Power MOSFET

30 V, 64 A, Single N-Channel, SO-8FL

Features

- Low R_{DS(ON)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- Low R_G
- These are Pb-Free Devices*

Applications

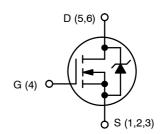
- Refer to Application Note AND8195/D
- CPU Power Delivery
- DC-DC Converters

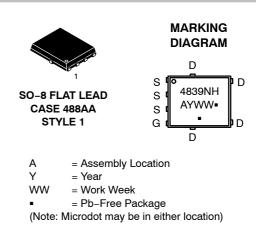
MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

	Parameter Symbol Value					
Drain-to-Source Vo	Itage		V _{DSS}	30	V	
Gate-to-Source Vol	tage		V _{GS}	±20	V	
Continuous Drain Current R _{θJA} (Note 1)		T _A = 25°C T _A = 85°C	I _D	15 11	A	
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C T _A = 85°C	PD	2.17 1.13	W	
Continuous Drain Current R _{θJA} – t≤10 sec	Steady State	$T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$	Ι _D	24 17	A	
Power Dissipation $R_{\theta JA} t \leq 10 \text{ sec}$		T _A = 25°C T _A = 85°C	PD	5.7 2.9	W	
Continuous Drain Current R _{θJA} (Note 2)		T _A = 25°C T _A = 85°C	ID	9.5 7.0	A	
Power Dissipation $R_{\theta JA}$ (Note 2)		$T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$	PD	0.87 0.45	W	
Continuous Drain Current R _{θJC} (Note 1)		T _C = 25°C T _C = 85°C	Ι _D	64 46	A	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C T _C = 25°C	PD	42.4 22	W	
Pulsed Drain Current		= 25°C, = 10 μs	I _{DM}	192	A	
Operating Junction a Temperature	and Storage	e	T _J , T _{STG}	–55 to +150	°C	
Source Current (Boo	ly Diode)		ا _S	35	А	
Drain to Source dV/o	lt		dV/dt	6	V/ns	
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, V _{DD} = 24 V, V _{GS} = 10 V, I _L = 27 A, L = 0.3 mH, R _G = 25 Ω)		EAS	109	mJ		
Lead Temperature for (1/8" from case for 1		g Purposes	ΤL	260	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.


Surface-mounted on FR4 board using the minimum recommended pad size.
 *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
20.) (5.5 m Ω @ 10 V	
30 V	10.3 m Ω @ 4.5 V	64 A

N-CHANNEL MOSFET

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFS4839NHT1G	SO-8FL (Pb-Free)	1500 / Tape & Reel
NTMFS4839NHT3G	SO-8FL (Pb-Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ ext{ heta}JC}$	2.95	
Junction-to-Ambient - Steady State (Note 3)	R_{\thetaJA}	57.6	°C/W
Junction-to-Ambient - Steady State (Note 4)	R_{\thetaJA}	143.3	-0/00
Junction–to–Ambient (t \leq 10 sec)	$R_{ hetaJA}$	22	

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

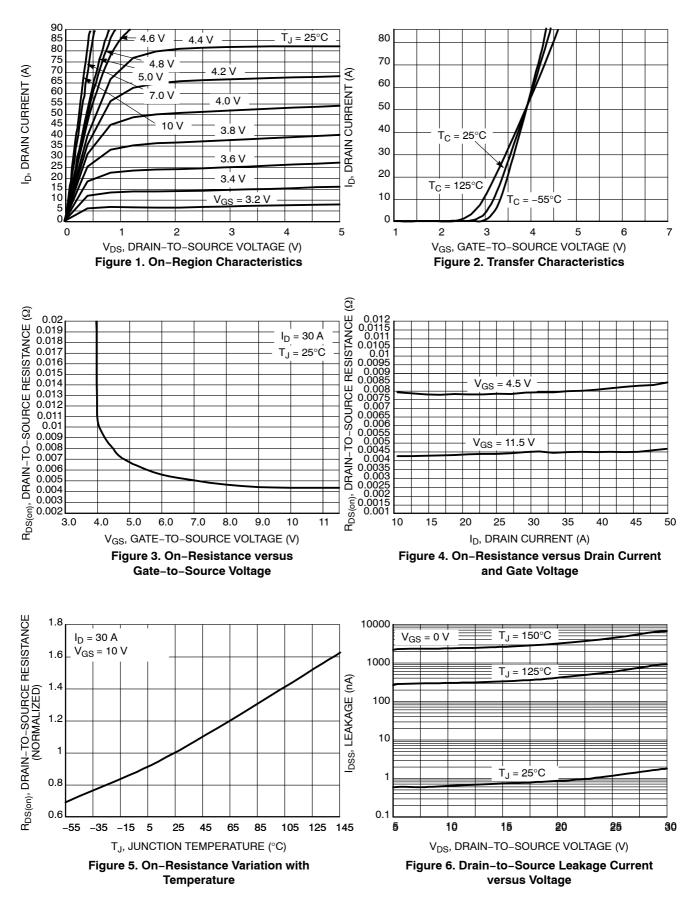
ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)

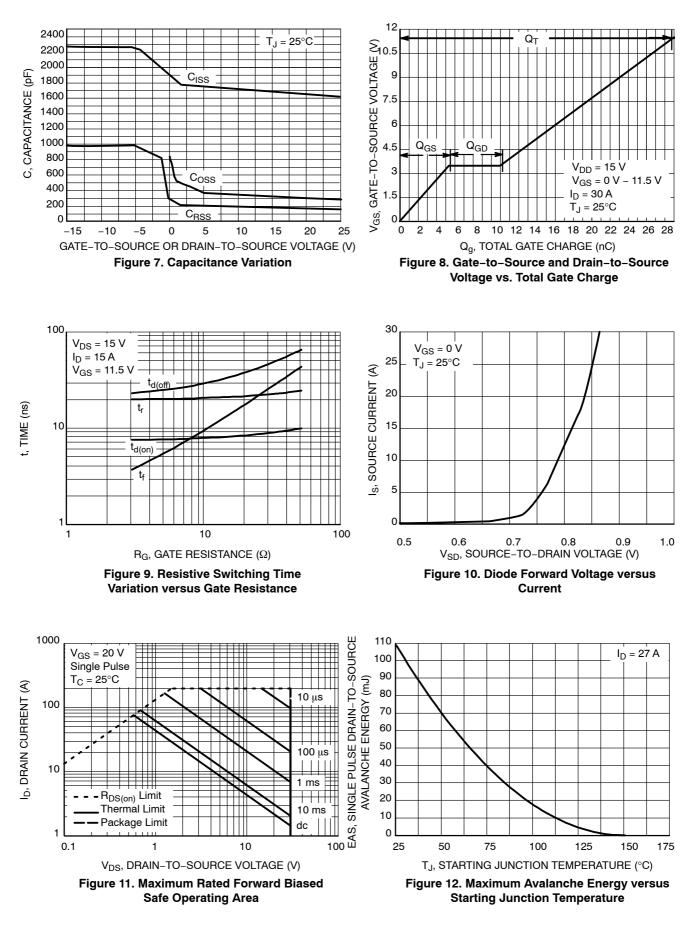
Parameter	Symbol	Test Condition		Min	Тур	Мах	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 250 \ \mu\text{A}$		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				27.5		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V, \qquad T_{J} = 25$ $V_{DS} = 24 V \qquad T_{J} = 25$				1	
	V _{DS} = 24 V	$v_{DS} = 24 V$ $T_J = 1$	T _J = 125°C			10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$				±100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$		1.5	2.1	2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.5		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V to}$ $I_D = 30$			4.3	5.5	
		11.5 V	I _D = 15 A		4.3		
	V _{GS} = 4.5 V	I _D = 30 A		8.2	10.3	mΩ	
			I _D = 15 A		7.8		1
Forward Transconductance	9 FS	V _{DS} = 1.5 V, I _E	_D = 50 A		60		S

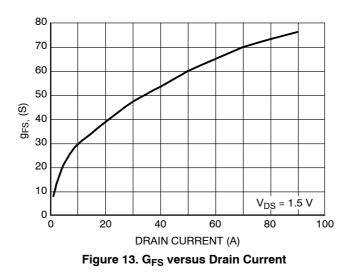
CHARGES, CAPACITANCES & GATE RESISTANCE

Input Capacitance	C _{ISS}		1744	2354	
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 12 V	355	479	pF
Reverse Transfer Capacitance	C _{RSS}		191	296	
Total Gate Charge	Q _{G(TOT)}		12.9	19.5	
Threshold Gate Charge	Q _{G(TH)}		2.2	3.3	-0
Gate-to-Source Charge	Q _{GS}	V _{GS} = 4.5 V, V _{DS} = 15 V; I _D = 30 A	5.2	7.8	nC
Gate-to-Drain Charge	Q _{GD}		5.4	8.0	
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 11.5 V, V_{DS} = 15 V; I _D = 30 A	31	43.5	nC

SWITCHING CHARACTERISTICS (Note 6)

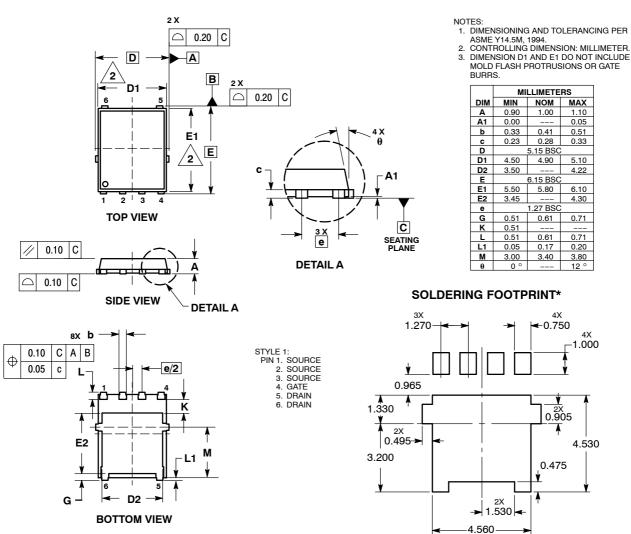

Turn-On Delay Time	t _{d(ON)}		13.4	20	
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 15 A,	22.5	33.7	20
Turn-Off Delay Time	t _{d(OFF)}	R _G = 3.0 Ω	16	24	ns
Fall Time	t _f		5.3	7.9	


 $\begin{array}{ll} \text{5. Pulse Test: pulse width} \leq 300 \ \mu\text{s} \text{, duty cycle} \leq 2\%. \\ \text{6. Switching characteristics are independent of operating junction temperatures.} \end{array}$


ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (N	ote 6)						
Turn-On Delay Time	t _{d(ON)}	V _{GS} = 11.5 V, V _{DS} = 15 V,			8.1	12.2	-
Rise Time	t _r				19.6	29.4	
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 15 \text{ A}, \text{ R}_G$	= 3.0 Ω		23.2	34.9	ns
Fall Time	t _f				3.4	5.1	
DRAIN-SOURCE DIODE CHARACT	ERISTICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V, I_{S} = 30 A T_{J} = 25^{\circ}C T_{J} = 125^{\circ}C$		0.83	1.2	N	
			T _J = 125°C		0.73		V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/µs, I _S = 30 A			19.3		
Charge Time	t _a				10.1		ns
Discharge Time	t _b				9.2		
Reverse Recovery Charge	Q _{RR}				6.3		nC
PACKAGE PARASITIC VALUES				-	-		
Source Inductance	L _S				0.93		nH
Drain Inductance	L _D	− T _A = 25°C			0.005		nH
Gate Inductance	L _G				1.84		nH
Gate Resistance	R _G				0.9		Ω

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.



PACKAGE DIMENSIONS

DFN6 5x6, 1.27P (SO8 FL) CASE 488AA-01

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi: NTMFS4839NHT1G