
already made public.

A common mistake is the temptation just to make everything public. This defeats the real
purpose of encapsulation, you should resist this temptation. Hide private implementation
details.

Polymorphism
One of the most important parts of an object-oriented system is polymorphism. This is just a
fancy word for establishing "is a kind of" relationships between objects. For example, an A/D
converter and a shift register are both types of integrated circuits. An 8-bit serial A/D
converter is a specific type of A/D converter.

The idea behind polymorphism is to factor the common parts out of a series of objects. For
example, A/D converters, regardless of type, often require a lot of the same code. If you place
all the code and data relating to A/D converters in a single class, the classes that represent
specific types of A/D chips can extend this base class. This allows the specialized classes to
reuse the common code without having to duplicate efforts. It also allows your program to
treat all A/D converters the same. If your program deals mostly with generic converter
objects (as opposed to specific types), you won't have to make many changes to your code
when you want to upgrade to a faster or better chip.

Hypothetically, an A/D class might contain methods to perform engineering unit conversions
and to read a value from the device. The value reading method could use low-level routines
(like initialize, startConversion, etc.) that the derived classes supply. The sdill

Comment [30]: reword

7: Working With Objects

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 161

derived classes could then provide the code that directly talks to the chip. Your program
could simply call readValue and know that all the right things will happen.

With Java you typically get polymorphism (and the associated code reuse) by extending one
class from another with the extend keyword. However, you can also get polymorphism
without code reuse by using an interface. An interface in Java acts like a skeleton class that
defines a number of required methods but doesn't actually implement the inner workings of
those methods.

When you define an interface, you don't write any code—you simply provide a list of
methods that the interface contains. Any class that implements the interface (with the
implements keyword) must provide the actual code for the methods. All classes that
implement a particular interface are polymorphic with each other. This is handy for cases
where objects are similar to another object, but not enough so that you want to share code
among them.

Class Relationships
Recent versions of Java offer several other ways to express class relationships. You can nest
classes, make one class a member of another, create local classes, or create anonymous
classes. These are not strictly necessary to create an object-oriented program, but they do
offer more options for grouping code together and can help in many common situations (like
event handling, for example). You’ll find more about these advanced techniques in any
recent Java book.

An Object Oriented Example
Amateur radio operators sometimes use Morse code to communicate over the radio airwaves.
In other cases, Morse code identifies remote stations, or even sends telemetry from balloons
or rockets. Since Morse code is just a series of short and long pulses, it is easy to make the
Javelin Stamp generate them using any of a variety of methods. Suppose you want to send
Morse code telemetry. Perhaps you are working on a team, and not everyone knows Morse
code. You may be working on several payloads that will each send different information back
using Morse code. In either case, you should consider creating an object that knows how to
send the data.

That’s what you’ll see in Program Listing 7.1. The MorseOut object encapsulates the logic
required to send numbers via Morse code. As you examine the code, consider these important
points:

7: Working With Objects

Page 162 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

• The MorseOut object completely encapsulates the logic required to generate the
code. Anyone who wants to send numbers can simply create the object and call
send.

• The templates for each number are private to the MorseOut object.
• If you wanted to change the telemetry to some other system, you could simply

replace the code in MorseOut.
• The program does not specify the pin number or the speed of the Morse code, which

increases the reusability of the object.
• If you wanted to make the class send more characters, you’d only need to provide a

new sendChar routine (and of course a new table, or other method of translating
text into Morse code).

Although there are several things about this class that make it easier to reuse it, you could go
even further. For example, creating a class that converted a character to another character
would disassociate the conversion to Morse code from the output operations. Connect an
LED circuit to P0 to view the Morse output.

Program Listing 7.1 - Send Morse Code Example 1

import stamp.core.*;
/**
 * Code to send Morse code
 * <p>
 * This object will send Morse code numbers given ASCII text
 */

public class MorseOut {

 int outPin; // output pin
 int delay; // speed base

 private final String[] chars = {
 "-----", ".----", "..---", "...--",
 "....-", ".....", "-....", "--...",
 "---..", "----." };

 /**
 * Constructor
 * @param pin The pin number to send on (example: CPU.pin0)
 * @param dly The element timing in 100us units
 */
 public MorseOut(int pin, int dly) {
 outPin = pin;

sdill
Comment [31]: Need to verify this code

7: Working With Objects

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 163

 delay = dly;
 }

 /**
 * Send a single character
 * @param c The character to send
 */
 public void sendChar(char c) {
 int idx;
 String s;
 if (c<'0' || c>'9') return;
 idx=(int)c-(int)'0';
 s=chars[idx];
 for (idx=0;idx<s.length();idx++) {
 sendElement(s.charAt(idx));
 }
 CPU.delay(delay*2); // character spacing
 }

 protected void sendElement(char el) {
 CPU.writePin(outPin,true);
 if (el=='.')
 CPU.delay(delay);
 else
 CPU.delay(delay*3);
 CPU.writePin(outPin,false);
 CPU.delay(delay);
 }

 /**
 * Send a string (must be numbers only -- skips other characters)
 * @param s The string to send
 */
 public void send(String s) {
 int i;
 for (i=0;i<s.length();i++) {
 sendChar(s.charAt(i));
 }
 }

 /**
 * A test main to try out the object if you like
 * Sends on pin0 and uses a delay of 2000 (200mS)
 */
 public static void main() {
 MorseOut mo = new MorseOut(CPU.pin0,2000);
 mo.send("3141");

7: Working With Objects

Page 164 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 }
}

Decoupling the Code
The original MorseOut object handles two distinct operations: converting characters to
Morse code and sending them out on an output bit. If you aren’t interested in reuse, this
shouldn’t be a problem. However, the best object designs strive to provide objects for each
important operation. That means you should decouple this object into two objects, one for
each operation.

Consider Program Listing 7.1. It is very similar to the original code, but it accepts a third
argument in the constructor. This third argument is a reference to a CharConvert object.
CharConvert is an abstract class Program Listing 7.2 that knows how to convert one
character into an equivalent string. Notice that it doesn’t convert to Morse code. It simply
looks up a string given a character. This class is abstract, you can’t create it, but you can
extend it.

Program Listing 7.2 - Send Morse Code Example 2

import stamp.core.*;
import examples.manual_v1_0.*;

/**
 * Code to send Morse code
 * <p>
 * This object will send Morse code numbers given ASCII text
 */

public class MorseOut2 {

 int outPin; // output pin
 int delay; // speed base
 CharConvert cvt; // converter object

 /**
 * Constructor
 * @param pin The pin number to send on (example: CPU.pin0)
 * @param dly The element timing in 100us units
 */
 public MorseOut2(int pin, int dly,CharConvert conv) {
 outPin = pin;
 delay = dly;
 cvt=conv;
 }

sdill
Comment [32]: Need to verify this code as well

7: Working With Objects

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 165

 /**
 * Send a single character
 * @param c The character to send
 */
 public void sendChar(char c) {
 int idx;
 String s;
 s=cvt.convert(c);
 for (idx=0;idx<s.length();idx++) {
 sendElement(s.charAt(idx));
 }
 CPU.delay(delay*2); // character spacing
 }

 protected void sendElement(char el) {
 CPU.writePin(outPin,true);
 if (el=='.')
 CPU.delay(delay);
 else
 CPU.delay(delay*3);
 CPU.writePin(outPin,false);
 CPU.delay(delay);
 }

 /**
 * Send a string (must be numbers only -- skips other characters)
 * @param s The string to send
 */
 public void send(String s) {
 int i;
 for (i=0;i<s.length();i++) {
 sendChar(s.charAt(i));
 }
 }

 /**
 * A test main to try out the object if you like
 * Sends on pin0 and uses a delay of 2000 (200mS)
 */
 public static void main() {
 MorseOut2 mo = new MorseOut2(CPU.pin0,2000, new
MorseNumConvert());
 mo.send("3141");
 }
}

7: Working With Objects

Page 166 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

This is the CharConvert base class:

Program Listing 7.3 - Character Convert

package examples.manual_v1_0;

abstract public class CharConvert {
 abstract protected int transform(char c); // transform c
to integer
 abstract protected String [] getTransformMatrix(); // get array of
conversions
 public String convert(char c) {
 int idx=transform(c);
 if (idx==-1) return ""; // error
 return getTransformMatrix()[idx];
 }
}

You’ll need to place this file in a separate file (named CharConvert.java) and compile it
so that the improved Morse code sending program can use it.

The specific class that handles the code conversion appears below:

Program Listing 7.4 - Convert Numbers to Morse Code

package examples.manual_v1_0;

public class MorseNumConvert extends CharConvert {
 private final String[] chars = {
 "-----", ".----", "..---", "...--",
 "....-", ".....", "-....", "--...",
 "---..", "----." };

 protected int transform(char c) {
 if (c<'0' || c>'9') return -1;
 return (int)c-(int)'0';
 }
 protected String[] getTransformMatrix() { return chars; }
}

If you extend CharConvert with a regular class, that class must implement two methods:
transform and getTransformMatrix. The transform method converts a character
to an integer index (or returns –1 if the character is illegal). The getTransformMatrix
method returns a string array. The convert routine handles the actual lookup logic. Notice

7: Working With Objects

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 167

that while a derived class could override convert, it doesn’t have to do so (and should
avoid it if possible). This allows you to make changes to the public part of all
CharConvert, derived objects by simply changing that one routine in the base class.

For example, suppose you wanted convert to throw an exception if you pass in a bad
character. Since the derived classes only extend protected members, you can change the one
version of convert and any new classes will use that logic. Of course, if any derived
classes provide their own convert, you’d need to change them as well. You could make
convert final, that would prevent other classes from changing it. However, that would
limit the flexibility of the class, some classes may need to provide custom convert routines.

The class that does the actual Morse code conversion is MorseNumConvert Program
Listing 7.4. This class simply provides the CharConvert base class with the information it
needs to get the job done. The main program creates a new MorseNumConvert object and
passes it to the constructor of MorseOut. The constructor expects a CharConvert object,
but since MorseNumConvert extends CharConvert, that isn’t a problem.

At first glance this seems much more complex than the single original file. However,
consider this: What if you wanted to make a new class that could send letters and numbers
(perhaps to use in a different program). You’d have to make a copy of the entire original
class and make major changes to it. Now if you fix or add something in one copy, you’ll need
to remember to change it in the other copy as well.

With the new scheme, you’d have no problem making the change. Just derive a new class
from CharConvert and provide the appropriate translation. The same applies if you
wanted to change MorseOut’s output device (perhaps you want to change it to a tone
instead of just blinking a light, you only need to change (or override) the sendElement
method so that it reads:

CPU.outputSine(el=='.'?delay*10:delay*30,outPin,10000,0);
CPU.delay(delay);

Now a speaker on the output pin will create beeps for the Morse code. Separating the
conversion from the output made changes easier to make.

Virtual Peripherals
Another important class of objects are Virtual Peripherals (VPs). These are special objects
that the Javelin Stamp executes at the same time that your program is running. For example,
consider the Javelin Stamp Uart VP. Once you start it, it runs constantly in the background

7: Working With Objects

Page 168 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

sending and receiving serial data. That means your program won’t miss serial data because it
is doing something else when the data arrives. It also means that your program isn’t tied up
waiting while sending serial data.

How does the Javelin Stamp juggle your program and VPs? The same way that personal
computers (like a PC running Windows) multitask programs. Your program and each VP
share the Javelin Stamp. Every 8.68 µs, the Javelin Stamp allows the VPs to execute. Each
VP is designed to execute quickly on each time slice. Once the VPs have had a chance to run,
your program resumes right where it left off.

Don’t worry about the VP consuming so much time that your program will slow down. Each
VP is especially designed to do just a small amount of processing on each time slice. The
Uart VP, for example, does not send or receive an entire byte of data on each time slice (that
would take far too long). Instead, the UART might start sending a bit during one time slice
and then finish that bit much later (remember, there are roughly 250 time slices in a single bit
at 9600 baud).

Of course, if you added too many VPs, the total processing time might start to add up. That’s
why the Javelin Stamp limits you to six VPs at once. If you try to exceed this limit, you’ll
cause an IllegalArgumentException.
Most VPs will install themselves when you create them. You can manually install or uninstall
a VP using CPU.installVP and CPU.removeVP.

The Javelin Stamp includes several VPs, and you can download the latest from the Parallax
site. Here’s a brief overview of the core VPs:

• Uart – Send or receive RS232 data (bi-directional communications requires two
Uart VPs).

• PWM – Creates pulse width modulation on an output pin. You can use PWM to
control a motor speed, modulate light brightness, or generate an analog voltage
(using an RC filter).

• TIMER – Time events with 8.68us precision. When you create a Timer object, the
Javelin Stamp installs the Timer VP. However, once the VP is present, you can
create more Timer objects and they will use the same VP.

VPs are a perfect example of how you can take advantage of object orientation. By using
these objects you can perform tasks that would be difficult or impossible to do without them.

A Timer Example

7: Working With Objects

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 169

Suppose you want to write a program that will flash two LEDs. Making LEDs flash is usually
not the eventual goal of a project (unless you are making a holiday display, perhaps).
However, what if you want the two LEDs to blink while you are doing something else?
Perhaps one LED flashes to let you know your software is running (it could even reset a
watchdog timer). The other LED might flash to let you know that data is arriving over a serial
port. The question is how to make the LEDs flash at a steady rate while performing other
tasks?

By using multiple timers, the job is easy. Remember, the first timer object installs the VP.
Subsequent timers use the same VP, so even though you can only have 6 VPs, you can use
many timers while only consuming one of your allotted VPs. Program Listing 7.5 shows the
timer code:

Program Listing 7.5 - Simple Timer Demo

import stamp.core.*;

// This program blinks an LED circuit connected to P0 every 200 mS
and
// blinks an LED circuit connected to P2 every 300 mS using the Timer
object.

public class SimpleTimer {

 public static void main() {
 Timer t1 = new Timer(); // timer for
first LED
 Timer t2 = new Timer(); // timer for
second LED

 boolean led0=false;
 boolean led2=false;

 t1.mark(); // Start timer
t1
 t2.mark(); // Start timer
t2

 while (true) { // do forever…

 String msg = "test\n";
 CPU.message(msg.toCharArray(),msg.length()); // Print Message

 if (t1.timeout(200)) { // If 200 mS LED
interval

7: Working With Objects

Page 170 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 led0=!led0; // set LED
 CPU.writePin(CPU.pin0,led0);
 t1.mark(); // start new
time period
 } // end if

 if (t2.timeout(300)) { // If 300 mS LED
interval
 led2 = !led2; // Negate LED
 CPU.writePin(CPU.pin2,led2);
 t2.mark(); // start new
time period
 } // end if
 } // end while
 } // end main
} // end class
declaration

Notice that the code loops forever doing some work (in this case, just printing a string with
CPU.Message). During the loop, the code examines two Timer objects to test for a
timeout (one for 200 ms and the other for 300 ms). If the timeout occurs, the program flips
the state of the LED and then uses the Timer’s mark method to start a new interval.

Object-Oriented Opportunity
When designing objects, remember to keep each object focused, make each object as self-
contained as possible, and factor common code into base classes.

Having a hammer doesn't mean you can build a house. Using an object-oriented tool like
Java doesn't mean you're writing object-oriented code. Look for ways to use objects in your
coding to make reusing code easier and to make your program easier to understand.
With so many ways to model objects, you're sure to come up with an elegant, succinct
representation for nearly any problem. Elegant representations tend to generate elegant
implementations. Better still, a great implementation will be more robust and maintainable
than an ad hoc solution.

Example 1.

public class datanode {
 static class converter {
 // members of converter
 }
 // members of data node
}

7: Working With Objects

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 171

Example 2.

public class mainclass {
 void somemethod(int x) {
 class helper {
 // some class that only
 // somemethod needs
 }
 }
 void anothermethod(int y) {
 // . . .
 }
}

Example 3.

class obj {
 void amethod(Object o) {
 // some method that
 // requires an object
 }
}

// . . .

obj.amethod(
 new {
 public void object_func_1(void) {
 // some code here
 }
 public void object_func_2(void) {
 // more code here
 }
 } // end of nested class
);

8: Object Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 173

The Javelin Stamp language depends on objects to perform a variety of tasks. That means
understanding the details of objects is crucial if you want to get the most from the Javelin
Stamp. This chapter will provide a reference for the core language classes – that is, classes
that don’t directly interact with the hardware. That includes objects in the java.lang,
java.io, java.util, and stamp.util packages.

Objects are also critical when controlling hardware, you’ll find more about hardware-related
objects in Chapter 8. Don’t forget that Parallax and third parties can create new objects that
will help you perform different tasks or use different hardware features. For an up-to-date list
of available objects, be sure to checkout:
www.parallaxinc.com

 It is important to realize that in addition to the methods
and fields specified for each object, the object also
inherits the public methods and fields of the base classes.
Since all classes extend Object, for example, all objects
have an equals method. Some classes override this
method and will separately document it, but others use the
default and do not list it explicitly in their documentation.
In addition, classes that don’t specify any constructors
have default constructors that take no arguments.

The java.lang Package

The java.lang package contains fundamental types that practically all programs will
require. Because of this, the compiler always looks in java.lang to find object names. So
while you can write java.lang.Boolean, you don’t have to do it that way – a simple
Boolean will suffice. In addition, you never have to import the java.lang package since
every program imports it anyway.

Many of the classes in this package represent wrappers for the fundamental types (boolean
for example). In addition, you’ll find objects that consist of static members that are more
or less global in scope (like Math or System). Objects that are exceptions are those that
derive from Throwable like Exception or Error.

Boolean
The Boolean class provides an object that wraps a basic boolean type. Note that the class
does not have a default constructor.

8: Object Reference

Page 174 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Base Class: Object

Fields:
static Boolean false – A Boolean object that contains false.
static Boolean true – A Boolean object that contains true.

Constructors:
Boolean(boolean value) – Creates a new object with the specified value.
Boolean(String s) – Creates an object that is true if the string’s value is “true” (the
comparison is not case sensitive).

Methods:
String toString() – Converts the object to a string (true or false).
boolean equals(Object o) – Tests objects for equality.
int hashcode() – Returns the hashcode of the object (1231 if the object value is true,
otherwise the hashcode is 1237).
boolean booleanValue() – Returns the value of the object.
static boolean valueOf(String s) – Returns boolean value of supplied string.

Error
The Error object is the base class for all non-checked exceptions. A non-checked exception
is one that can occur at any time, and the compiler does not require you to catch them
(contrast this to checked exceptions, which generally derive from Exception).

Base Class: Throwable

Common derived classes: OutOfMemoryError

Methods:
String getMessage() – Returns an error message appropriate to the error.

Exception
The Exception object is the base class for all checked exceptions. A checked exception
must be explicitly handled in your code via a try/catch block or by using the throws
clause in your method declaration. Contrast this to non-checked exceptions, which derive
from Error. Although all checked exceptions derive from Exception, not all objects that
derive from Exception are checked exceptions. Notably, those that derive from
RuntimeException are not checked.

sdill
Comment [33]: Is this override to equal two true or
two false objects or not – plus it doesn’t currently work

8: Object Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 175

Base Class: Throwable

Common derived classes: RuntimeException

Methods:
String getMessage() – Returns an error message appropriate to the error.
IllegalArgumentException - The IllegalArgumentException object is what a method throws
when it determines that you have passed an illegal argument to it.

Base Class: RuntimeException

Methods:
static RuntimeException throwIt() – Throw a run-time exception.

IndexOutOfBoundsException
Your program will throw an IndexOutOfBoundsException if you attempt to access an
array with an illegal array index.

Base Class: RuntimeException

Methods:
static RuntimeException throwIt() – Throw a run-time exception.

Math
The Math class consists solely of static methods. These methods are effectively global
Since you don’t need to create the Math object to use these methods. For example, to find
the absolute value of a number, you don’t need to instantiate a Math object. Instead, just call
Math.abs().

Methods:
static int abs (int a) – Returns the absolute value of the argument.

static int min (int a,int b) – Returns the smallest of a and b.

static int max (int a,int b) – Returns the largest of a and b.

NullPointerException

8: Object Reference

Page 176 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Your program will throw a NullPointerException if you attempt to access an object
reference that is equal to null.

Base Class: RuntimeException

Methods:
static RuntimeException throwIt() – Throw a run-time exception.

Object
Object is the top-level base class for all objects, even those that don’t explicitly extend
anything. Public methods of Object are available in all objects, since all objects extend
Object.

8: Object Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 177

Methods:
boolean equals (Object o) – Compares this object to another object. Returns
true only if both objects are references to the same actual object. Many classes will provide
override versions of equals to make comparisons of the object’s value (e.g., String will
test to see if the two strings are equal).

OutOfMemoryError
Your program will throw an OutOfMemoryError if you run out of memory during
program execution.

Base Class: Error

Methods:
static OutOfMemoryError throwIt() – Throw a run-time exception.

RuntimeException
The RuntimeException class is the base class for many unchecked exceptions.

Base Class: Exception

Common derived classes: IllegalArgumentException,
IndexOutOfBoundsException, NullPointerException,
java.util.NoSuchElementException

Methods:
static RuntimeException throwIt() – Throws a RuntimeException.

String
The String class represents fixed, unchanging, text data. For the Javelin Stamp, strings
consist of 8-bit ASCII bytes. In addition to a constructor, you can form a constant string by
simply enclosing characters in double quotes.

Although you can build a string by concatenating two or more strings, it is a better practice to
use StringBuffer to build a string. Consider this code:

String aString = "Hello ";
String bString = "Parallax";
aString = aString + bString;

8: Object Reference

Page 178 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Once compiled, this code creates a new aString object and discards the original one. The
memory used by the original aString is lost until the Javelin resets. See StringBuffer
for a better way to manipulate and edit strings at runtime.

Base Class: Object

Constructors:
String() – Creates a new, empty string (length=0).
String(char[] data) – Creates a new string and initializes it from the character array.
String(String s) – Creates a new string with the same contents as s.

Methods:
char charAt(int index) – Returns the character at the specified index (the first
character is at index 0).

boolean equalsIgnoreCase (String s) – Returns true if the specified string
has the same value as the string object without considering case.

int length () – Returns the length of the string.

setCharArray(char [] ary) – Sets the character array that contains the string’s
characters. The string will actually use the specified array to hold its characters. It does not
make a copy of the characters.

char[] toCharArray () – Converts the string to a character array.

String toString() – Returns the string representation of the string. This is useful for
cases where a generic object reference is really a string.

static String valueOf (int v) – Converts the integer provided into a string. Use
this method judiciously because it creates a new String object each time it is used. You can
avoid unwanted String objects by using the valueOf (int v, String Result)
method discussed next.

static String valueOf (int v, String result) – Converts the integer
provided into a string, storing the result in the result argument. The result string must
have at least 6 characters in it, or an exception will occur. Result is a String object of your
choosing. You can create one static String that contains six characters and use it to store each

sdill
Comment [34]: Chris can you verify this is true

8: Object Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 179

conversion you make. This can really come in hand when sending numeric messages to a
serial device.

Example:

String s = "123";
System.out.println(s.charAt(1)); // prints
"2"

8: Object Reference

Page 180 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

StringBuffer
While the contents of a String can’t change, StringBuffer is changeable. You can use
a StringBuffer to avoid the overhead involved in creating and destroying many string
objects when you are making many changes to the contents of a string. This is especially
important for the Javelin Stamp since it does not have garbage collection.

Base Class: Object

Constructors:
StringBuffer() – Creates a new, empty buffer.
StringBuffer(int length) – Creates a new buffer with the specified length.
StringBuffer(String s) – Creates a new buffer that contains the contents of the
specified String object.

Methods:
StringBuffer append (int [] str, int length) – Appends characters from
an array of characters to the end of the string buffer. The length argument determines how
many characters to append.

StringBuffer append(String str) – Adds a string to the end of the buffer.

int capacity () – Returns the current size of the buffer. This is the number of potential
characters – the actual number of characters currently in the buffer may be less.

char charAt (int index) – Returns the character at the specified index. The first
character in the buffer is at index 0.

StringBuffer delete (int start, int end) – Deletes characters from the
buffer starting at the start index, up to, but not including the character at the end index.

StringBuffer insert (int offset, char c) – Inserts a character at the
specified offset. The character originally at the offset, and all characters to the right, move
over by one position to make room for the new character.

int length () – Returns the length of the string currently in the buffer.

String toString () – Converts the buffer to a String.

sdill
Comment [35]: reword

8: Object Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 181

Example:

StringBuffer sb = new StringBuffer("ATDT");
sb.append(getTelephoneNumber()); //getTelephoneNumber
returns String
dial(sb.toString()); //dial expects a String
argument

System
The System object holds static items that apply to the system as a whole. It is essentially
a holder for global methods and variables.

Base Class: Object

Fields:
static PrintStream out – A PrintStream used to send data back to the system
console on the host PC.

Example:

System.out.println("Parallax");

Throwable
Throwable is a base class for all exceptions.

Base Class: Object

Common derived classes: Error, Exception

Methods:
String getMessage () – Returns a message appropriate for the exception.

The java.io Package
The java.io package contains the PrintStream class. This is the way that the Javelin
Stamp can write data out to a stream. A stream might be a serial I/O port, or any other input
and output device that works with characters.

8: Object Reference

Page 182 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

PrintStream

Base Class: Object

Methods:
print (boolean b), print(char c), print(int i), print(String
s) – These methods write the text representation of the argument to the output stream without
any additional white space.

println (boolean b), println(int i), println(String s) – These
methods write the text representation of the argument to the output stream followed by a new
line character.

The java.util Package
This package has useful classes that are not part of the core language.

Random
The Random object is useful for creating random integers. The random number algorithm
uses a seed value. Two Random objects with the same seed will generate the same sequence
of randomly distributed numbers.

Constructors:
Random() – Creates an object with the default seed (a fixed number).
Random(int seed) – Creates an object with the specified seed.

Methods:
int next() – Returns the next number in the random sequence.

Example:

Random r1=new Random();
Random r2=new Random();
Random r3=new Random(139);
int j;
for (j=0;j<100;j++)
 System.out.println(r1.next() + " " + r2.next() + " " +
r3.next());

The stamp.util Package

8: Object Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 183

This package has useful classes that are not part of the core language and are not part of
ordinary Java.

Expect
Expect allows you to wait for particular input from a Uart object.

Constructors:
Expect() – Default constructor.

Methods:
static boolean string(Uart input, String string, int timeout) –
Wait for the specified string. Returns true on success or false if the timeout expires. The
timeout value is in 100us units.

List
The List object allows you to create and manage an ordered list of items.

Constructors:
List(int maxsize) – Creates a list of objects with the specified maximum size.

Fields:
protected Object[] list – The items in the list.
protected int numObjects – the total number of objects.

Methods:
void add(int index, Object o) – Adds the specified object at a particular position
in the list.
void add(Object o) – Adds the specified object to the end of the list.
Object get(int index) – Retrieves the object at the specified position on the list.
int size() – Retrieves the number of objects in the list.

LinkedList
This object allows you to make a linked list of items.

Constructors:
LinkedList() – Default constructor.

Fields:
protected LinkedListItem list – The start of the list.

8: Object Reference

Page 184 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Methods:
void addItem(LinkedListItem) – Adds the item to the list.
LinkedListItem getFirst() – Retrieves the first item in the list.
LinkedListItem getLast() – Retrieves the last item in the list.
LinkedListItem getNext(LinkedListItem item) – Retrieves the next item in
the list.
LinkedListItem getNextLoop(LinkedListItem item) – Retrieves the next
item in the list. At the end of the list, wrap around to the first item in the list.
void removeItem(LinkedListItem item) – Removes the item from the list. This
does not reclaim the memory the item uses on the heap. If you want to reuse the object, it is
up to you to hold a reference to it.

LinkedListItem
This class represents items in a linked list.

Constructors:
LinkedListItem() – Default constructor.

Fields:
LinkedListItem nextItem – The next item in the list.

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 185

The stamp.core Package
When you want to control the Javelin Stamp’s hardware, you’ll turn to the objects in the
stamp.core package. The methods and fields in this package allow you to directly control
the Javelin Stamp’s I/O pins. In addition, you’ll find classes that can treat I/O in special ways
(for example, generate PWM or perform RS-232 input and output).

Many of the objects in this package are ordinary objects. However, some are virtual
peripherals (VPs). These VPs operate at the same time your program is running and have
special requirements (see Chapter 7 for more information about VPs).

ADC
The ADC class is a VP that performs a delta sigma analog to digital conversion with the aid
of two external resistors and one external capacitor (see Figure 9.1). This conversion requires
two I/O pins, outPin pin sends pulses and inPin monitors the voltage across the capacitor.
The VP attempts to keep the capacitor charged to 2.5 V. Since the input voltage will affect
how many pulses the VP has to send to keep the capacitor charged to that level, the VP can
compute what the input voltage is.

Vss

C

R
Analog Input

R
outPin

inPin

Figure 9.1 Circuit for use with ADC VP

The ADC VP updates the voltage measurement every 2.1 ms. Once it determines the voltage
on the input, it stores it until it completes the next conversion is completed.

Base Class: VirtualPeripheral

Constructor
ADC(int inPin, int outPin) – Constructs an ADC object using the specified input
pin (inPin) and output pin (outPin). The VP runs continuously (and consumes one VP
slot) until you uninstall it.

Methods

sdill
Comment [36]: Andy, quantify for beta if time
permits; otherwise, include in next rev

9: Javelin Stamp Hardware Reference

Page 186 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

int value() – Returns the value between 0 and 255 that corresponds to the most recently
completed complete analog to digital conversion. 0 corresponds to 0 V and 255 corresponds
to 5 V. Since a 5 V scale maps to an 8-bit measurement (0 to 255) it means that if 2.5 V is
measured, value() will return 127, and if 1.25 V is measured, value() will return 63,
etc.

Example
Program Listing 9.1 returns analog values that correspond to the analog input shown in Figure
9.1. The code listing starts the ADC, waits so there is time for the VP to complete a
conversion, and then displays the reading. Use the following values and I/O pin connections:

• R = 10 kΩ
• C = 1.0 µF
• inPin = P9
• outPin = P8
• Analog Input: For those of you with a variable DC supply, give it a try. You can

also try 1, 2, and 3 AAA batteries in series. Connect the negative terminal of the
battery or series of batteries to Vss and the positive terminal to the circuit’s analog
input. You can also use a potentiometer as a voltage divider to generate variable
voltage.

Program Listing 9.1 - ADC Demo

import stamp.core.*;

public class ADCDemo {

 public static void main() {
 ADC adc = new ADC(CPU.pin9,CPU.pin8);
 CPU.delay(1000); // wait to acquire
a value
 System.out.println(adc.value());
 }
}

Button
The button class allows you to easily read pushbuttons connected to the Javelin Stamp’s
input pins as shown in Figure 9.2. The class handles debouncing a mechanical switch, and
can optionally provide auto repeat after a configurable delay.

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 187

Figure 9.2
Circuit for use

with button P B S w itch

V s s

V d d

1 0 k

p in

P B S w itch

V s s

V d d

1 0 k

p in

 upState = true upState = false

The button object is typically used inside a loop. The autorepeat feature works by
detecting that the switch is active for a certain number of iterations through the loop. You can
assign either a 1 or a 0 to specify if the button is up. When the button is down longer than the
debounce period, buttonState returns BUTTON_DOWN. On subsequent calls, it will
return BUTTON_STILL_DOWN until the repeat delay, if one was specified, is satisfied. Each
call to buttonState while the button is down will count against the repeat delay. When
the program has called buttonState the requisite number of times (and the button has not
gone up), buttonState will return BUTTON_AUTO_REPEAT. On subsequent calls, it will
return BUTTON_STILL_DOWN until the number of calls satisfies the repeat rate setting.
Then, buttonState returns BUTTON_AUTO_REPEAT again and resets the repeat rate
count. Of course, when the button goes to the up state for at least the debounce period,
buttonState always returns BUTTON_UP and resets the repeat counters. You don’t have
to specify an autorepeat delay or rate if you don’t want the button to repeat.

Base Class: Object

Fields:
static int BUTTON_AUTO_REPEAT – Constant indicating that the button repeated.

static int BUTTON_DOWN – Constant indicating that the button is down for the first
time.

static int BUTTON_STILL_DOWN – Constant that indicates that the button was down,
and is still down.

9: Javelin Stamp Hardware Reference

Page 188 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

static int BUTTON_UP – Constant indicating that the button is not down.

int debounceDelay – The time constant for debouncing the switch. This delay is
specified in 100us units. A value of 250 (25 ms) is typical.

int repeatDelay – Number of loop iterations the button must be down before repeating
starts.

int repeatRate – Number of loop iterations between BUTTON_AUTO_REPEAT
indications.

Constructors:
Button(int pin, boolean upState) – Creates a button on the specified pin (for
example, CPU.pin5). The buttons default state is specified by upstate. So if the switch is
normally open to ground, and there is a pull up resistor on the input pin, you’d specify true
for this parameter.

Button(int pin, boolean upState, int repeatDelay, int
repeatRate) – Creates an autorepeating button. The first two parameters are the same as
for the first constructor. The last two parameters set the repeat delay and rate.

Methods:
int buttonState() – Returns BUTTON_UP, BUTTON_DOWN,
BUTTON_STILL_DOWN, or BUTTON_AUTO_REPEAT to reflect the current state of the
button.

Example:
Here is a simple program that monitors a button on pin 15. Each time you press the button,
the LED on pin 14 changes state.

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 189

Figure 9.3
Circuit for use

with button
example

PB Switch

Vss

Vdd

10 k

P15

Program Listing 9.2 - Button Demo

import stamp.core.*;

public class ButtonTest{
 public static void main() {
 Button blueButton = new Button(CPU.pin15, true, 5000, 10);
 int lastState = Button.BUTTON_UP;
 System.out.println("Press & release button.");
 System.out.println("Monitoring button state...");

 while (true) {
 int state = blueButton.getState();

 if (blueButton.buttonDown())
 System.out.println(" ");
 if (state != lastState) {

 System.out.print("State: ");
 switch (state) {
 case Button.BUTTON_UP:
 System.out.println("BUTTON_UP");
 break;
 case Button.BUTTON_DOWN:
 System.out.println("BUTTON_DOWN");
 break;
 case Button.BUTTON_AUTO_REPEAT:
 System.out.println("BUTTON_AUTO_REPEAT");
 break;
 case Button.BUTTON_DEBOUNCE:

9: Javelin Stamp Hardware Reference

Page 190 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 System.out.println("BUTTON_DEBOUNCE");
 break;
 default:
 System.out.println("** Unknown state ***");
 break;
 }

 lastState = state;
 }
 }
 } //end main
} // end class
declaration

CPU
The CPU class contains specific calls to help you manage the Javelin Stamp processor
resources, including I/O pins. All the members of CPU are static, so you don’t need to create
an instance of the object – you simply call the members, as needed.

Base Class: Object

Fields: static int MAX_NUM_VPS – The maximum number of virtual peripherals
allowed (6 in the standard version). You can use this to make your software aware of how
many VPs are allowed.

static int pin0, pin1, pin2, pin3, pin4, pin5, pin6, pin7, pin8, pin9,
pin10, pin11, pin12, pin13, pin14, pin15 – These constants allow you to access the
pins of the Javelin Stamp when using methods like readPin and writePin. If you wish
to use sequential numbers to access pins, use the pins array.

static int[] pins – This array contains the pin constants (e.g., pin0, pin1, etc.) in
sequence. This is useful if you want to access bits in a loop. For example:
for (int i=0;i<pins.length;i++) CPU.writePin(pins[i],true);

static int POST_CLOCK_LSB, POST_CLOCK_MSB, PRE_CLOCK_LSB,
PRE_CLOCK_MSB – Constants for use with the shiftIn and shiftOut methods. See the
description for shiftIn and shiftOut (below) for more details.

public static final int PORTA - A constant representing the first I/O port on the
Javelin Stamp. This port contains pins 0-7.

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 191

public static final int PORTB - A constant representing the second I/O port on
the Javelin Stamp. This port contains pins 8-15.

Methods:

carry
static boolean carry() – This method returns the internal carry bit’s state. After a
16-bit addition or subtraction, this flag will be set if a carry or borrow occurred. For example,
here is a 32-bit addition routine:

int[] word0 = new int[2];
int[] word1 = new int[2];
word0[0]=0x5aaa;
word0[1]=0x0020; // 205aaa
word1[0]=0x7999;
word1[1]=0x00FF; // 00ff7999

// compute word1=word1+word0
word1[0]=word1[0]+word0[0];
if (CPU.carry()) word1[1]++;
word1[1]=word1[1]+word0[1];

// compute word1=word1+word0 again
word1[0]=word1[0]+word0[0];
if (CPU.carry()) word1[1]++;
word1[1]=word1[1]+word0[1];

Be careful when mixing carry with other expressions, you can’t be sure which the compiler
will do first. For example, this would be a bad idea:

word1[1]=word1[1]+word0[1]+CPU.carry()?1:0;

The carry call in this case might reflect the carry of the addition that occurs on the same
line instead of the previous addition.

count
static int count(int timeout, int pin, boolean edge) – This method
counts transitions (or edges) sensed on the specified pin. The timeout parameter sets the
amount of time the Javelin Stamp will examine the pin (in 100us units). The pin argument
determines the pin number to use (e.g., CPU.pin0 or CPU.pins[3]). Finally, the edge

9: Javelin Stamp Hardware Reference

Page 192 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

parameter determines if the Javelin Stamp should count rising edges (true) or falling edges
(false).

Example:

Count falling edges for 200 ms on P10

CPU.count(2000, CPU.pin10, false);

delay
static void delay(int period) – The delay method pauses program execution
for the specified period in 100us units. For example, to delay for 2 seconds, you’d use a
period of 20,000. Executing a delay does not affect the execution of virtual peripherals.
Although the delay call accepts signed integers, it treats them as unsigned numbers. So
setting period to –1, for example, will delay for 65535 time units. If you need a delay
greater than 32767 units, you can left shift a variable to obtain the delay you want.

Example:
int dlytime;
dlytime=30000;
System.out.println(“3 second delay”);
CPU.delay(dlytime);
System.out.println(“6 second delay”);
CPU.delay(dlytime << 1); // 60000 x
100us = 6 sec
System.out.println(“done”);

You can not however, use a constant because the compiler will pre-compute the result and
you’ll get an error since 60000 exceeds the size of a normal signed integer.

installVP
static void installVP(VirtualPeripheral vp) – When you create a virtual
peripheral object, it will typically install itself. However, you can also use this method to
install a VP manually. This might be useful if you’ve previously unloaded the VP with
removeVP and want to reinstall it.

Example:

The example accompanying the removeVP method showed how to remove a VP named pwm
to make room for some other VP. Let’s say that the VP you want to replace pwm with is a

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 193

DAC object named dac. This example also assumes that the dac object has already been
declared and removed once. Reinstalling the dac object involves installVP plus
reassigning it a value:

DAC dac = new DAC(CPU.pin2);
dac.update(125);
CPU.removeVP(dac);

// Later in the program after pwm was installed and removed...
CPU.installVP(dac);
dac.update(125);

message
static void message(char [] data, int length) – Sends a message to the
Messages from Javelin window. Note that the text is a char array, not a string. You can use
String.toCharArray if you want to provide text in a String object. You can also use
System.out.println to send strings to the Messages from Javelin window.

Example:

char [] characters = {'a', 'b'};
CPU.message(characters,2);
String s = "CDE";
CPU.message(s.toCharArray(),3);

nap
static void nap(int period) – Places the processor in a low power sleep state.
All operations cease while the Javelin is napping.

The Javelin Stamp can only call nap as a foreground
process with no background processes running. Before
calling this method, you must use
VirtualPeripheral.removeItem to uninstall any
VPs that are installed. See example below.

The period argument can range from 0 to 7, depending on how long you want to the Javelin
Stamp to nap (see below). However, the nap time is only approximate and should not be
used for timing where accuracy is required. The primary reason you’ll use nap is to conserve
power when operating the Javelin from batteries. Here are the values for the period
argument:

9: Javelin Stamp Hardware Reference

Page 194 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

0 – 16 ms
1 – 32 ms
2 – 64 ms
3 – 128 ms
4 – 256 ms
5 – 512 ms
6 – 1024 ms
7 – 2048 ms

Example:

System.out.println(“Time to take about a 2-second nap”);
CPU.nap(7);
System.out.println(“Nap completed.”);

pulseIn
static int pulseIn(int timeout, int portPin, boolean pinState)
– This method measures a pulse using a 8.68us timer. You can specify a maximum amount of
time for this command to run (again, using 8.68us units) with the timeout parameter. The
portPin parameter specifies which pin to monitor (for example, CPU.pin0). If the
pinState parameter is true, the method measures a high pulse, otherwise it looks for a
low pulse.

Example:

// Count rising clock edges for 173.6 µs.
int pulseValue = CPU.pulseIn(20000, CPU.pin0, true);

The Javelin Stamp will not exceed the timeout value while executing this command. Suppose
you set the timeout parameter to 100 (8.68 us). If the Javelin Stamp waits for 500us and
senses a pulse, it will still terminate this command after 868 us, even if the pulse is not
complete. In this case, the return value will be –1, indicating that no stop edge was detected.
If no starting edge occurs during the timeout period, the method returns 0. Obviously, pulses
shorter than 8.68us may escape detection.

The return value and the timeout value are actually unsigned. Even though integers
nominally range only to 32767, these values actually extend beyond, but the compiler treats
them as negative numbers. There are several ways to deal with this problem. One easy way
is to use shifts, but it does cut your timing resolution in half. For example, suppose you want

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 195

to wait for 195.3 ms. This corresponds to a timeout argument of 45000 – too big for a
signed integer. However, what if you pretended, the actual resolution was not 8.68us, but
double that (8.68 us). Now the timeout argument for 195.3 ms would be 22500 – an
acceptable number.

Of course, the resolution is 8.68us, so you would have to double the timeout value using a
shift. You can’t, however, use a constant, because the compiler is smart enough to pre-
calculate the constant and will detect it is “too big”. For example:

int time_out = 22500;
int pulsed = CPU.pulseIn(time_out << 1, CPU.pin0, true); //
wait 390.6mS

However, you can not write:

CPU.pulseIn(22500 << 1, CPU.pin0, true);

The output in this case, might also be negative, indicating the pulse was longer than 142.2ms.
Simply shift the result right, and again, pretend the resolution is 8.68us. For example,
suppose the above example detected a pulse of 173.6 ms (40000). This will show up as a
negative number (-255). However, you can shift it down to use 8.68us units:

pulsed=pulsed>>>1;

If you don’t want to lose resolution, you’ll need to analyze the results as a binary number.
For example, using the & operator, you can strip the most significant bit (the sign bit). This
will provide the amount over 32768. For example:

System.out.println(pulsed & 0x7FFF);

If pulsed contained 40000 (173.6 ms) the display would show 7232 (40000 minus 32768).

Figure 9.4
pulseIn

Measurements

Vdd = 5 V

...Vss = 0 V

pin

length

Vdd = 5 V...
Vss = 0 V

pin

length
 (a) pinState = true (b) pinState = false

sdill
Comment [37]: If we put highByte/lowByte, etc.
in this would be a place to cross
reference…………Perhaps reference it to “Java
Differences”?

9: Javelin Stamp Hardware Reference

Page 196 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Example
This method takes three arguments: a time out duration, a pin number, and a boolean that
indicates if you are looking for a one pulse (true) or a zero pulse (false).

Program Listing 9.3 - Pulse Class 1

import stamp.core.*;

public class PulseClass1 {
 static int n;
 public static void main() {
 while (true) {
 n = CPU.pulseIn(32767,CPU.pin14, false);
 System.out.println(n);
 }
 }
}

pulseOut
static void pulseOut(int length, int portPin) – When you call
pulseOut, the Javelin Stamp inverts the state of the specified portPin (for example,
CPU.pin0) and holds it in that state for the time you specify in length. The length
argument is in terms of 8.68 us units and is unsigned (see the discussion under pulseIn for
more information on dealing with unsigned numbers). A positive pulse is a low-high-low
sequence as shown in Figure 9.5a while a negative pulse is a high-low-high sequence as
shown in Figure 9.5b. If you want to deliver a positive pulse, set the pin low (false) first
using CPU.writePin. Likewise, if you want to deliver a negative pulse, set the pin high
(true) first using CPU.writePin.

Figure 9.5
pulseOut Pulses

Vdd = 5 V

... Vss = 0 V

pin

length

Vdd = 5 V...
Vss = 0 V

pin

length
 (a) Positive Pulse (b) Negative Pulse

rcTime
static int rcTime(int timeout, int portPin, boolean pinState) –
This method measures the amount of time required for the pin you specify to reach a desired
state. The time and the timeout parameter are in 8.68 µs units. The portPin argument is
one of the pin constants (like CPU.pin0), and pinState is the desired ending state (true

sdill
Comment [38]: ANDY: Discuss uses of pulseout and
how to set positive and negitive pulses

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 197

or false). If the pin does not reach the specified state before the time out expires, the call
returns –1.

The rcTime method is useful in applications where you want to measure the charge or
discharge of an RC (resistor/capacitor) network. You might want to do this, for example, to
read a potentiometer, a thermistor, or any resistive or capacitive sensor.

When rcTime executes, it starts a counter that increments every 8.68 µs. It stops this
counter as soon as the specified pin reaches pinState. If portPin is not in the opposite
of pinState when the instruction is executed, rcTime returns 1, since the instruction
requires one timing cycle to discover this fact. If pin remains in the opposite of pinState
longer than the number of 8.68 µs timing cycles specified in the timeOut argument,
rcTime returns 0.

Figure 9.6 RCTime circuits for recommended

R

C

Vdd

Vss

portP in
220

R

C

Vdd

Vss

portP in
220

(a) circuit for use with a

pinState of false
(b) circuit for use with a

pinState of true

Before rcTime executes, the capacitor must be put into the state specified in the call. For
example, with Figure 9.6a, the capacitor must be discharged until both plates of the capacitor
approach 5 V using:

CPU.writePin(CPU.pin4, true);
CPU.delay(1000);

Then, you can call the rcTime method. Assuming i is an int value, you can use:

9: Javelin Stamp Hardware Reference

Page 198 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

i = CPU.rcTime(32767,CPU.pin4,false); //
timeout of 284 ms

It may seem counterintuitive that discharging the capacitor is accomplished by sending a true
signal, but remember that a capacitor is charged when there is a voltage difference across its
plates. When both plates are in the neighborhood of 5 V, there is almost no voltage across the
plates, so it is considered discharged. When the rcTime method is called, the portPin that
was output-true changes to input. The rcTime method then records the time it takes for the
voltage at the capacitor’s lower plate to cross the I/O pin’s 2.5 V (true-false) logic threshold.

Using rcTime is very straightforward, except for one detail: For a given R and C, what value
will rcTime return? It’s easy to figure, based on a value called the RC time constant or tau
(τ) for short. You can compute tau by simply multiplying R (in ohms) by C (in farads):

τ = R × C

The general RC time formula tells you the time required for an RC circuit to change from one
voltage to another:

time = τ(ln(Vbegin/Vend))

In this formula ln is the natural logarithm; it’s a key labeled ln on most scientific calculators.
Vbegin is the starting voltage, while Vend is the ending voltage. Assume you’re interested in a
10 kΩ resistor and 1.0 µF cap. Calculate τ:

τ = (10 x 103) x (1.0 x 10-6) = 10 x 10–3

The RC time constant is 10 x 10-3 or 10 milliseconds. Now calculate the time required for this
RC circuit to go from 5 V to 2.5 V.

10 × 10 –3 × ln(5/2.5) = 6.93 × 10-3

In RCTime units of 8.68 µs, that time (6.93 × 10-3) works out to 798.4 ≈ 800 units. Since
Vbegin and Vend don’t change, we can use a simplified rule of thumb to estimate rcTime
results for circuits like the one in Figure 9.6 (a) and (b):

rcTime units ≈ 800 × R (in kΩ) x C (in µF)

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 199

Another handy rule of thumb can help you calculate how long to charge or discharge the
capacitor before rcTime. A given RC charges or discharges 98 percent of the way in 4 time
constants (4 x R x C). In Figure 9.6, the charge/discharge current passes through the 220 ohm
series resistor and the capacitor. So if the capacitor were 1.0 µF, the minimum
charge/discharge time should be:

Charge time = 4 x 220 x (1.0 x 10-6) = 880 x 10-6

It takes only 880 µs (about 1 ms) for the capacitor to charge/discharge. In practice, you could
set the pin true and delay for 1 ms to be safe. Here is a code snipped that would work for the
rcTime circuit from Figure 9.6.

A couple of final notes about Figure 9.6. You may be wondering why the 220 ohm resistor is
necessary at all. Consider what would happen if resistor R were a potentiometer adjusted to 0
Ω. When the I/O pin went high to discharge the cap, it would see a short direct to ground.
The 220 Ω series resistor limits limit the short circuit current to 5 V/220 Ω = 23 mA and
protect the Javelin Stamp from damage.

The 220 Ω resistor also forms a voltage divider with the 10 kΩ resistor that prevents the
voltage from ever getting to 5 V. The formula for calculating the voltage divider created by
the two resistors in Figure 9.6 (a) is:

21

2

RR
RVV DDdivider +

=

Given values of R1 = 220, R2 = 10 k, and VDD the true value of Vbegin works out to:

VVVV dividerbegin 89.4
000,10220

000,105 =
+

==

The return value and the timeout parameter are actually unsigned integers. See the
above discussion for pulseIn for more details about using unsigned parameters.

readPin
static boolean readPin(int portPin) – Use readPin to determine the state
of an input pin. The pin is forced to an input if it isn’t already set to input. To use readPin
use a port number like CPU.pin0. If you want to access the pin by its number, use the
pins array (as in CPU.pins[2], for pin 2, for example).

9: Javelin Stamp Hardware Reference

Page 200 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Example:

Let’s assume that you have already declared a boolean variable called valueP5 using:

boolean valueP5;

You can use readPin to load the logic value seen by P5 into the int valueP5 using the
command:

valueP5 = CPU.readPin(CPU.pin5);

You can also display the value of P5 in the Messages from Javelin window using:

System.out.println(CPU.readPin(CPU.pin5));

readPort
public static byte readPort(int port) - Read the value on a port. Read the
value currently on a port.

Parameters:
port - the port to read. Can be either P0 through P7, which is CPU.PORTA, or P8-P15,
which is CPU.PORTB.

Returns:
The value on the port. This value is a binary number that corresponds to the values seen at
the I/O pins.

Examples:

If you have an 8-bit parallel device connected to PORTB (P8-P15), you can load the data from
the parallel device using readPort. Let’s say you declared a variable named
parallelData earlier in the program, and you want to load the 8-bit value transmitted by
the parallel device into this variable, simply use:

int parallelData;
parallelData = CPU.readPort(CPU.PORTA);

Let’s say that you have a four bit parallel device that is sending data to P4-P7. You can read
the value by using readPort. Let’s also say that you want to load this value into the lower
four bits of an int variable named nibble that you declared earlier in the program.

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 201

int nibble;
nibble = CPU.readPort(CPU.PORTA);

Your nibble variable now contains the entire contents of PORTA. You can use the >>
operator to shift the contents of nibble four binary slots to the right, for example:

nibble = CPU.readPort(CPU.PORTA) >> 4;

You can also use the & operator to mask data. For example, if you want the 4 bits to stay in
bits 4-7 of your nibbleP4_7 variable, you can do this:

nibble = CPU.readPort(CPU.PORTA) & 0x00F0;

Keep in mind that if you do not apply the mask (or shift the data to the right by four bits),
nibble will contain the data read from I/O pins P0 through P3 along with the data you want.

removeVP
static void removeVP(VirtualPeripheral vp) – Virtual peripherals typically
install themselves when you instantiate them. You can use removeVP to unload a currently
executing VP. You can have up to six VPs running at any given time, but your program may
make use of more than six VPs. You can use this method to remove a VP that you want to
halt. You can then load a different VP (or re-load the same one) using the installVP
method.

The VP halts immediately when using removeVP. This could cause a Uart object to stop
sending mid-byte or a PWM object to halt in the middle of the true part of its signal when you
wanted the PWM signal to go to a false resting state. Keep this in mind when writing your
code. For example, you can use the Uart.byteAvailabe method to make sure the Uart’s
buffer is empty before removing the VP. Likewise, you can use CPU.writePin to make
sure the I/O pin is false before moving on.

Example:

Let’s say you created a PWM object named pwm, and that you have all six VP slots in use.
You can remove the pwm VP to make room for another VP using:

// Earlier in the program, the pwm object is loaded.
PWM pwm = new PWM(CPU.pin9, 100, 200);

9: Javelin Stamp Hardware Reference

Page 202 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

// Later in the program it is removed to make room for a
different VP
CPU.removeVP(pwm);

See the installVP method for information on adding a VP.

setInput
public static void setInput(int portPin) - Make a pin an input. The
specified pin will be converted to an input. More than one pin can be specified using the +
operator, as long as all pins are on the same port (P0 through P7 or P8 through P15).
Parameters:
portPin - the pin to make into an input.

Note, if you want to change an I/O pin back to an output, use CPU.writePin.

Examples:

Lets’ say you want to change P15 from output to input, just use:

CPU.setInput(CPU.pin15);

You can toggle more than one I/O pin from output to input using the + operator. For
example, if you want to change P5, P6, P7, P8, and P9 from output to input, keep in mind that
you are dealing with two different ports. Use two separate commands:

CPU.setInput(CPU.pin5 + CPU.pin6 + CPU.pin7);
CPU.setInput(CPU.pin8 + CPU.pin9);

shiftIn
public static int shiftIn(int dataPortPin, int clockPortPin,
int bitCount, int mode)

The shiftin method is used to read data from a synchronous serial device. The
clockPortPin is used to send clock pulses to the synchronous serial device. The
dataPortPin is used to read the binary output values sent by the synchronous serial device
in response to each clock pulse. If the dataPortPin is set to output before the method is
called, shiftIn will change the dataPortPin to input and leave it that way. Likewise, if
the clockPortPin is set to input before the method is called, shiftIn changes the
clockPortPin to output and leaves it that way. The initial output state of
clockPortPin will determine the polarity of the pulses delivered. If the clockPortPin

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 203

is set to false before the method is called, the pulses will be positive (false – true – false).
Occasionally, you will find a synchronous serial device that requires negative pulses. You
can deliver negative pulses by setting the clockPortPin to true before calling the
shiftOut method. Then the clock pulses will be negative (true – false – true). The mode
parameter selects pre/post clock sampling as shown in Figure 9.7. The figure also shows the
pulse durations, which are th = 8.68 µs and tl = 17.36 µs.

9: Javelin Stamp Hardware Reference

Page 204 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Figure 9.7 shiftIn PRE/POST_CLOCK_LSB/MSB

th

Clock
(Cpin)

Data
(Dpin)

-t-l

-pre modes
sample data
before
clock pulse

1st

-post modes
sample data
before
clock pulse

2nd

Post clock sampling makes more sense at first glance since the pulse is applied, then the data
value is checked. On the other hand, when pre-clock sampling is used, the dataPortPin is
sampled to obtain the first data bit before delivering any pulses on clockPortPin. The
most common reason that a data bit is already available is because the last pulse from a
previous shiftOut call caused the first data bit to appear at the synchronous serial device’s
output. Keep this in mind if you are using a device that requires a write (shiftOut) prior to
a read (shiftIn). In some cases, the device must be read without first being written to.
You can apply an extra pulse simply by modifying the bitCount to request an extra bit,
then use post clock sampling. Note that the bitCount can be set to higher than 16 (up to
256) if desired. When a number greater than 16 is used, only the last 16-bits will be returned.

Parameters:
dataPortPin - I/O pin that reads the data sent by the peripheral device.
clockPortPin - I/O pin that delivers clock pulses to the external device.
bitCount - the number of binary values to be shifted in (from 1 to 16). bitCount must
not be 0.
mode - the shifting and clocking mode to employ. This parameter is used to tell the Javelin
Stamp whether the binary values read by the dataPortPin are sent in ascending order
starting with the least significant bit (LSb-first) or in descending order starting with the most
significant bit (MSb-first). The clocking mode also determines whether the data is sampled
before or after the first clock transition. The mode arguments are summarized in Table 9.1.

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 205

Table 9.1: shiftIn Mode Arguments
Field Mode Function

CPU.POST_CLOCK_LSB Post-clock sampling and LSB-first transmission
CPU.POST_CLOCK_MSB Post-clock sampling and MSB-first transmission
CPU.PRE_CLOCK_LSB Pre-clock sampling and LSB-first transmission
CPU.PRE_CLOCK_MSB Pre-clock sampling and MSB-first transmission

Returns:
This method returns an int value that contains the bits that were received by the data pin. The
result contains bitCount bits and is justified according to the mode setting. If MSb-first
(CPU.POST_CLOCK_MSB or CPU.PRE_CLOCK_MSB) is chosen, the data will be shifted
left into the least significant bit, and the data bits will be right justified. For example, if four
bits (the binary value 1011) are shifted in, they will be loaded into an int value as:
0000000000001011.

If LSb-first (CPU.POST_CLOCK_LSB or CPU.PRE_CLOCK_LSB) is chosen, the data will
be shifted right into the most significant bit, and the data will be left justified. Let’s take a
look at shifting in the same four bits (binary 1011) again. This time, your int value would
contain: 1011000000000000. Instead of a small positive number, you would end up with a
large negative number. The >> operator is used to shift the contents of the int value twelve
more bits to the right using >>12 to get the LSb where it should be in the rightmost bit. The
final result is then 0000000000001011.

Examples:
Here are a few code snippets that demonstrate how to use the shiftIn method. For
executable code examples, see Communicating with Peripheral ICs section of Chapter 4. The
first statement uses writePin to set the I/O pin delivering the clock signal to false. This
causes the shiftIn method to deliver positive pulses.

// Initialize clock pin
CPU.writePin(CPU.pin5, false);

The shiftIn method call shown below uses the CPU.PRE_CLOCK_MSB mode. The data
is shifted in MSb-first, and it is already “right justified”. This means the data does not have to
be shifted any further to correct the value even though only 8-bits were shifted into value.

int value;
//…

alindsay
Comment [39]: Steve, do a !h5 search and
replace to get the heading font straightened out.

9: Javelin Stamp Hardware Reference

Page 206 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

// Shift in data
value = CPU.shiftIn(CPU.pin6, CPU.pin5, 8,
CPU.PRE_CLOCK_MSB);

This next shiftIn call shifts in a 9-bit value from a DS1620. Remember, if you are shifting
a value that’s less than 16 bits and storing it in a variable using either
CPU.POST_CLOCK_LSB or CPU.PRE_CLOCK_LSB, you have to use the >> operator to
“right justify” the value. Before storing the value in the tempIn field, the value was
shifted right by another 7-bits using the >> operator.

int tempIn;
// …
// Shift in 9-bits then shift right by another 7-bits
tempIn =
(CPU.shiftIn(CPU.pin6,CPU.pin5,9,CPU.POST_CLOCK_LSB) >> 7);

shiftOut
public static void shiftOut(int dataPortPin, int clockPortPin,
int bitCount, int mode, int data)

The shiftOut method sends data to a synchronous serial device by making a data value
available on the dataPortPin then applying a clock pulse on the clockPortPin as
shown in Figure 9.8. The durations shown in the figure are th = ta = tb = 8.68 µs, and tl =
17.36 µs. The number of data values sent is determined by bitCount. The mode
determines whether the most significant bit (MSb) or the least significant bit (LSB) is sent
first. The data parameter is the int field that contains the value to be transmitted to the
synchronous serial device.

Figure 9.8 shiftOut
PRE/POST_CLOCK_LSB/MSB

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 207

Both the dataPortPin and clockPortPin are changed to outputs when the shiftOut
method is called, and they remain outputs after the method is executed. The initial output
state of clockPortPin determines the polarity of the pulses delivered. If the
clockPortPin is set to false before the method is called, the pulses will be positive
(false – true – false). Occasionally, you will find a synchronous serial device that requires
negative pulses. You can deliver negative pulses by setting the clockPortPin to true
before calling the shiftOut method. Then the clock pulses will be negative (true – false –
true).

Note: If you are shifting out less than 16-bits using CPU.SHIFT_MSB, make sure to shift
your valid data to the left using the << operator. See the examples below.

Parameters:
dataPortPin - I/O pin that sends the data to the peripheral device.
clockPortPin - I/O pin that delivers clock pulses to the peripheral device.
bitCount - the number of binary values to be shifted in (from 1 to 16). bitCount must
not be 0.
mode - the shifting mode to employ. The mode specifies whether to shift the data MSb first
using CPU.SHIFT_MSB or LSb first using CPU.SHIFT_LSB.

Examples:
The code snippets below demonstrate using the shiftOut method. For executable code
examples, see Communicating with Peripheral ICs section of Chapter 4.

Before calling shiftIn, remember to initialize the value of the clockPortPin using
CPU.writePin, for example:

// Initialize P1 for delivering positive pulses.

9: Javelin Stamp Hardware Reference

Page 208 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

CPU.writePin(CPU.pin1, false);

Let’s say the int value number stores the value 254. In terms of an int field, this is really
the decimal number +00254, which will appear as a hexadecimal value 0x00FE if viewed
with the Debugger. In binary, this value is: 0000000011111110. If you want to shift LSb-
first using CPU.SHIFT_LSB, the data is ready to be justified to the right, so simply use the
shiftOut method.

int number = 254;
CPU.shiftOut(CPU.pin0,CPU.pin1,8,CPU.SHIFT_LSB,number);

If you are shifting out MSb-first using CPU.SHIFT_MSB, the value needs to be first shifted
left by 8-bits using the << operator. Otherwise, all that will get shifted out are the leading
zeros. After the << shift, your binary value will be 1111111000000000. Now the correct
values will be shifted out when shiftOut is called.

CPU.shiftOut(CPU.pin0, CPU.pin1, 8, CPU.SHIFT_MSB, number
<<8);

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 209

Figure 9.9 shiftOut example using the 74HC595

74HC595

To P0

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

QB

QC

QD

QE

QF

QG

QH

GND

VCC

QA

DATA IN

OE

LATCH

CLK

RESET

SQH

Vss

LEDs 470 (all)Ω
Vdd

Vdd

Vss

To P2

To P1

Program Listing 9.4 - Using shiftOut on 75xx595 shift register

import stamp.core.*;

public class Shift74595 {

 final static char HOME = 0x01;
 final static int DATA_PIN = CPU.pin0;
 final static int CLOCK_PIN = CPU.pin1;
 final static int PULSE_595 = CPU.pin2;

 static void write595(int number){
 CPU.shiftOut(DATA_PIN, CLOCK_PIN, 8, CPU.SHIFT_MSB, number <<8);
 CPU.pulseOut(5,PULSE_595);
 } // end write595

 public static void main() {

 CPU.writePin(PULSE_595,false);
 CPU.writePin(CLOCK_PIN,false);

 while(true){

 for (int i = 0; i <= 255; i++){

9: Javelin Stamp Hardware Reference

Page 210 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 write595(i);
 CPU.delay(2500);
 } // end for
 } // end while
 } // end main
} // end class

writePin
public static void writePin(int portPin, boolean value) - Set a pin
to a logic state. Makes the selected pin high or low as selected by the value parameter. If the
pin is an input then it will be changed to be an output and remain as an output when complete.

Parameters:
portPin - the I/O pin to write.
value - the state the set the pin to.

Examples:
You can change the state of one pin or of multiple pins on the same port (P0-P7 or P8-P15).

// Set P5 to output-true.
CPU.writePin(CPU.pin5, true);

//Set P11 and P15 to output-false.
CPU.writePin(CPU.pin11 + CPU.pin15, false);

writePort
public static void writePort(int port, byte value) - Output a value
onto a port. The lower 8 bits of value will be written to the port. Pins on the port will not be
converted to outputs first. This method does not affect the direction of the port. It will
disturb any virtual peripherals which are using the port.

You can use this method to change the output values of groups of I/O pins on a given port.
Since this does not change the direction of an I/O pin, I/O pins that are inputs remain inputs.
You can use this method to write values to PORTA (I/O pins P0 through P7) or PORTB (I/O
pins P8-P15).

Parameters:
port - the port to control. Can be either CPU.PORTA, or CPU.PORTB.
value - the value to write to the port (true or false).

Examples:

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 211

Let’s say that P4 and P5 are inputs, and the rest of the I/O pins on CPU.PORTA are outputs
(P0-P3 and P6-P7). If you want to set all the I/O pins that are already outputs to true
regardless of their current state, you can use this command:

CPU.writePort(CPU.PORTA, (byte)0xFF);

Since 0xFF is binary 11111111, it writes binary 1s to all CPU.PORTA. This sets all the I/O
pins that are already outputs to true. Since writePort does not make any changes to the I/O
pin’s, direction, the I/O pins that were inputs, are still inputs.

Let’s say that now you want to change the output values of P0 through P3 to false. But
leave the upper I/O pins true. You can do this using 0xF0, which corresponds to binary
11110000.

CPU.writePort(CPU.PORTA, (byte) 0xF0);

DAC
The DAC class is a VP that performs single bit digital to analog conversion with the aid of an
external resistor and capacitor (see Figure 9.10). The DAC generates a train of pulses that the
resistor and capacitor integrates into a constant voltage. The values or R and C depend on the
application. The example code works fine with values of:

• R = 1 kΩ
• C = 1 µF

When R × C is larger, the voltage will be steadier, but it will respond less quickly when you
want to change it. When R × C is smaller, the output voltage will respond more quickly but
you will see more fluctuations in the analog voltage because of the pulses that are delivered to
maintain that voltage. In general, it’s better to place an op-amp in between the analog output
if you plan on driving a load that has any appreciable current draw. If the current draw is
small, yet appears to have an effect, use a larger value of C, which will store more electrons to
supply the small current draw.

Figure 9.10
Circuit for use with

DAC object

 Vss

C

pin
R

Analog Output

Andrew Lindsay
Comment [40]: Andy, verify

9: Javelin Stamp Hardware Reference

Page 212 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

DAC is really s special case of PWM. DAC is designed to allow the Javelin Stamp (a purely
digital device) to generate an analog voltage. The basic idea is this: If you make a pin output
high, the voltage at that pin will be close to 5 V. Output low is close to 0 V. What if you
switched the pin rapidly between high and low, so that it was high half the time and low half
the time? The average voltage over time would be halfway between 0 and 5—2.5 V. This is
the idea behind DAC; that you can produce an analog voltage by outputting a stream of digital
1s and 0s in a particular proportion. The proportion of 1s to 0s in DAC is called the duty
cycle. The duty cycle controls the analog voltage in a very direct way. The higher the duty
cycle the higher the voltage. In the case of the Javelin Stamp, the duty cycle is the ratio
between the high time and the low time. To determine the proportional PWM output voltage,
use this formula: (highTime/(lowTime+highTime)) * 5 V. For example, if highTime is 49
and lowTime is 13, the duty cycle is 0.79. The output, then, is .79*5 V = 3.95 V.

Base Class: VirtualPeripheral

Constructors
DAC(int pin) – Creates a DAC object that uses the specified pin.

Methods
void update(int value) – Sets the DAC’s output. The value argument must be
between 0 and 255.

Example: See the Digital to Analog Conversion section of Chapter 4.

Once you set the DAC it continues to output the requested voltage until you change it or until
you stop or remove the VP. The example below cycles the output voltage from 0 to 5V in a
steady ramp.

EEPROM
The Javelin Stamp contains an EEPROM onboard that stores your program. You may use
unused portions of EEPROM to write data that persists even when the Javelin Stamp loses
power. Like all EEPROMs, there is a limit to how many times you can write to the EEPROM
before it will fail (usually in the neighborhood of 1 million cycles).

Although 1 million writes sounds like a lot, you should be careful when writing programs that
take advantage of EEPROM. For example, if you wrote a data logging program that wrote to
the same EEPROM cell every second, you’d write 1 million times in less than 12 days. Even
at once a minute, you could wear out the EEPROM in less than 2 years.

sdill
Comment [41]: Andy: Make a reference here to p41
examples

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 213

EEPROM storage is best for configuration options and other data that does not frequently
change.

The Javelin Stamp organizes its EEPROM so that address 0 is always in the same place
regardless of the program you have loaded. This allows you to load the EEPROM with values
using one program and retrieve them with another program you load later. Of course, when
you share EEPROM like this, the largest program determines the maximum address you can
use.

Base Class: Object

9: Javelin Stamp Hardware Reference

Page 214 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Methods:
static byte read(int address) – The read method reads a single byte from the
specified address. You may use addresses ranging from 0 to the amount returned by size –1.
If you specify an invalid address, the method will throw an
IndexOutOfBoundsException.

static int size() – Use the size method to determine how much EEPROM is
available. You may use addresses from 0 up to, but not including the value of size.

static void write(int address, byte value) – This method writes the
indicated byte to the specified address. If you specify an invalid address, the method will
throw an IndexOutOfBoundsException.

Example:

Program Listing 9.5 – EEPROM Test

import stamp.core.*;

public class EETest {

 static void setEEProm(int n) {
 // have to chop n into bytes
 EEPROM.write(0,(byte)(n&0xFE));
 EEPROM.write(1,(byte)(n>>8));
 }

 static int getEEProm() {
 int x;
 x=EEPROM.read(1);
 x=(x<<8)+EEPROM.read(0);
 return x;
 }

 public static void main() {
 setEEProm(2300);
 System.out.println("Bytes available in EEPROM:");
 System.out.println(EEPROM.size());
 System.out.println("The value you wrote to EEPROM:");
 System.out.println(getEEProm());
 } // end main
} // end class

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 215

Memory

Base Class: Object

Methods: static int freeMemory()

Returns: The number of bytes available in the SRAM.

Example:

int mem;
mem = Memory.freeMemory();
System.out.println(mem);

PWM
The PWM class is a Virtual Peripheral (VP) that can generate a train of pulses. You can use
these pulses to control motor speeds, LED or lamp brightness, or – with the addition of a
simple filter circuit – generate analog voltages. You can think of PWM as a programmable
pulse generator. By setting the ratio of time the pin is on to the time the pin is off, you can
control the average power sent to a device.

Since PWM is a VP, once you set a channel to output PWM (short for pulse width modulation) it
will continue to do so until you stop it. You specify the amount of time you want the PWM
generator to output a high pulse and the amount of time you want the pin to be low. The time
units are 8.68uS. To set the duty cycle to 50%, for example, you’d set the high time and low
time to be 1 (or any two equal numbers from 1 to 255).

9: Javelin Stamp Hardware Reference

Page 216 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Figure 9.11 Pulse train generated by PWM object

Vdd = 5 V

... Vss = 0 V

pin

lowTime

highTime

Base Class: VirtualPeripheral

Constructors:
PWM(int pin, int highTime, int lowTime) – Creates a PWM object on the
specified pin (for example, CPU.pin1) with the specified high and low times (in 8.68us
units).

Methods:
void update(int highTime, int lowTime) – Changes the pulse widths
associated with the PWM object.

Terminal
When debugging a Javelin program, you may want to supply input to your program using the
debugging terminal. You can do this with the Terminal class, which allows you to read
keystrokes from the debug terminal. You can also determine if any characters are waiting to
be read. The Terminal class contains static members. There is no need to instantiate a
copy of Terminal.

Base Class: Object

Methods

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 217

static boolean byteAvailable() – Returns true if one or more characters are
available to be read.

static char getChar() – Returns a character from the terminal. If no character is
available, this call waits until there is something to return.

Example
The example program reads characters from the Terminal until the user presses Enter. As
the user types, the program compares the input with the password string. At the end, if the
characters match, the program prints a welcome message. Otherwise, it prints an access
denied message.

You can send the Javelin messages by typing them into the field below the area where the
messages are displayed in the messages from Javelin window.

Program Listing 9.6 - Password Gate

import stamp.core.*;

public class PasswordGate {

 static String password = "Parallax";

 public static void main() {
 int i=0;
 int c; // character
 boolean access=false;
 System.out.println("Enter password: ");
 do {
 c=Terminal.getChar();
 if (c==13) {
 access=(i==password.length());
 break;
 } // end if
 if (i==-1) continue; // already blew
it!
 if (password.charAt(i)==c)
 i++;
 else
 i=-1;
 } while (c!=13);
 if (access)
 System.out.println("Welcome!");
 else

9: Javelin Stamp Hardware Reference

Page 218 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 System.out.println("Unauthorized access forbidden!");
 } // end main
} // end class
declaration

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 219

Timer
The Timer virtual peripheral (VP) provides you with a 32-bit timer with 8.68us resolution.
The first time you create a Timer object, the class installs itself as a virtual peripheral.
However, any subsequent timers use the same VP.

Each timer has a mark that can store the current time (by calling the mark method). Once
marked, you can test to see if any number of milliseconds (or timer ticks) has passed since the
mark call. You can also simply read the tick values if you like.

Base Class: VirtualPeripheral

Methods:
void mark() – Use the mark method to remember the current time. You can later test to
see if a given number of milliseconds have elapsed (or you can test timer ticks). See
timeout for more information.

static void start() – This method starts the master timer VP. The timer
automatically starts when you first create it, so you won’t need to use this method unless
you’ve previously called stop.

static void stop() – This method stops the master timer VP. Notice that calling
stop will make any previous mark calls to any timer inaccurate.

int tickHi(), int tickLo() – These two methods return the high-order 16 bits and
low-order 16 bits of the current timer value. ntegers are signed, values greater than 32767
will appear negative.

boolean timeout(int milliseconds), boolean timeout(int hi, int
lo) – The timeout method returns true if the specified period has elapsed since the last
call to mark. The single integer argument specifies the number of milliseconds. If you use
two arguments, they are the high and low parts of the period in 8.68 us units. The method
will return true if the current time is the same or greater than the marked time plus the
period. Otherwise, the method returns false.

Example:

Program Listing 9.7 – Timer Example

sdill
Comment [42]: Is this static, verify.

sdill
Comment [43]: Is this static, verify.

sdill
Comment [44]: There are sync issues here Al
says, verify.

9: Javelin Stamp Hardware Reference

Page 220 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

import stamp.core.*;

public class TickTock {

 static boolean tick=true;

 public static void main() {
 Timer clock = new Timer();
 while (true) {
 for (clock.mark(); !clock.timeout(1000);) ; // wait for one
second
 System.out.println(tick?"tick":"tock");
 tick=!tick;
 } // end while
 } // end main
} // end class

Uart
The Uart object is a Virtual Peripheral that can act as a serial receiver or transmitter. Using
the Uart does not cause your program to stop, so you can receive or transmit serial data
while your program continues to execute. If you want to send and receive, no problem, just
use two Uart objects, one for each communication channel. Each Uart object has a 256
byte buffer for receive or transmit operations. You can specify a handshaking pin to send a
stop signal to the sender when the buffer has 16 bytes or fewer remaining.

Base Class:
VirtualPeripheral

Fields:
final static int dirReceive – Set the Uart to receive mode (see Constructors).
final static int dirTransmit – Set the Uart to transmit mode (see
Constructors).

These constants allow you to easily set the baud rate to any standard baud rate:
final static int speed2400
final static int speed4800
final static int speed7200
final static int speed9600
final static int speed14400
final static int speed19200
final static int speed38400
final static int speed57600

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 221

final static boolean invert – selects inverted mode. Use inverted mode when
working with line drivers like the MAX232 or the COM port on the Javelin Stamp Demo
Board.

final static boolean dontInvert – selects non-inverted mode. You can use
non-inverted mode to connect directly to many normal RS-232 receivers; however, keep in
mind that some receivers do not accept the nonstandard voltage. You can also use non-
inverted mode to connect to a normal RS-232 transmitter so long as you provide a 22 kΩ
series resistor between the RS232 transmit pin and the Javelin Stamp’s I/O pin. Without this
series resistor, the RS232 transmitter, the Javelin Stamp, or both could be damaged.

final static int stop1
final static int stop2
final static int stop3
final static int stop4
final static int stop5
final static int stop6
final static int stop7
final static int stop8

These constants allow you to select the number of stop bits the Uart object will expect.
Remember, stop bits are not true bits, but rather idle line time. Most devices require 1 stop bit
as a minimum and some older devices expect 2 stop bits. Adding extra stop bits increases the
amount of time between characters. The exact amount of time depends on the baud rate. For
example, at 9600 baud, each bit is about 1.04 ms long. So four stop bits would create 4.16 ms
between each character. If the device you are connecting to expects a certain number of stop
bits, you’ll need to specify at least that many stop bits in the Uart constructor. Specifying
more will still work, but will slow communications.

TIP

For devices that need pacing, you can get breaks longer than eight stop bits
by using the Timer VP in conjunction with the sendByte method. You
can also use sendByte in conjunction with CPU.delay().

Constructors:
Uart (int direction, int dataPin, boolean dataInvert, int
baudRate, int stopBits)

9: Javelin Stamp Hardware Reference

Page 222 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

The constructor is used to create and start a Uart object. Many of the parameters to the
constructor should be from the list of the final static fields just discussed. The
direction parameter specifies if the Uart is a transmitter (Uart.dirTransmit) or a
receiver (Uart.dirReceive). The dataPin parameter specifies the pin you wish to use
for serial communications (for example, CPU.pin2). For inverted mode, set dataInvert
to Uart.invert, for non-inverted mode, use Uart.dontInvert. Finally select a
baudRate and stopBits constant (for example, Uart.speed9600 and
Uart.stop1).

Uart(int direction, int dataPin, boolean dataInvert, int
hsPin, boolean hsInvert, int baudRate, int stopBits) – This
constructor takes the same arguments as the first constructor (see above) but it also allows you
to select a handshaking pin (e.g., CPU.pin3) and the polarity for that pin. If the hsInvert
parameter is Uart.dontInvert and if the Uart object is a receiver, the pin will be true
if there are at least 16 bytes available in the buffer. Otherwise, the flow control pin will be
false. If the Uart object is a transmitter, using Uart.dontInvert, the Uart object
will transmit serial data when the receiver sends a false signal on the handshaking pin.
When you use Uart.Invert, it expects a true signal on the handshaking pin.

Methods:
void start() – starts the Uart virtual peripheral. By default, the Uart starts when you
create it, so you’ll only need to use start after you’ve stopped it.

void stop() – stops the Uart virtual peripheral. This method stops the virtual peripheral
immediately. It does not check to see if there are any bytes remaining in the buffer or if the
Uart is in the middle of transmitting or receiving a byte.

TIP

Use byteAvailable() to find out if there is a byte in the buffer
before calling the stop() method.

void sendByte(int data) – stores a byte in the outgoing buffer for transmission as
soon as possible.

void sendString(String data) – stores a string in the outgoing buffer for
transmission as soon as possible.

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 223

int receiveByte()– reads the next byte from the serial input buffer. If no bytes are
present in the buffer, this call will wait until a character arrives.

Caution

If the buffer is empty, this method blocks your foreground code until a
byte is received. You can use byteAvailable() to be sure there is
a byte in the buffer before calling receiveByte(). If a byte is not
available, the code can do something else and check to see if there is a
byte available later.

boolean byteAvailable() – returns true if there are characters available for
receiveByte() to return.

Example:

See the following sections in Chapter 4 for Examples:

• Communicating with Computers
• Communicating with Peripheral Devices.

Andrew Lindsay
Comment [45]: Steve, Code reference

10: Technical Details

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 225

Summary of Java Differences
This section explains the differences (listed below) between workstation Java and the subset
of Java used by the Javelin Stamp. Recommendations for how to approach writing code for
the Javelin Stamp are made for each difference.

• Single Thread
• No Garbage Collection
• Subset of Primative Data Types
• Subset of Java Libraries
• Strings are ASCII
• No Interfaces
• One Dimensional Arrays

Single Thread
The Javelin Stamp only supports one thread. However, you can schedule multiple tasks to
execute on the same thread with the Timer object. You can also run up to six background VP
objects. See Chapter 7 for a Timer example. Background VP objects are first introduced in
the Javelin Stamp Features section of Chapter 1, and examples making use of these VPs can
be found in Chapters 4 and 9.

No Garbage Collection
Once memory has been allocated for an object, that memory is never reclaimed for use with
another object. For embedded systems, this is not usually a big limitation, especially since
garbage collection can wreak havoc with real time system performance. In a PC based Java
system, garbage collection may occur at any time. This can cause problems when you are
trying to do processing in real time.

Most embedded applications involve allocating memory or buffers at the start of a program
and not allocating more memory as the program progresses. When writing programs for the
Javelin Stamp, make sure that your programs do not allocate memory every time an event
occurs, or at regular intervals.

If you want to reuse memory, it is up to you to program that behavior. Even though the obj
variable is a single variable, it will hold 100 different objects. Each object will persist for the
life of the program. When possible reuse objects instead of creating new ones.

There are several strategies you can use to make sure your programs are efficient:

• Use static variables whenever possible.

10: Technical Details

Page 226 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

• Use the StringBuffer object instead of String objects if you have significant
amounts of text information that change frequently.

Avoid creating new object instances whenever possible. Here are a few ways that unwanted
new objects are created that you should watch out for when writing applications for the
Javelin Stamp:

• Creating new objects in loops or based on recurring events.
• Concatonating data, example: System.out.println(a + b).
• Concatonating String objects: a = a + b;

Particularly, be wary of allocating memory within loops. For example:

// Avoid writing code that creates new objects in loops!

for (int i=0;i<100;i++) {
 SomeObject obj = new SomeObject();
 .
 .
 .
}

A similar problem can arise when you use string concatenation. If a and b are String
object references, you might write:

a = a + b;

This creates a temporary StringBuffer (internally handled by the compiler) and it
orphans the original contents of a (assuming there are no other references to that string). So
now you have two objects taking up space that you can’t possibly use.

Subset of Primitive Data Types
Table 10.1 lists the primitive data types supported by the Javelin Stamp. Note that the int
type is 16 bits wide. Therefore, the largest signed value you can place in an int is 32,767
(0x7FFF). Values above 0x7FFF appear negative. The byte type is 8 bits, and the short
type is 16 bits, just as in Java on your PC. With the byte data type, the values range from –
128 to 127. If you need unsigned bytes, use char, which can range from 0 to 255.

10: Technical Details

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 227

Table 10.1: Primitive Data Types
Supported by the Javelin Stamp

Type Support
boolean Yes

byte Yes
char Yes

short Yes
int 16-bit instead of 32

float No
double No

long No

The Javelin Stamp firmware does not support floating point types such as float and
double. The long data type is also unsupported. If you need numbers larger than 16-bits,
you may be able to build your own routines to handle the larger numbers. Of particular use is
the CPU.carry method. This method allows you to read the overflow result after a 16-bit
addition or subtraction. This makes it straightforward to add and subtract 32-bit (or larger)
words. See the article on CPU.carry in Chapter 9 for an example.

The Javelin’s int type spans –32,768 to 32,767, but there is a way around this if you need a
positive value between than 32,767 and 65535 (0x7FFF to 0xFFFF). For example, if you
need a delay of 6.4 seconds, you need to pass CPU.delay a value of 0xFA00. You can set a
variable to 0x7D00 and shift it left:

int dly=0x7D00;
CPU.delay(dly<<1);

You can’t simply use 0xFA00 or 0x7D00<<1 because the compiler will attempt to do the
math at compile time and determine that the result is not a valid integer.

Subset of Java Libraries
A subset of the standard Java libraries is available to the Javelin. A PC Java installation
provides a large number of libraries in the java.* packages. Many of these libraries are only
applicable to workstation based programs. You should not assume that all of the same
methods are available to your Javelin Stamp programs. Also, some methods that are
available, they may have different behavior than you are used to because of data type
differences, for example. In addition, the Javelin Stamp has many additional packages to

10: Technical Details

Page 228 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

provide support for various hardware and peripheral devices. These packages and how they
are used are discussed in Chapters 8 and 9.

10: Technical Details

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 229

Strings are ASCII
Javelin Stamp Strings and characters are composed of single-byte ASCII characters, not
double-byte Unicode characters. For embedded system programming, you’ll usually prefer to
handle ASCII characters. If necessary, you can store Unicode characters in an int variable.

No Interfaces
Interfaces are not available; however, you can create abstract classes that other classes can
extend.

One Dimensional Arrays
The Javelin Stamp only supports single dimensioned arrays. You can always unwrap your
multi-dimensional array into a single dimension. For example, suppose you have an 8 by 8
matrix that represents a checkerboard. You might write:

contents = checkboard[x*8+y];

You could even wrap the array in a method, to make the syntax clearer. For example:

int checkerboard(int x, int y) {
 return checkboard[x*8+y];
}

void checkerboard(int x, int y, int value) {
 checkboard[x*8+y]=value;
}

You can also create an array of arrays. The key to making this work, is to make the
containing array (or arrays) contain Objects. Since all objects derive from Object and
arrays are objects, you can store arrays in an Object reference.

Here’s how you might implement the checkerboard using this strategy:

Object checkboard[] = new Object[8];
for (int i=0;i<checkboard.length;i++)
 checkboard[i] = new int[8];

Referencing a particular cell on the board is a bit cumbersome:

((int [])checkboard[x])[y]=1;

10: Technical Details

Page 230 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

You can also decompose the array into individual rows:

int row2[] = (int [])checkboard[2];
row2[y]=0;

Understanding the Javelin Stamp’s Memory Management
The Javelin stores your program in EEPROM. That means that your program remains in the
Javelin even when the power is off. When you apply power to the Javelin, it copies this
EEPROM to high-speed RAM memory for speedy execution.

The 32K of RAM also holds the stack and the heap which are both areas used to store your
program’s data and variables. When you create objects with new or define static variables,
they consume space on the heap. You must carefully manage the heap since once you create
an object on the heap, there is no way for the Javelin to reclaim it (until you reset or cycle the
power, of course). Strings are specially treated and have their own heap. You can examine
the size of the various memory areas using the Memory Usage tab of the debugger window
(see Figure 10.1).

Figure 10.1
Javelin Stamp
IDE Debugger
memory usage

page

The stack, on the other hand, is used for local variables and method parameters. The stack
can grow and shrink at will, so there are fewer concerns with managing its size. However,
you can’t create objects on the stack – only simple variables and object references.

For example, consider this example:

void somemethod(String s) {
 StringBuffer work = new StringBuffer(s);
 . . .
}

10: Technical Details

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 231

Here, the variables s and work are on the stack. However, these variables are simply object
references – not the objects themselves. The new operator creates a StringBuffer object
on the heap and presumably, the actual String that s refers to is also on the heap.

A problem arises if you write a method like somemethod because once it returns to its caller
the object in work is effectively lost. Your program no longer has a reference to this
StringBuffer so it is effectively unusable. In a workstation Java, the system software
would eventually notice that it was out of memory and reclaim this variable using a process
called garbage collection. However, garbage collection happens at unpredictable times and
may take a long time to complete. This makes it unsuitable for embedded programs where
you need to know when things occur and how long they take to execute.

The problem isn’t so much that the object is on the heap. Rather, it is that the object’s only
reference is on the stack. When the Javelin reclaims the work variable, the object it refers to
is still on the heap, but you no longer have a way to access it.

The answer, then, is to store object references in fields that will exist for the life of your
program. In many cases, these will be per instance fields or static fields in an object. There is
one case where you might as well use stack variables to hold object references in your main
program loop. For example, consider this bit of code:

static void main() {
 StringBuffer buff = new StringBuffer();
 while (true) {
 . . .
 }
}

In this case, when buff goes out of scope, the program will stop running anyway. Therefore,
there is no harm that you will lose access to the underlying StringBuffer object. The
same principle applies anywhere you have code that you will effectively execute forever (or,
at least, until your program terminates).

A common strategy for dealing with this problem is to create a pool of objects and keep them
for the entire time your program is running. Then, different parts of your program can check
out a few of these objects and return them to the pool when you are done with them. For
more information on pools refer to the Javelin’s IDE on-line documentation.

10: Technical Details

Page 232 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Another important consideration is where the compiler generates objects on your behalf.
Since your program doesn’t know about these objects, it is impossible for you to ever reclaim
them. For example, consider this code:

int t=33;
System.out.println("The value is " + t);

For a simple example, or for debugging purposes, this might be acceptable. However, it is
wasting memory. Why? Because the compiler is automatically generating a
StringBuffer and a String object that it uses to build the concatenated string. Since
your program doesn’t directly work with these objects, they consume space in the heap that
you can’t recover. It would be better to create a StringBuffer as part of the object or in a
static variable and then use it to synthesize the String.

StringBuffer buf=new StringBuffer(32); // 32
byte string

void display() {
buf.append("The value is ");
buf.append(t);
System.out.println(buf.toString());
}

Memory and Variable Types
This information may come in handy if your application is running short on memory space:

• All types (including char and byte) use 2 bytes of memory.
• Arrays require the amount of space to store their elements (that is, 2 times the

number of elements) plus 4 additional bytes.
• Exception: byte and char arrays use one byte per element.
• Local variables deduct from your stack and are reclaimed when they go out of scope.
• Objects require space for their non-static fields, plus two bytes of overhead.

sdill
Comment [46]: why?

Index

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 233

-- (Decrement), 92, 94, 131
- (Subtraction), 92, 94, 132
! (Boolean Invert), 92, 134
!= (Not Equal to), 92, 133
% (Modulus), 92, 132
& (Bitwise AND), 92, 95, 134
&& (Logical AND), 92, 95
() (Parentheses), 93, 132
* (Multiplication), 93, 94, 132
*/ (Multi-line Remark, closing), 95
/ (Division), 94, 132
/* (Multi-line Remark, opening), 95
/** (JavaDoc Remark), 95
// (Remark), 95
; (Semicolon), 87
?: (Conditional), 92, 135
[] (Square Brackets), 93, 130-131
^ (Bitwise XOR), 92, 134
{ } (Curly Braces), 88–89
| (Bitwise OR), 92, 134
|| (Logical OR), 92
~ (Bitwise Invert), 92, 134
+ (Addition), 92, 93, 94, 132
++ (Increment), 92, 94, 131
< (Less Than), 92, 133
<< (Left-Shift), 92, 133
<= (Less Than Equal to), 92, 133
== (Equal to), 92
> (Greater Than), 92, 133
>= (Greater Than Equal to), 92, 133
>> (Right-Shift, Signed Extension),

92, 132
>>> (Right-Shift), 92, 132

 - A -
abstract, 114
Abstraction, 109
ADC, 159-160

 - B -
Base

Hexadecimal, 91
Octal, 91

boolean, 89, 115, 149
break, 40, 96, 115
Button, 160
byte, 89, 115

 - C -
Cache, 113
Calculations, 34
carry, 164
case, 97, 116
case sensitive, 32
cast, 107, 115-116, 131
catch, 111, 116, 129-130, 150
char, 41, 89, 116
Checked Exceptions, 111
class

definition, 31
Library, 48

Classes, 97–100, 116
Basic Type, 107
Clone, 105
Constructors, 107
DS1620, 59
Equals, 105
Extending. See extends
HashCode, 105
import, 113
Integer, 109
Member, 98
Relationships, 140
toString, 105
Virtual Peripherals. See Virtual

Peripherals
wrapper. See wrapper

Index

Page 234 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Analog to Digital, 159-160
Arrays, 103–5, 193
ASCII, 41

CLASSPATH, 86, 112
Clock, 174
COM Ports, 30

Index

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 235

const, 136
constant, 32
Constants. See final
construct, 99
continue, 40, 96, 116
count, 164
Counter, 169-170
CPU, 163

Message, 42–44

 - D -
DAC, 59, 181
Debug, 78–83, 185
delay, 164, 193
Digital to Analog, 181
do, 37, 115, 116
double, 136
DS1620, 8, 59-64

 - E -
Editor, 83
EEPROM, 182
else, 95, 116
Encapsulation, 138
Errors, 76–78, 110, 150
Escape Sequences, 91
Exception Handling, 110, 150
Exceptions, 146
Expressions, 91–95
extends, 105–108, 117

 - F -
final, 32, 106, 117
finally, 117, 129
float, 136, 193
for, 39–40, 88, 95, 115, 117

 - G -

Global Options, 71–72
goto, 136

 - H -
Hardware, 11–14

EEPROM, 183
Hexadecimal, 91

 - I -
I/O Pins, 163, 164, 167-169, 170, 174-

175
IDE, 2, 15–17, 71-86

Call Stack, 80
CLASSPATH, 84
Compile, 76
Debug, 27–28, 76

Step Into, 81
Editor, 83
Installation, 15–17
Link, 76
Memory Usage, 80
Menubars, 83
Packages, 84–85
Program, 76
Projects, 85-86
Resume Debug, 76
Starting a Project, 72–76
Toolbars, 83

if, 35–37, 88–89, 95, 119
implements, 136
import, 113, 120
Inheritance, 105
Inputs, 156, 160-163
installVP, 164
instanceof, 135
int, 89, 121, 192
interface, 136

Index

Page 236 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Garbage Collection, 100, 191
getMessage, 150

 - J -
Java Differences, 87, 193-197

break, 96

Java Differences (continued)

const, 136
continue, 96
double, 136
Floating Point, 193
for, 95
Garbage Collection, 191
goto, 136
if, 95
implements, 136
int, 192
interface, 136
long, 136
Loops, 192
native, 136
objects, 192
static, 191
StringBuffer, 191, 192
Strings, 104, 192
synchronized, 136
Threads, 191
transient, 136
Unicode, 193
volatile, 136
while, 97

Javelin Stamp
Architecture, 3–4
Demo Board, 7
Hardware, 1, 4, 5
Heavy Loads, 57
I/O pins, 12–14
Power Supply, 13–14
Starter Kit, 5

 - K -

Lists, 157-158
long, 136
Loops, 37–40

break, 40
continue, 40
do, 37
for, 39–40, 88, 95
while, 37–40, 88

 - M -
Math, 151, 164
message, 42–44, 166
Methods, 99

Constructors, 99
equals, 99
Returning a Value, 99
void, 99

 - N -
nap, 166, 172, 173
native, 136
new, 100, 121
null, 121

 - O -
Object Oriented, 140, 147
Objects, 98-100, 137-138, 151

Arrays, 103–5
casting. See cast
keywords. See the key word
new, 100
Pointers, 101-102
Strings, 104–5

substring, 105
this, 102

Index

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 237

Keywords, 114–130

 - L -
Libraries, 193
Library Class, 48

Timer, 146
UART(s), 137, 146

Octal, 91
Online Resources, 114

Operators

Basic Java Operators, 92
Order of Operations, 93

Order of Operations, 93
override, 106

 - P -
Packages, 84–85, 112, 122-123

CLASSPATH. See CLASSPATH
Pointers, 101–2
Polymorphism, 106, 139
print, 41–42, 155-156
println, 41–42, 155-156
PrintStream, 155-156
private, 106, 123
protected, 106, 123
public, 106, 123
pulseIn, 167
pulseOut, 168
PWM, 58, 146, 184-185

 - R -
Random, 156
RC circuit, 170
RC timing, 170
rcTime, 169-171
readPin, 171-173
readPort, 172
removeVP, 173
return, 99, 124

 - S -
Serial Port, 30

Strings (continued)
substring, 105

super, 106-108, 126
switch, 97, 115, 127
synchronized, 136
System.out

print, 41–42, 154-156
println, 41–42, 154-156

 - T -
Template, 72–76
Terminal, 185
this, 127
Threads, 191
throw(s), 111, 128, 150
throwIt, 152
Timer, 146, 187
toString, 109
transient, 136
try, 110-111, 128-130, 150
Type, 131

Garbage Collection, 191
int, 192

 - U -
UART(s), 64, 146, 188
Unicode, 202
URL's, 114

 - V -
Variables, 32–34

boolean, 89
byte, 89

Index

Page 238 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

setInput, 174
shiftln, 174
short, 89, 125
static, 33, 125
StringBuffer, 42, 100, 104, 154, 192
Strings, 104–5, 152, 192

StringBuffer. See StringBuffer

Calculations, 34
char, 89
Declaration, 89-91
final, 32, 90-91
int, 89
short, 89
static, 80

Variables (continued)

static final, 91
Virtual Peripherals, xiv, 3, 145, 163,

164, 173, 184
ADC, 159
Background, 3
DAC, 59
Foreground, 3

 PWM, 58, 146, 184-185

Virtual Peripherals
Timer, 187

 UART(s), 64, 188void, 99, 130
volatile, 136

 - W -
while, 37–40, 88, 97, 115, 130
wrapper, 109

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Parallax:

 JS1-IC

http://www.mouser.com/parallax
http://www.mouser.com/access/?pn=JS1-IC

