

July 2006

H11AA814 Series, H11A617 Series, H11A817 Series 4-Pin Phototransistor Optocouplers

Features

- AC input response (H11AA814 only)
- Compatible to Pb-free IR reflow soldering
- Compact 4-pin dual in-line package
- Current transfer ratio in selected groups:

H11AA814:	20-300%	H11A817:	50-600%
H11AA814A:	50-150%	H11A817A:	80-160%
H11A617A:	40%-80%	H11A817B:	130-260%
H11A617B:	63%-125%	H11A817C:	200-400%
H11A617C:	100%-200%	H11A817D:	300-600%
H11A617D:	160%-320%		

- C-UL, UL and VDE approved
- High input-output isolation voltage of 5000Vrms
- Minimum BV_{CFO} of 70V guaranteed

Applications

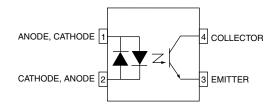
H11AA814 Series

- AC line monitor
- Unknown polarity DC sensor
- Telephone line interface

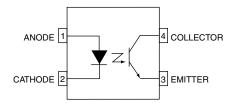
H11A617 and H11A817 Series

- Power supply regulators
- Digital logic inputs
- Microprocessor inputs

Description


The H11AA814 consists of two gallium arsenide infrared emitting diodes, connected in inverse parallel, driving a silicon phototransistor output in a 4-pin dual in-line package. The H11A617/817 Series consists of a gallium arsenide infrared emitting diode driving a silicon phototransistor in a 4-pin dual in-line package.

Package



Schematics

H11AA814

H11A617 & H11A817

Absolute Maximum Ratings ($T_A = 25$ °C Unless otherwise specified.)

Symbol	Parameter	Device*	Value	Units
TOTAL DE	VICE			
T _{STG}	Storage Temperature	All	-55 to +150	°C
T _{OPR}	Operating Temperature	All	-55 to +100	°C
T _{SOL}	Lead Solder Temperature	All	260 for 10 sec	°C
P _D	Total Device Power Dissipation (-55°C to 50°C)	All	200	mW
EMITTER				
I _F	Continuous Forward Current	814 Series 617, 817 Series	±50 50	mA
V _R	Reverse Voltage	617 Series 817 Series	6 6	V
P_{D}	LED Power Dissipation (25°C ambient) No derating up to 100°C	All	70	mW
DETECTOR	3			
V _{CEO}	Collector-Emitter Voltage	All	70	V
V _{ECO}	Emitter-Collector Voltage	814, 817 Series 617 Series	6 7	V
I _C	Continuous Collector Current	All	50	mA
P_{D}	Detector Power Dissipation (25°C ambient)	All	150	mW
	Derate above 90°C		2.9	mW/°C

Electrical Characteristics ($T_A = 25^{\circ}C$ Unless otherwise specified.) **Individual Component Characteristics**

Symbol	Parameter	Test Conditions	Device	Min.	Тур.*	Max.	Unit	
EMITTER								
V _F	Input Forward Voltage	I _F = 60mA	617 Series		1.35	1.65	V	
		I _F = 20mA	817 Series		1.2	1.5		
		I _F = ±20mA	814 Series		1.2	1.5		
I _R Reverse Leakage		V _R = 6.0V	617 Series		.001	10	μΑ	
	Current	V _R = 5.0V	817 Series					
DETECTO	R							
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_C = 0.1 \text{ mA}, I_F = 0$	ALL	70	100		V	
BV _{ECO}	Emitter-Collector	$I_E = 10 \mu A, I_F = 0$	814, 817 Series	6	10		٧	
	Breakdown Voltage		617 Series	7	10			
I _{CEO}	Collector-Emitter Dark Current	$V_{CE} = 10V, I_F = 0$	H11AA814/A, 817 Series, H11A617C/D		1	100	nA	
			H11A617A/B			50		

^{*}Typical values at $T_A=25^{\circ}C$

Transfer Characteristics ($T_A = 25^{\circ}C$ Unless otherwise specified.)

Symbol	DC Characteristic	Test Conditions	Device	Min	Typ*	Max	Unit
CTR	Current Transfer	$I_F = \pm 1 \text{mA}, V_{CE} = 5V^{(1)}$	H11AA814	20		300	%
	Ratio	$I_F = \pm 1 \text{mA}, V_{CE} = 5V^{(1)}$	H11AA814A	50		150	%
		$(I_F = 10 \text{mA}, V_{CE} = 5V^{(1)})$	H11A617A	40		80	%
			H11A617B	63		125	%
			H11A617C	100		200	%
			H11A617D	160		320	%
		$(I_F = 5mA, V_{CE} = 5V^{(1)})$	H11A817	50		600	%
			H11A817A	80		160	%
			H11A817B	130		260	%
			H11A817C	200		400	%
			H11A817D	300		600	%
		$I_F = 1 \text{mA}, V_{CE} = 5V^{(1)}$	H11A617A	13			%
			H11A617B	22			%
			H11A617C	34			%
			H11A617D	56			%
V _{CE (SAT)}	Collector-Emitter	$I_C = 1mA$, $I_F = \pm 20mA$	814 series			0.2	V
	Saturation Voltage	$I_C = 2.5 \text{mA}, I_F = 10 \text{mA}$ $I_C = 1 \text{mA}, I_F = 20 \text{mA}$	617 series			0.4	
		IC = IIIIA, IF = 2011 A	817 series			0.2	
AC CHAP	RACTERISTIC		•	1	1		
t _r	Rise Time	$I_C = 2mA, V_{CE} = 2 V, R_L = 100\Omega^{(2)}$	ALL		4	18	μs
t _f	Fall Time	$I_C = 2mA, V_{CE} = 2 V, R_L = 100\Omega^{(2)}$	ALL		3	18	μs

Isolation Characteristics

Symbol	Characteristic	Test Conditions	Min.	Тур.*	Max.	Units
V _{ISO}	Input-Output Isolation Voltage (note 3)	$ (f = 60Hz, t = 1 min) $ $ (I_{I-O} \le 2\mu A) $	5000			Vac(rms)
R _{ISO}	Isolation Resistance	(V _{I-O} = 500 VDC)	5x10 ¹⁰	10 ¹¹		Ω
C _{ISO}	Isolation Capacitance	$(V_{I-O} = 0, f = 1 \text{ MHz})$		0.6	1.0	pf

^{*}Typical values at $T_A = 25$ °C.

Notes:

- 1. Current Transfer Ratio (CTR) = $I_C/I_F x$ 100%.
- 2. For test circuit setup and waveforms, refer to Figure 13.
- 3. For this test, Pins 1 and 2 are common, and Pins 3 and 4 are common.

Typical Performance Curves

Fig. 1 Current Transfer Ratio vs. Forward Current 200 V_{CE} = 5V Ta = 25°C 180 % CURRENT TRANSFER RATIO CTR (160 140 120 100 80 60 40 20 0 5 10 FORWARD CURRENT IF (mA)

140 IF = 1mA . VCE = 5V RELATIVE CURRENT TRANSFER RATIO (%) 120 100 IF = 5mA VCE = 5V H11AA617 & H11AA817 60 40 20 Ω -60 -40 -20 0 20 40 60 80 100 AMBIENT TEMPERATURE TA (°C)

H11AA814

Fig. 2. Relative Current Transfer Ratio

vs. Ambient Temperature

Fig. 3 Collector-Emitter Saturation Voltage vs. Ambient Temperature

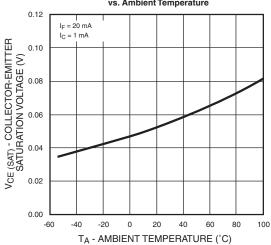


Fig. 4 Forward Current vs. Forward Voltage

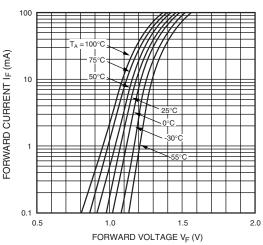


Fig. 5 Collector Current vs. Collector-Emitter Voltage (H11AA814)

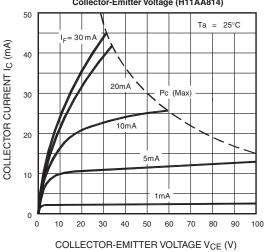
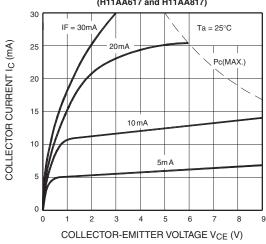



Fig. 6 Collector Current vs. Collector-Emitter Voltage (H11AA617 and H11AA817)

Typical Performance Curves (Continued)

Fig. 7 Collector Dark Current vs Ambient Temperature

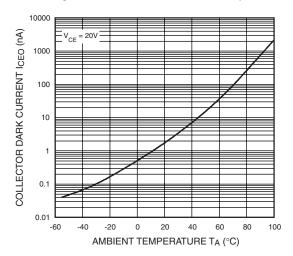


Fig. 9. Frequency Response (H11AA814)

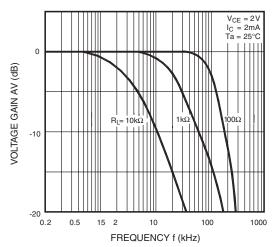


Fig. 11. LED Power Dissipation vs. Ambient Temperature

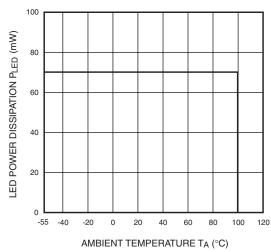


Fig. 8 Response Time vs. Load Resistance

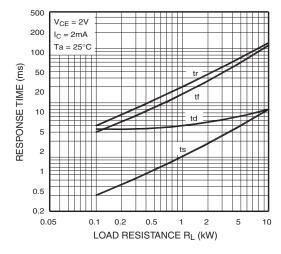
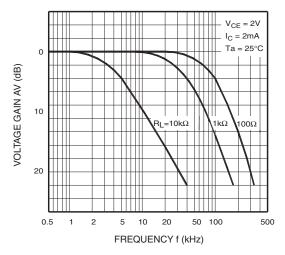
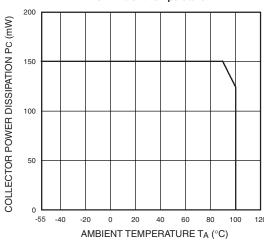
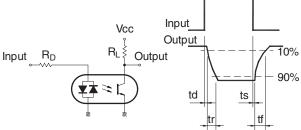


Fig. 10. Frequency Response (H11AA617 and H11AA817)


Fig. 12. Collector Power Dissipation vs. Ambient Temperature

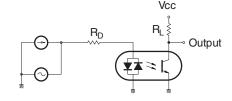
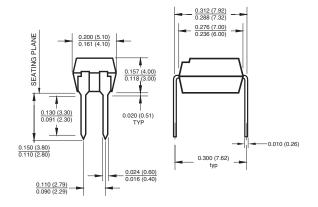
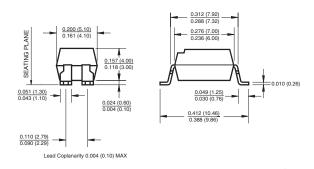

Test Circuit

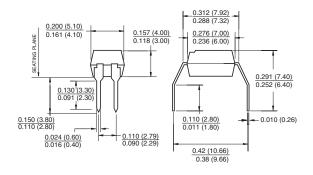
Figure 13. Test Circuit

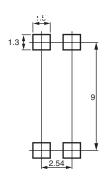


Test Circuit for Frequency Response



Package Dimensions

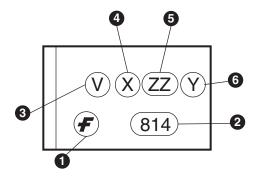

Through Hole


Surface Mount

0.4" Lead Spacing

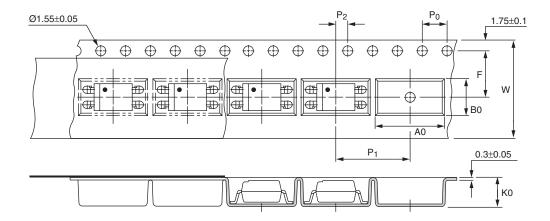
Footprint Dimensions (Surface Mount)

Note:


All dimensions are in inches (millimeters)

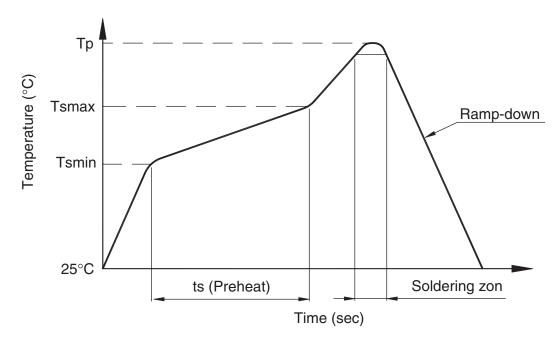
Ordering Information

Part Number Example	Description
H11AA814S	Surface Mount Lead Bend
H11AA814SD	Surface Mount; Tape and reel
H11AA814W	0.4" Lead Spacing
H11AA814300	VDE Approved
H11AA814300W	VDE Approved, 0.4" Lead Spacing
H11AA8143S	VDE Approved, Surface Mount
H11AA8143SD	VDE Approved, Surface Mount, Tape & Reel


^{*}To specify the new construction version which needs 260°C max reflow peak temperature rating: add "NF098" to the end of the part number. The non-NF098 version is rated for 260°C peak reflow temperature only for parts marked with date code 0550 and later.

Marking Information

Definiti	Definitions					
1	Fairchild logo					
2	Device number					
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)					
4	One digit year code					
5	Two digit work week ranging from '01' to '53'					
6	Assembly package code					


Carrier Tape Specifications

Note: All dimensions are in millimeters

Description	Symbol	Dimensions in mm (inches)
Tape wide	W	16 ± 0.3 (.63)
Pitch of sprocket holes	P ₀	4 ± 0.1 (.15)
Distance of compartment	F P ₂	7.5 ± 0.1 (.295) 2 ± 0.1 (.079)
Distance of compartment to compartment	P ₁	12 ± 0.1 (.472)
Compartment	A0	10.45 ± 0.1 (.411)
	В0	5.30 ± 0.1 (.209)
	K0	4.25 ± 0.1 (.167)

Lead Free Recommended IR Reflow Condition

Profile Feature	Pb-Sn solder assembly	Lead Free assembly
Preheat condition (Tsmin-Tsmax / ts)	100°C ~ 150°C 60 ~ 120 sec	150°C ~ 200°C 60 ~120 sec
Melt soldering zone	183°C 60 ~ 120 sec	217°C 30 ~ 90 sec
Peak temperature (Tp)	240 +0/-5°C	260 +0/-5°C
Ramp-down rate	6°C/sec max.	6°C/sec max.

Recommended Wave Soldering condition

Profile Feature	For all solder assembly
Peak temperature (Tp)	Max 260°C for 10 sec

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	OCXTM	SILENT SWITCHER®
ActiveArray™	GlobalOptoisolator™	OCXPro™	SMART START™
Bottomless™	GTO™	OPTOLOGIC [®]	SPM™
Build it Now™	HiSeC™	OPTOPLANAR™	Stealth™
CoolFET™	I ² C™	PACMAN™	SuperFET™
CROSSVOLT™	i-Lo™	РОР™	SuperSOT™-3
DOME™	ImpliedDisconnect™	Power247™	SuperSOT™-6
EcoSPARK™	IntelliMAX™	PowerEdge™	SuperSOT™-8
E ² CMOS™	ISOPLANAR™	PowerSaver™	SyncFET™
EnSigna™	LittleFET™	PowerTrench [®]	TCM™
FACT [™]	MICROCOUPLER™	QFET [®]	TinyBoost™
FAST [®]	MicroFET™	QS™	TinyBuck™
FASTr™	MicroPak™	QT Optoelectronics™	TinyPWM™
FPS™	MICROWIRE™	Quiet Series™	TinyPower™
FRFET™	MSX™	RapidConfigure™	TinyLogic [®]
	MSXPro™	RapidConnect™	TINYOPTO™
Across the board. A	round the world.™	μSerDes™	TruTranslation™
The Power Franchis	se [®]	ScalarPump™	UHC™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

Programmable Active Droop™

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

UniFET™ UltraFET® VCX™ Wire™

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I20

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

H11A817B300 H11A817B3S H11A817BSD H11A817B H11A817B300W H11A817B3SD H11A817BW
H11A817BS H11A817300W H11A817SD H11A617B3S H11A8173SD H11A817A3SD H11AA8143SD
H11A817A_Q H11AA814AS H11AA814 H11A617B300 H11AA814AW H11A617D3S H11A817CW H11AA814ASD
H11A817DS H11A817C300 H11A817B300_Q H11A817A300W H11A617AS H11A617B3SD H11A617BSD
H11A817D300W H11A817_Q H11A617A3SD H11A617D H11A617D3SD H11A817D_Q H11AA814A_Q
H11A617DS H11A617C3SD H11AA814W H11A617C300 H11A617C H11AA814A3SD H11AA814ASD_Q
H11A617BS H11A817CSD_F098 H11A617C3S H11A617D300W H11A617AW H11A817DSD H11A617A
H11A817D H11A617CW H11A617DSD H11A817A3SD_Q H11AA814A3S H11AA814A300W H11A817A300 H11A617CS
H11A617BS H11A817A H11A617C300W H11A817B_Q H11A617A300 H11A817DW H11A817A300 H11A617CS
H11A617ASD H11A817W H11A817D3S H11A817C3S H11AA814A300 H11A617CSD H11AA814300W
H11A617A300W H11A817S H11A817AW H11A617BW H11A817CSD H11A817C3D H11A817D3SD H11A817A3S
H11AA814A H11A617DW H11A817AS H11A817C3 H11A817C3D H11A817C3D H11A817C3SD H11A817