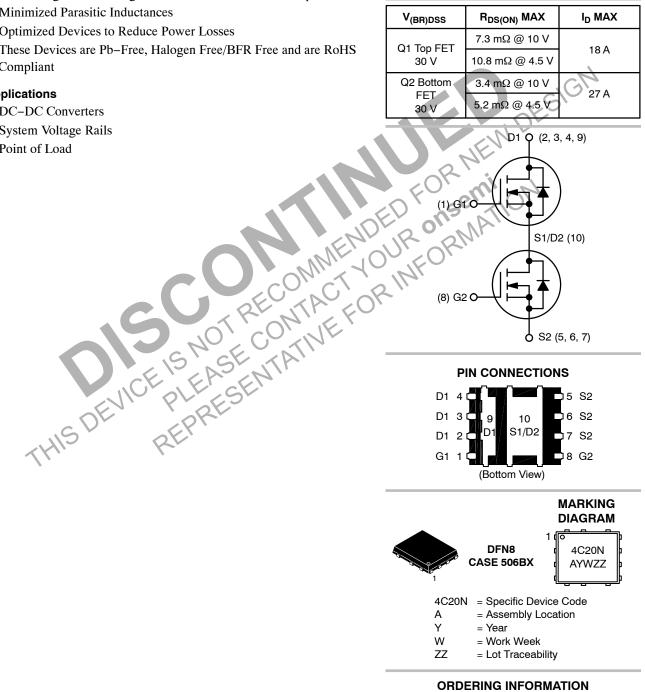
MOSFET – Power, Dual, N-Channel, SO8FL

30 V, High Side 18 A / Low Side 27 A

Features

- Co-Packaged Power Stage Solution to Minimize Board Space
- Minimized Parasitic Inductances
- Optimized Devices to Reduce Power Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant


Applications

- DC-DC Converters
- System Voltage Rails
- Point of Load

ON Semiconductor®

www.onsemi.com

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter		Symbol	Value	Unit		
Drain-to-Source Voltage	Q1	V _{DSS}	30	V		
Drain-to-Source Voltage	Q2					
Gate-to-Source Voltage	Q1	V _{GS}	±20	V		
Gate-to-Source Voltage			Q2			
Continuous Drain Current $R_{\theta JA}$ (Note 1)		$T_A = 25^{\circ}C$	Q1	Ι _D	12	
		T _A = 85°C			8.6	
		T _A = 25°C	Q2		18	A
		T _A = 85°C			13	
Power Dissipation		T _A = 25°C	Q1	PD	1.88	W
R0JA (Note 1)			Q2		1.97	
Continuous Drain Current $R_{\theta JA} \leq 10 \text{ s}$ (Note 1)		T _A = 25°C	Q1	I _D	18.2	
		T _A = 85°C			13.1	
	Steady	T _A = 25°C	Q2		27.4	A
	State	T _A = 85°C			19.8	
Power Dissipation		T _A = 25°C	Q1	Pp	4.37	W
$R_{\theta JA} \leq 10 \text{ s} \text{ (Note 1)}$			Q2	R	4.6	
Continuous Drain Current		T _A = 25°C	Q1	Þ	9.1	
R _{0JA} (Note 2)		T _A = 85°C	\mathcal{O}	nseri	6.6	_
4		T _A = 25°C	Q2	SUL	13.7	A
		T _A = 85°C)`_($\mathcal{O}_{\mathcal{U}}$	9.9	
Power Dissipation		T _A = 25 °C	Q1	PD	1.09	W
R _{0JA} (Note 2)	CC /	C'R	Q2		1.15	
Pulsed Drain Current	- N	TA = 25°C	Q1	I _{DM}	55	Α
	$C^{(i)}$	tp = 10 μs	Q2		82	
Operating Junction and Storage Temperature	192.		Q1	T _J , T _{STG}	–55 to +150	°C
CE E AUE	4.		Q2			
Source Current (Body Diode)	Q1	ا _S	4.0	А		
DETORE			Q2		4.2	
Drain to Source DV/DT		dV/dt	6	V/ns		
Single Pulse Drain-to-Source Avalanche Energy ($T_J =$	25C, V _{DD}	I _L = 18 A _{pk}	Q1	EAS	16	mJ
= 50 V, V_{GS} = 10 V, L = 0.1 mH, R _G = 25 Ω)		I _L = 29 A _{pk}	Q2	EAS	42	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)				ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.
2. Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	FET	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 3)	Q1	R_{\thetaJA}	66.5	
	Q2		63.3	
Junction-to-Ambient - Steady State (Note 4)	Q1	R_{\thetaJA}	114.3	
	Q2	1	108.7	0000
Junction-to-Ambient – (t \leq 10 s) (Note 3)	Q1	R_{\thetaJA}	28.6	°C/W
	Q2	1	27.2	
Junction-to-Case - (Drain)	Q1	$R_{\theta JC}$	5.4	
	Q2	1	3.7	

Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)

Parameter	FET	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS					OF		
Drain-to-Source Breakdown	Q1	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 250 μA	30	N _		V
Voltage	Q2		V_{GS} = 0 V, I_D = 1 mA	30			
Drain-to-Source Breakdown	Q1	V _{(BR)DSS} / T _J		Y i	14.5		mV/°C
Voltage Temperature Coefficient	Q2	IJ		cell.	12		
Zero Gate Voltage Drain Cur-	Q1	I _{DSS}	$V_{GS} = 0 V,$ $T_J = 25^{\circ}C$	P N		1	μA
rent			$V_{DS} = 24 V$ $T_J = 125^{\circ}C$	2111		10	
	Q2		V _{GS} = 0 V, V _{DS} = 24 V)`		10	
Gate-to-Source Leakage Cur-	Q1	IGSS	$V_{DS} = 0 V, V_{GS} = \pm 20 V$			±100	nA
rent	Q2	X P	NTR FU			±100	

A

ON CHARACTERISTICS (Note 5)

Gate Threshold Voltage	Q1	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 250 μA	1.3		2.1	V
	Q2	in A:			1.3		2.1	
Negative Threshold Temper- ature Coefficient	Q1	V _{GS(TH)} /				4.7		mV/°C
ature coefficient	Q2	RUI				5.1		
Drain-to-Source On Resist-	Q1	R _{DS(on)}	V _{GS} = 10 V	I _D = 10 A		5.8	7.3	
ance			V _{GS} = 4.5 V	I _D = 10 A		8.7	10.8	mΩ
	Q2		V _{GS} = 10 V	I _D = 20 A		2.7	3.4	11152
			V _{GS} = 4.5 V	I _D = 20 A		4.0	5.2	
Forward Transconductance	Q1	9FS	V _{DS} = 1.5 V, I	_D = 10 A		43		S
	Q2					68		

5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%. 6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

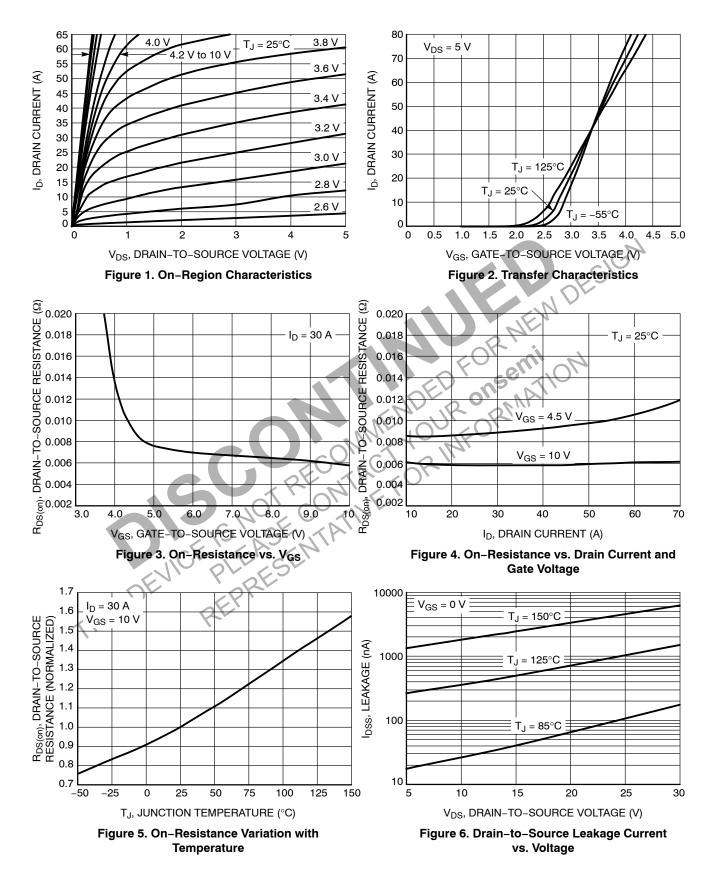
Parameter	FET	Symbol	Test Condition	Min	Тур	Max	Unit
CHARGES, CAPACITANCES & C	ATE RE	SISTANCE					
	Q1				970		
Input Capacitance	Q2	C _{ISS}	Ē		1950		
	Q1	0			430		. 5
Output Capacitance	Q2	C _{OSS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 15 V		990		pF
	Q1	0			125		
Reverse Capacitance	Q2	C _{RSS}			50		
Total Cata Charge	Q1	0			9.3		
Total Gate Charge	Q2	Q _{G(TOT)}			13		
Threshold Gate Charge	Q1				1.6		
Threshold Gale Charge	Q2	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 15 V; I _D = 10 A		3.3		nC
Gate-to-Source Charge	Q1	Q _{GS}	$v_{GS} - 4.5 v, v_{DS} = 15 v, i_{D} = 10 A$		3.3	cl ^O	
Gale-10-0001ce Onarge	Q2	GS			6.0		
Gate-to-Drain Charge	Q1	Q _{GD}			4.2		
date to brain charge	Q2	GD		NE	3.0		
Total Gate Charge	Q1	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V; I _D = 10 Å	2	19		nC
	Q2			en	29		
SWITCHING CHARACTERISTIC	S (Note 6	i)	A A A A A A A A A A A A A A A A A A A	A, E			
Turn-On Delay Time	Q1	t _{d(ON)}	ENVIR	2111	9.0		
,	Q2	u(on)	MNILJOUJEO		11		
Rise Time	Q1	tr	CON CT 'S IR'		33		
	Q2		V_{GS} = 4.5 V, V_{DS} = 15 V, I_{D} = 15 A, R_{G} = 3.0 Ω		32		ns
Turn-Off Delay Time	Q1	td(OFF)	$ID = 15 A, HG = 3.0 \Omega$		15		
	Q2		TN		20		
Fall Time	(I)	J.	KK.		5.0		
	Q2	L'EF			5.0		
SWITCHING CHARACTERISTICS					0.0		
Turn-On Delay Time	Q1	t _{d(ON)}			6.0		
- HIS	Q2	. /			8.0		
Rise Time	Q1	t _r			26		
	Q2		V_{GS} = 10 V, V_{DS} = 15 V, I _D = 15 A, R _G = 3.0 Ω		26		ns
Turn-Off Delay Time	Q1	t _{d(OFF)}	ng – 1077, ng – 0.0 22		18		
	Q2				25		
Fall Time	Q1	t _f			4.0		
	Q2	TIOO			4.0		
DRAIN-SOURCE DIODE CHARA	CIERIS	nus					

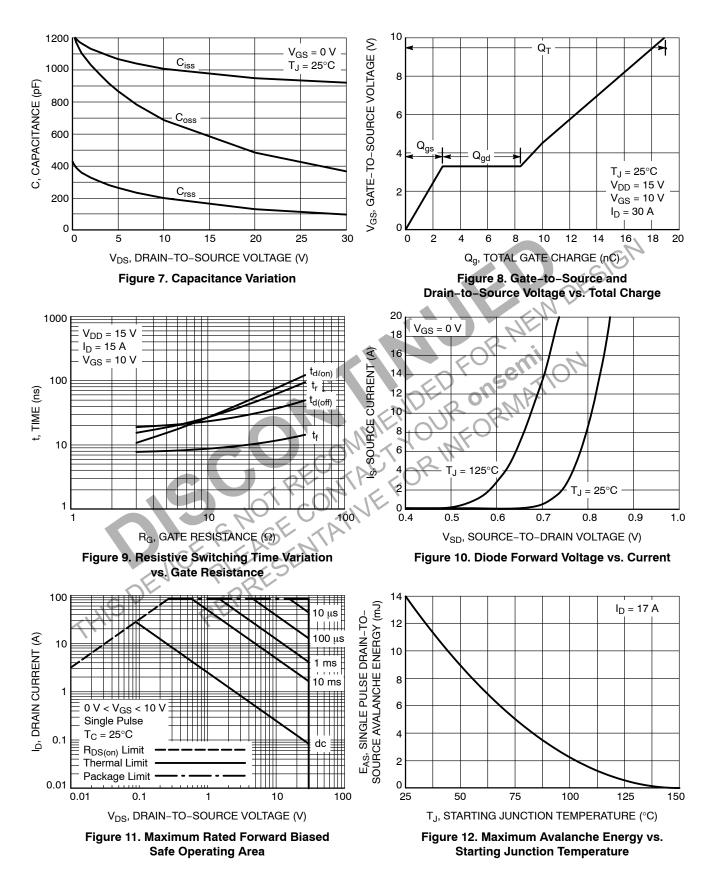
	Q1	V _{GS} = 0 V,	$T_J = 25^{\circ}C$	0.75	1.0			
Forward Valtage	3	Mar		I _S = 3 A	$T_J = 125^{\circ}C$	0.62	V	V
Forward Voltage	Q2	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$	0.45	0.70	v	
		I _S = 3 A	T _J = 125°C	0.37				

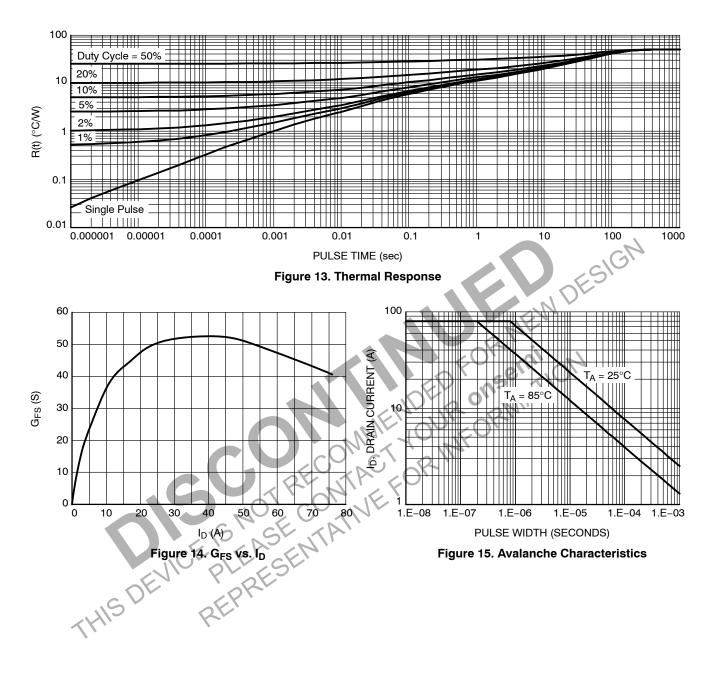
 $\begin{array}{lll} \text{5. Pulse Test: pulse width} \leq 300 \ \mu\text{s}, \ \text{duty cycle} \leq 2\%. \\ \text{6. Switching characteristics are independent of operating junction temperatures.} \end{array}$

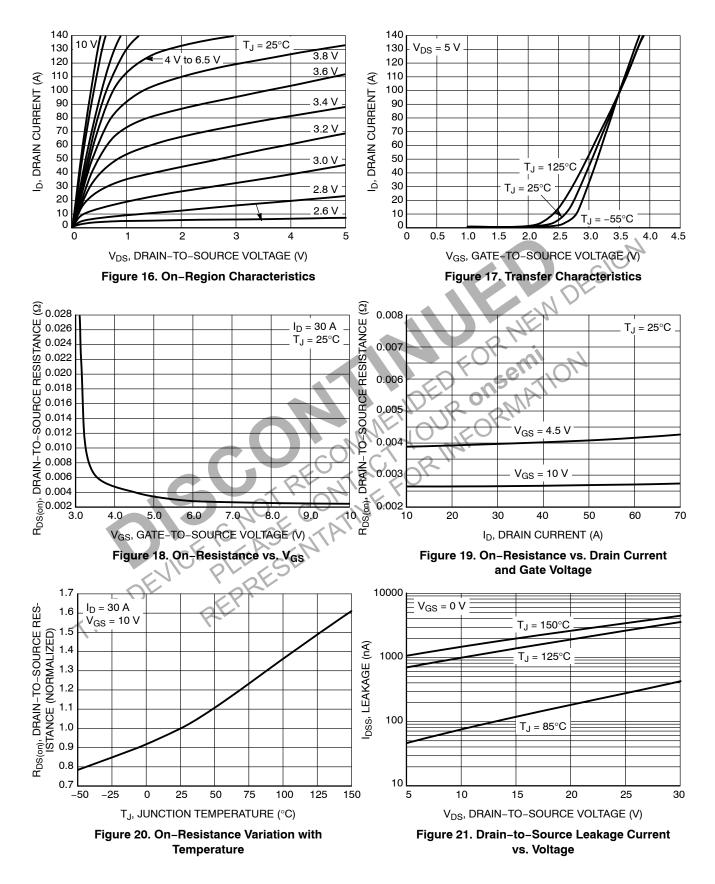
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	FET	Symbol	Test Condition	Min	Тур	Max	Unit									
DRAIN-SOURCE DIODE CHARACTERISTICS																
	Q1				23											
Reverse Recovery Time	Q2	t _{RR}			38											
Ohanna Tima	Q1	ta			11.6											
Charge Time	Q2		$V_{GS} = 0 \text{ V}, \text{ d}_{IS}/\text{d}_{t} = 100 \text{ A}/\mu\text{s}, \text{ I}_{S} =$		18.6		ns									
Discharge Time	Q1	tb		14		16	44	44	44	46	44	30 A		11.4		
Discharge Time	Q2				19.4											
Deverse Desevery Charge	Q1	Q _{RR}				10										
Reverse Recovery Charge	Q2				25		nC									

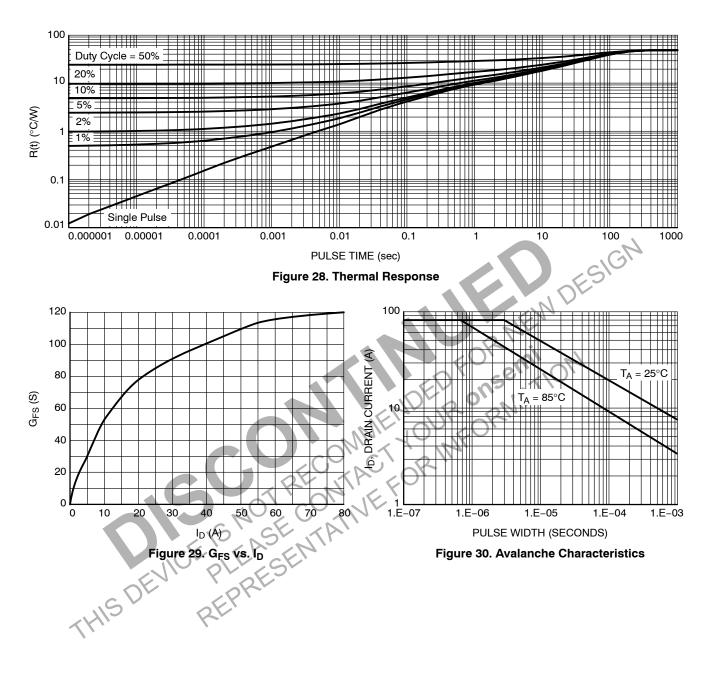

PACKAGE PARASITIC VALUES

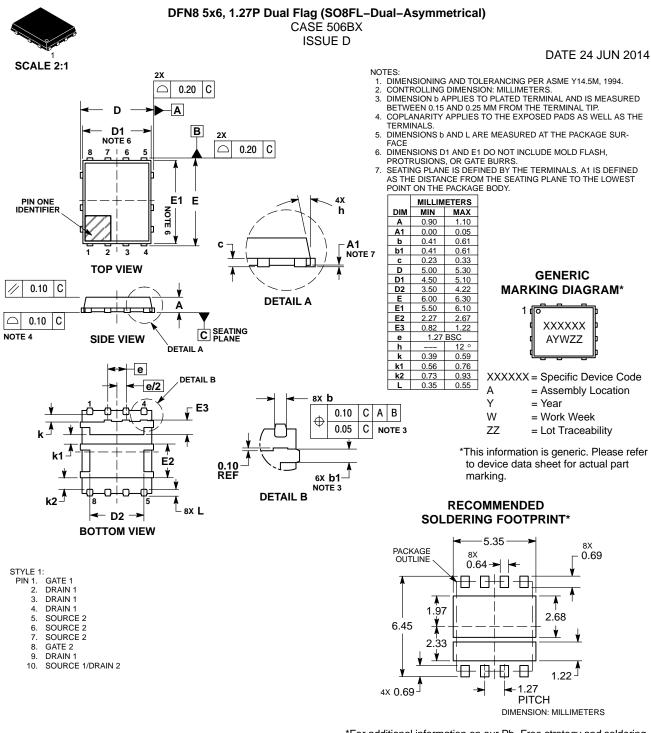

Source Inductance	Q1	Ls	0.38 nH				
	Q2	-5	0.65				
Drain Inductance	Q1	1-	0.054 nH				
Drain inductance	Q2	LD	T _A = 25°C				
Gate Inductance	Q1		1			1A = 23 C	
Gale induciance	Q2	L _G					
Coto Registeres	Q1	D	Р	D			0.8 1.0 2.0 Ω
Gate Resistance	Q2	R _G	0.3 1.0 2.0				
 5. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%. 6. Switching characteristics are independent of operating junction temperatures. 							
MNIL YOU FOU							
ORDERING INFORMATION							


ORDERING INFORMATION


Device	Package	Shipping [†]
NTMFD4C20NT1G	DFN8 (Pb_Free)	1500 / Tape & Reel

THIS DEVICE REPRESEN +For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.





onsemi

*For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON54291E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	DFN8 5X6, 1.27P DUAL FL	PAGE 1 OF 1					
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or others.							

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

NTMFD4C20NT1G NTMFD4C20NT3G