2-Bit 20 Mb/s Dual-Supply **Level Translator**

NLSX4302E

The NLSX4302E is a 2-bit configurable dual-supply bidirectional auto sensing translator that does not require a directional control pin. The V_{CC} I/O and V_L I/O ports are designed to track two different power supply rails, V_{CC} and V_L respectively. Both the V_{CC} and V_L supply rails are configurable from 1.5 V to 5.5 V. This allows voltage logic signals on the V_L side to be translated into lower, higher or equal value voltage logic signals on the V_{CC} side, and vice-versa.

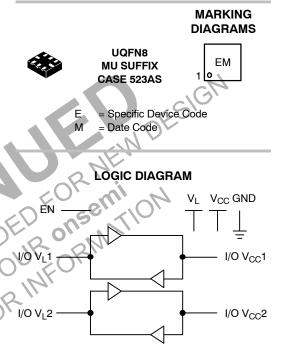
The NLSX4302E translator uses external pull-up resistors on the I/O lines. The external pull-up resistors are used to pull up the I/O lines to either V_L or V_{CC} . The NLSX4302E is an excellent match for open-drain applications such as the I²C communication bus.

Features

- V_L can be Less than, Greater than or Equal to V_{CC}
- Wide V_{CC} Operating Range: 1.5 V to 5.5 V Wide V_L Operating Range: 1.5 V to 5.5 V
- High-Speed with 20 Mb/s Guaranteed Date Rate
- Low Bit-to-Bit Skew
- Enable Input and I/O Pins are Overvoltage Tolerant (OVT) to 5
- Non-preferential Powerup Sequencing
- Power-Off Protection
- Small Space Saving Package: 1.4 mm x 1.2 mm UQFN8 Package
- These Devices are Pb-Free and are RoHS Compliant ENTATIVE

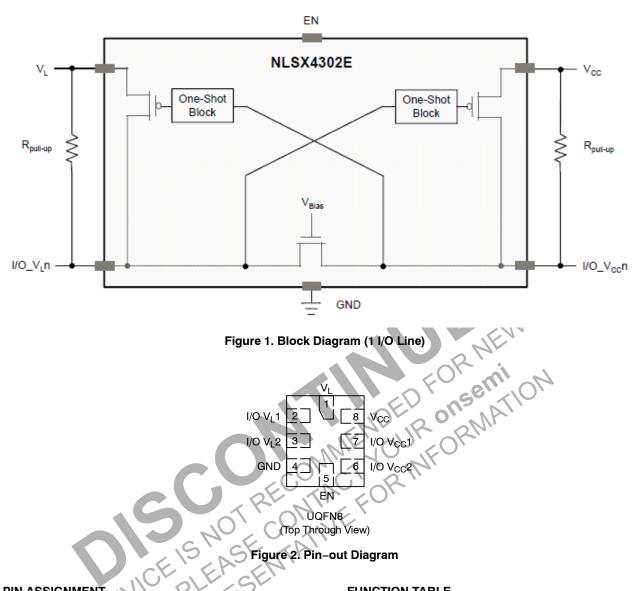
Typical Applications

- I²C, SMBus
- Low Voltage ASIC Level Translation
- Mobile Phones, PDAs, Cameras


Important Information

- ESD Protection for All Pins
 - Human Body Model (HBM) > 6000 V
 - Machine Model (MM) > 400 V

ON Semiconductor®


www.onsemi.com

ORDERING INFORMATION

Device	Package	Shipping [†]
NLSX4302EBMUTCG	UQFN8 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

PIN ASSIGNMENT

Pins	Description
V _{CC}	V _{CC} Supply Voltage
VL	V _L Supply Voltage
GND	Ground
EN	Output Enable, Referenced to V_L
I/O V _{CC} n	I/O Port, Referenced to V _{CC}
I/O V _L n	I/O Port, Referenced to VL

FUNCTION TABLE

EN	Operating Mode
L	Hi–Z
Н	I/O Buses Connected

MAXIMUM RATINGS

Symbol	Parameter	Parameter Value		
V _{CC}	High-side DC Supply Voltage	-0.3 to +7.0		V
VL	High-side DC Supply Voltage	-0.3 to +7.0		V
I/O V _{CC}	V _{CC} -Referenced DC Input/Output Voltage	–0.3 to (V _{CC} + 0.3)		V
I/O V _L	V _L -Referenced DC Input/Output Voltage	–0.3 to (V _L + 0.3)		V
V _{EN}	Enable Control Pin DC Input Voltage	-0.3 to +7.0		V
I _{I/O_SC}	Short–Circuit Duration (I/O V_L and I/O V_{CC} to GND)	40	Continuous	mA
T _{STG}	Storage Temperature	-65 to +150		°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Pa	rameter	Min	Max	Unit
V _{CC}	High-side Positive DC Supply Voltage		1.5	5.5	V
VL	High-side Positive DC Supply Voltage		1.5	5.5	V
V _{EN}	Enable Control Pin Voltage		GND	5.5	V
V _{IO_VCC}	I/O Pin Voltage (Side referred to V_{CC})		GND	V _{CC}	V
V _{IO_VL}	I/O Pin Voltage (Side referred to V_L)		GND	VL	V
$\Delta t/\Delta V$	Input Transition Rise and Fall Rate	I/O V _L – or I/O V _L – Ports, Push–Pull Driving Control Input	senti	10 10	ns/V
T _A	Operating Temperature Range	ND 20	-40	+85	°C
-11	HIS DEVICE PLEASE REPRES	RECONTACTOR INFO			

						–40°C to +85°C			
Symbol	Parameter	Test Co	onditions (Note 2)	V _L (V)	V _{CC} (V)	Min	Тур	Max	Uni
$V_{\text{IH}_{\text{VL}}}$	I/O High Level I/O_VL	Data Inputs	I/O_VL _n	1.65–5.50	1.65–5.50	$V_L - 0.4$			V
		Control Inpu	ıt EN	1.65–5.50	1.65–5.50	$V_L \times 0.7$			
V _{IH_VCC}	I/O High Level I/O_VCC	Data Inputs	I/O_VCC _n	1.65-5.50	1.65–5.50	V _{CC} - 0.4			V
$V_{\text{IL}_{\text{VL}}}$	I/O Low Level I/O_VL	Data Inputs	Data Inputs I/O_VLn 1.		1.65–5.50			0.4	V
		Control Inpu	ontrol Input EN 1.6		1.65–5.50			V _L x 0.3	
V _{IL_VCC}	I/O Low Level I/O_VCC	Data Inputs	vata Inputs I/O_VCCn 1.6		1.65–5.50			0.4	V
V _{OL}	Low Level Output Volt- age	V _{IL} = 0.15 V	$I_{\rm IL} = 0.15 \text{ V}, I_{\rm OL} = 6 \text{ mA}$ 1.6		1.65–5.50			0.4	V
١L	Input Leakage Current	Control Inpu	it EN, V _{IN} = V _L or GND	1.65–5.50	1.65–5.50			±1	μA
I _{OFF}	Power-Off Leakage Current	I/O_VL _n , I/O_VCC _n	V_{IN} or $V_O = 0$ to 5.5 V	0	0			±2	μA
		I/O_VL _n		0	5.50			JC'	
		I/O_VCC _n		5.50	0		AF.		
I _{OZ}	Tristate Output Mode Leakage Current (Note 3)	I/O_VL _n , I/O_VCC _n	$V_{O} = 0$ to 5.5 V, EN = V _{IL}	5.50	5.50	I EI	10	±2	μA
	(Note 3)	I/O_VL _n	V _O = 0 to 5.5 V,	5.50	0	2			
		I/O_VCC _n	EN = Don't Care	0	5.50	, w,	4		
I _{CC}	Quiescent Supply Current, Active Mode (Notes 4, 5)	V _L V _{CC}	$V_{IN} = V_{CCI}$ or GND, $I_O = 0$, EN = $V_{IH}V_L$	1.65–5.50	1.65–5.50	SONA	0.	5.0	μΑ
I _{CCZ}	Quiescent Supply Current, Standby Mode (Notes 4, 5)	V _L V _{CC}	$\label{eq:VIN} \begin{split} V_{IN} &= V_{CCI} \text{ or GND}, \\ I_O &= 0, \text{ EN} = V_{IL_VL} \end{split}$	1.65-5.50	1.65–5.50			5.0	μΑ
I _{CC_OFF}	Quiescent Supply Current, Power-Off (Notes 3, 5)	VL	V _{IN} = 5.5 V or GND, I _O = 0, EN = Don't Care, I/O_VCC to I/O_VL	0 1.65–5.50	1.65–5.50 0			2.0	μΑ
		Vcc	V _{IN} = 5.5 V or GND, I _O = 0, EN = Don't Care, I/O_VL to I/O_VCC	1.65–5.50 0	0 1.65–5.50				

DC ELECTRICAL CHARACTERISTICS (V _L = 1.5 V to	5.5 V and V _{CC} = 1.5 V to 5.5 V, unless oth	erwise specified) (Note 1)
--	--	----------------------------

 1. Typical values are for $V_L = +1.8$ V, $V_{CC} = +3.3$ V and $T_A = +25^{\circ}$ C.

 2. All units are production tested at $T_A = +25^{\circ}$ C. Limits over the operating temperature range are guaranteed by design.

 3. "Don't care" indicates any valid logic level.

 4. V_{CCI} is the power supply associated with the input side.

 5. Reflects current per supply, V_L or V_{CC} .

DYNAMIC OUTPUT ELECTRICAL CHARACTERISTICS

		V _{CCO} (Note 7)					
		4.5 to 5.5 V	3.0 to 3.6 V	2.3 to 2.7 V	1.65 to 1.95 V		
Symbol	Parameter	Тур	Тур	Тур	Тур	Unit	
t _{RISE}	Output Rise Time, I/O_VL _n , I/O_VCC _n	6.4	5	6.5	10.7	ns	
t _{FALL}	Output Fall Time, I/O_VLn, I/O_VCCn	10	9.5	8.6	9.5	ns	

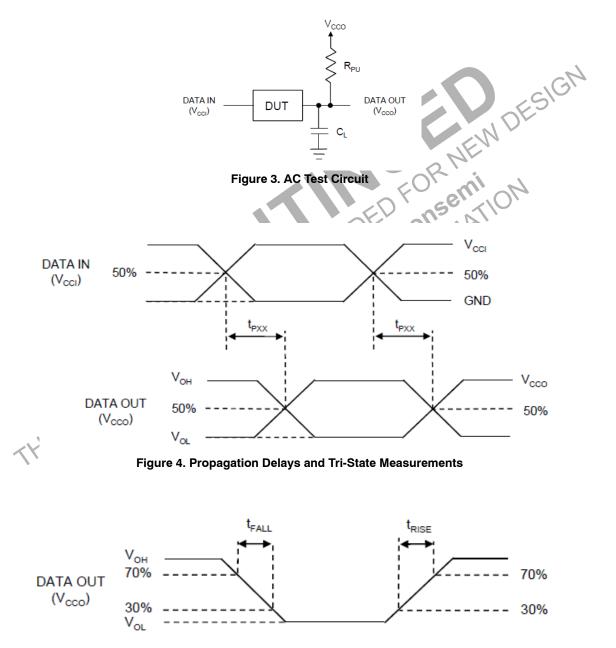
OUTPUT RISE / FALL TIMES (Output Load: $C_L = 50 \text{ pF}$, $R_{PU} = 2.2 \text{ k}\Omega$, push/pull driver, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$) (Note 6)

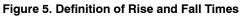
6. Output rise and fall times guaranteed by design and are not production tested.

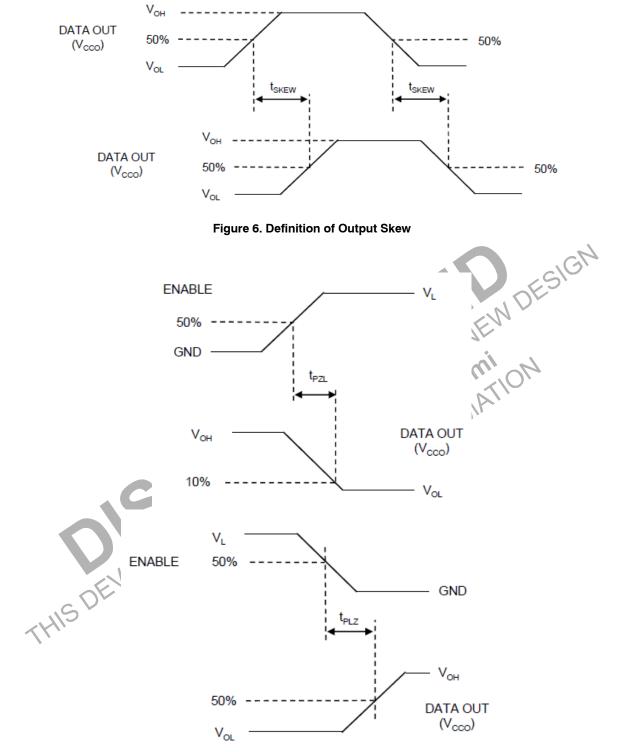
7. V_{CCO} is the V_L or V_{CC} power supply associated with the output side.

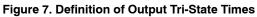
			V	cc		
		4.5 to 5.5 V	3.0 to 3.6 V	2.3 to 2.7 V	1.65 to 1.95 V	
VL	Parameter	Min	Min	Min	Min	Unit
4.5 to 5.5 V		50	41	31	3	MHz
3.0 to 3.6 V	I/O_VL _n ,to I/O_VCC _n or I/O_VCC _n to	34	35	36	23	MHz
2.3 to 2.7 V		25	27	30	24	MHz
1.65 to 1.95 V		14	16	22	21	MHz
7141	quency guaranteed by design and is not produ	COMME DNTACT DNTACT CATIVE	NDELL O YOURO	ns ATT		

		V _{CC}								
		4.5 to	5.5 V	3.0 to 3.6 V		2.3 to 2.7 V		1.65 to 1.95 V		-
Symbol	Parameter	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit
V _L = 4.5 t	o 5.5 V		•		•					
t _{PLH}	I/O_VL_n to I/O_VCC_n , I/O_VCC_n to I/O_VL_n	2.5	4.3	3	5	3	6.4	4	8.6	ns
t _{PHL}	I/O_VL _n to I/O_VCC _n , I/O_VCC _n to I/O_VL _n	5	8.1	8	13	8	17.3	15	28.5	ns
t _{PZL}	OE to I/O_VI _n , OE to I/O_VCC _n	14	19.6	16	20	22	26.5	33	44	ns
t _{PLZ}	OE to I/O_VI _n , OE to I/O_VCC _n	24	31.4	25	32	24	31.8	28	36.2	ns
t _{skew}	I/O_VL _n to I/O_VCC _n , I/O_VCC _n to I/O_VL _n (Note 10)	0.3	0.3	0.5	0.6	0.8	0.8	1.2	1.9	ns
/ _L = 3.0 t	o 3.6 V									
t _{PLH}	$\begin{array}{l} \text{I/O_VL}_n \text{ to I/O_VCC}_n, \\ \text{I/O_VCC}_n \text{ to I/O_VL}_n \end{array}$	2.5	4.7	3	5.4	3	6.5	5	9.3	ns
t _{PHL}	I/O_VL_n to I/O_VCC_n , I/O_VCC_n to I/O_VL_n	7	14.2	6	10.1	8	14.6	15	27	ns
t _{PZL}	OE to I/O_VI _n , OE to I/O_VCC _n	15	18.8	18	22.3	19	23.5	29	38.3	ns
t _{PLZ}	OE to I/O_VI _n , OE to I/O_VCC _n	25	34.9	22	27.6	22	27.9	23	28.8	ns
t _{skew}	I/O_VL_n to I/O_VCC_n , I/O_VCC_n to I/O_VL_n (Note 10)	0.4	0.5	0.5	0.6	0.6	0,7	2,5	3.0	ns
/ _L = 2.3 t	o 2.7 V				Dr.	201	ANA.			
t _{PLH}	$\label{eq:loss_loss} \begin{array}{l} \text{I/O_VL}_n \text{ to I/O_VCC}_n, \\ \text{I/O_VCC}_n \text{ to I/O_VL}_n \end{array}$	3	5.6	4	6	F0	7.3	6	10.3	ns
t _{PHL}	I/O_VL _n to I/O_VCC _n , I/O_VCC _n to I/O_VL _n	12	181	H	14,1	8	11.9	15	22.1	ns
t _{PZL}	OE to I/O_VIn, OE to I/O_VCCn	16	23.7	17	21.5	25	30	31	36.6	ns
t _{PLZ}	OE to I/O_VI _n , OE to I/O_VCC _n	28	33.8	26	31	25	30.8	25	30	ns
t _{skew}	I/O_VL_n to I/O_VCC_n , I/O_VCC_n to I/O_VL_n (Note 10)	9.5	0.2	0.8	1	0.6	0.6	2.3	2.7	ns
/ _L = 1.65	to 1.95 V	SK								
t _{PLH}	I/O_VL _n to I/O_VCC _n , I/O_VCC _n to I/O_VL _n	5	9	5	9.2	6	9.2	7	12.7	ns
t _{PHL}	I/O_VLn to I/O_VCCn, I/O_VCCn to I/O_VLn	19	28.3	15	25.5	12	17.3	14	19	ns
t _{PZL}	OE to I/O_VI _n , OE to I/O_VCC _n	23	32.2	22	26.5	25	32	40	72	ns
t _{PLZ}	OE to I/O_VI _n , OE to I/O_VCC _n	35	44	32	38.7	33	36.7	30	36.5	ns
t _{skew}	I/O_VL _n to I/O_VCC _n , I/O_VCC _n to I/O_VL _n ^(Note 10)	0.5	1.1	1.4	1.5	0.8	1.1	2.0	2.5	ns


9. AC characteristics are guaranteed by design and are not production tested.
10. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (I/O_VL_n or I/O_VCC_n) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW). Skew is defined by applying a single input to the two input channels and measuring the difference in propagation delays between the output channels.


CAPACITANCE ($T_A = 25^{\circ}C$)


Symbol	Parameter	Test Condition	Typical	Unit
C _{IN}	Input Capacitance, Control Pin (EN)	$V_L = V_{CC} = GND$	2	pF
C _{IO}	Input / Output Capacitance (I/O_VL _n , I/O_VCC _n)	$V_L = V_{CC} = 5 V, EN = GND, I/O_VL_n = I/O_VCC_n = 5 V$	3	pF
C _{PD}	Power Dissipation Capacitance (Note 11)	V_L = V_{CC} = 5 V,EN = 5 V, V_{IN} = 5 V or GND, f = 400 KHz	17	pF


11. C_{PD} is defined as the value of the internal equivalent capacitance per channel.

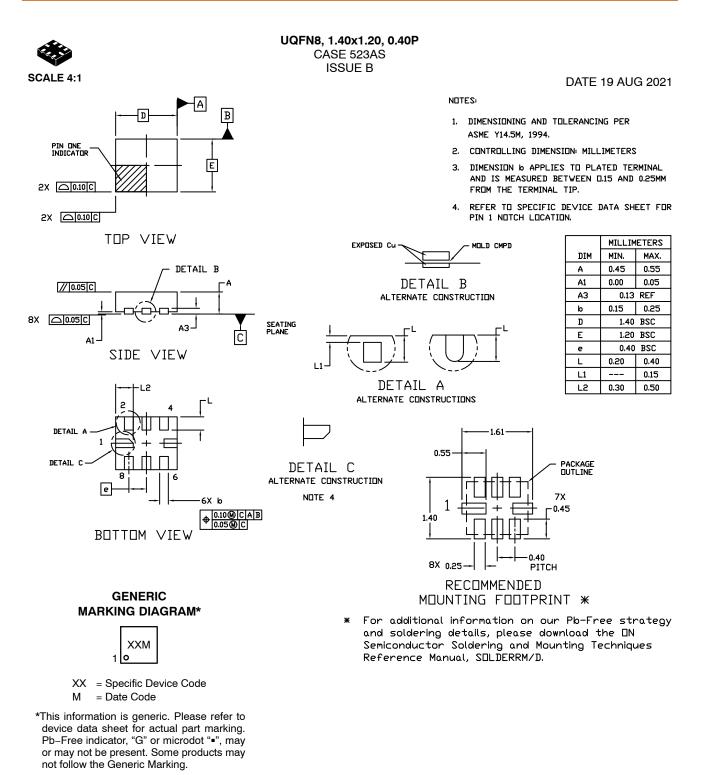
TEST SETUP AND TIMING DEFINITIONS

APPLICATIONS INFORMATION

Level Translator Architecture

The NLSX4302E auto sense translator provides bi-directional voltage level shifting to transfer data in multiple supply voltage systems. This device has two supply voltages, VL and VCC, which set the logic levels on the input and output sides of the translator. When used to transfer data from the V_L to the V_{CC} ports, input signals referenced to the V_L supply are translated to output signals with a logic level matched to V_{CC}. In a similar manner, the V_{CC} to V_L translation shifts input signals with a logic level compatible to V_{CC} to an output signal matched to V_L .

The NLSX4302E consists of two bi-directional channels that independently determine the direction of the data flow without requiring a directional pin. The one-shot circuits are used to detect the rising or falling input signals. In addition, the one shots decrease the rise and fall time of the THIS DEVICE PLEASENTATIVE PLEASENTATIVE output signal for high-to-low and low-to-high transitions. Each input/output channel requires external pullup resistors.


Enable Input (EN)

The NLSX4302E has an Enable pin (EN) that can be used to minimize the power consumption of the device when the transmitter is not transmitting data. Normal translation operation occurs when the EN pin is equal to a logic high signal. The EN pin is referenced to the V_L supply and has Overvoltage Tolerant (OVT) protection.

Power Supply Guidelines

The sequencing of the power supplies will not damage the device during the power up operation. In addition, the I/O V_{CC} and I/O V_L pins are in the high impedance state if either supply voltage is equal to 0 V. For optimal performance, 0.01 µF to 0.1 µF decoupling capacitors should be used on the V_L and V_{CC} power supply pins. Ceramic capacitors are a good design choice to filter and bypass any noise signals on the voltage lines to the ground plane of the PCB. The noise immunity will be maximized by placing the capacitors as close as possible to the supply and ground pins, along with minimizing the PCB

onsemi

 DOCUMENT NUMBER:
 98AON58906E
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 UQFN8, 1.40x1.20, 0.40P
 PAGE 1 OF 1

 onsemi and Q∩Semi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves

the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

NLSX4302EBMUTCG