TIP131, TIP132 (NPN), TIP137 (PNP)

Darlington Complementary Silicon Power Transistors

Designed for general-purpose amplifier and low-speed switching applications.

• High DC Current Gain -

$$h_{FE} = 2500 \text{ (Typ)} @ I_{C}$$

= 4.0 Adc

• Collector-Emitter Sustaining Voltage - @ 30 mAdc

• Low Collector-Emitter Saturation Voltage -

$$V_{CE(sat)} = 2.0 \text{ Vdc (Max)} @ I_C = 4.0 \text{ Adc}$$

= 3.0 Vdc (Max) @ $I_C = 6.0 \text{ Adc}$

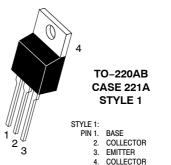
- Monolithic Construction with Built-In Base-Emitter Shunt Resistors
- Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	TIP131	TIP132 TIP137	Unit
Collector-Emitter Voltage	V _{CEO}	80	100	Vdc
Collector-Base Voltage	V _{CB}	80	100	Vdc
Emitter-Base Voltage	V _{EB}	5.0		Vdc
Collector Current - Continuous Peak	I _C	8.0 12		Adc
Base Current	I _B	300		mAdc
Total Power Dissipation @ T _C = 25°C	P_{D}	70		W
Total Power Dissipation @ T _A = 25°C	P _D	2.0		W
Operating and Storage Junction, Temperature Range	T _J , T _{stg}	-65 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	1.78	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	63.5	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com

DARLINGTON 8 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS 80-100 VOLTS, 70 WATTS

MARKING

TIP13x = Device Code x = 1, 2, or 7

A = Assembly Location

Y = Year
WW = Work Week
G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
TIP131	TO-220	50 Units/Rail
TIP131G	TO-220 (Pb-Free)	50 Units/Rail
TIP132	TO-220	50 Units/Rail
TIP132G	TO-220 (Pb-Free)	50 Units/Rail
TIP137	TO-220	50 Units/Rail
TIP137G	TO-220 (Pb-Free)	50 Units/Rail

1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

TIP131, TIP132 (NPN), TIP137 (PNP)

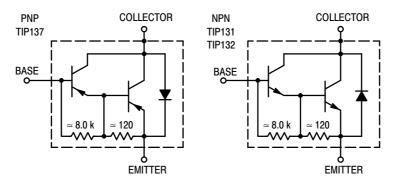


Figure 1. Darlington Circuit Schematic

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS		•	•	•	•
Collector–Emitter Sustaining Voltage (Note 1) $(I_C = 30 \text{ mAdc}, I_B = 0)$	TIP131 TIP132, TIP137	V _{CEO(sus)}	80 100	- -	Vdc
Collector Cutoff Current $(V_{CE} = 40 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 50 \text{ Vdc}, I_B = 0)$	TIP131 TIP132, TIP137	I _{CEO}	- -	0.5 0.5	mAdc
Collector Cutoff Current $(V_{CB} = 80 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$	TIP131 TIP132, TIP137	I _{CBO}	- -	0.2 0.2	mAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)		I _{EBO}	-	5.0	mAdc
ON CHARACTERISTICS (Note 1)					
DC Current Gain $ (I_C = 1.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc}) $ $ (I_C = 4.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc}) $		h _{FE}	500 1000	_ 15000	-
Collector–Emitter Saturation Voltage ($I_C = 4.0$ Adc, $I_B = 16$ mAdc) ($I_C = 6.0$ Adc, $I_B = 30$ mAdc)		V _{CE(sat)}	- -	2.0 3.0	Vdc
Base-Emitter On Voltage (I _C = 4.0 Adc, V _{CE} = 4.0 Vdc)		V _{BE(on)}	_	2.5	Vdc

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

TIP131, TIP132 (NPN), TIP137 (PNP)

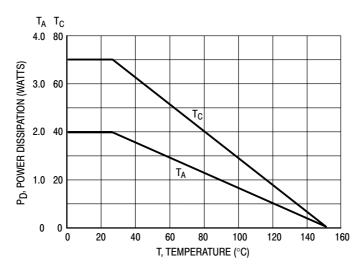


Figure 2. Power Derating

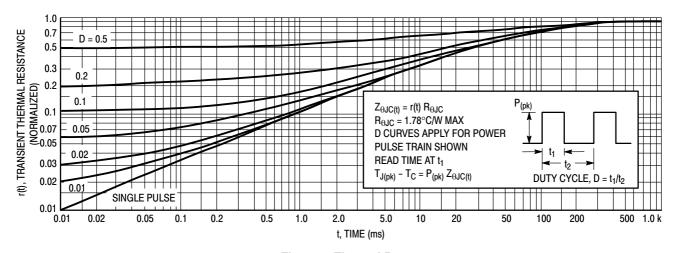


Figure 3. Thermal Response

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

<u>TIP131</u> <u>TIP131G</u> <u>TIP132G</u> <u>TIP137</u> <u>TIP137G</u>