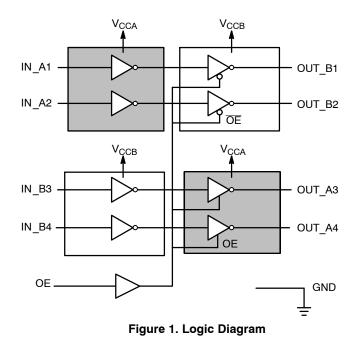
NLSV22T244

Dual 2-Bit Dual-Supply Non-Inverting Level Translator

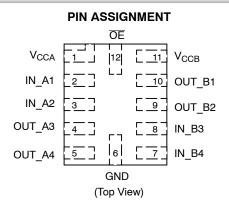

The NLSV22T244 is a dual 2-bit configurable dual-supply bus buffer level translator. The input ports A and the output ports B are designed to track two different power supply rails V_{CCA} and V_{CCB} . Both supply rails are configurable from 1.6 V to 3.6 V allowing universal low-voltage translations from the input port A to the output B port.

Features

- Wide V_{CCA} and V_{CCB} Operating Range: 1.6 V to 3.6 V
- High-Speed w/ Balanced Propagation Delay
- Inputs and Outputs have OVT Protection to 5.5 V
- Non-preferential V_{CCA} and V_{CCB} Sequencing
- Outputs at 3-State until Active V_{CC} is reached
- Power–Off Protection
- Ultra-Small packaging: 1.7mm x 2.0 mm UQFN-12
- This is a Pb–Free Device

Typical Applications

• Mobile Phones, PDAs, Other Portable Devices



ON Semiconductor®

http://onsemi.com

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NLSV22T244MUTAG	UQFN12 (Pb-Free)	3000 / Tape & Reel

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NLSV22T244

OE = High, Module B Transmits, Module A Receives = $B \rightarrow A$

 $\label{eq:obs} \begin{array}{l} {\sf OE} = {\sf Low}, \, {\sf Module} \; {\sf A} \; {\sf Transmits}, \, {\sf Module} \; {\sf B} \; {\sf Receives} = {\sf A} \to {\sf B} \\ {\sf Figure} \; {\sf 2. Typical} \; {\sf Application} \; {\sf Bi-Directional} \; {\sf to} \; {\sf Uni-Directional} \; {\sf Logic} \; {\sf Level} \; {\sf Translator} \\ \end{array}$

PIN ASSIGNMENT

Pin	Function
V _{CCA}	A DC Power Supply
V _{CCB}	B DC Power Supply
GND	Ground
IN_A1, IN_A2, IN_B3, IN_B4	Inputs
OUT_B1, OUT_B2, OUT_A3, OUT_A4	Outputs
OE	Output Enable

In	puts	Out	outs	
OE	IN_A1 IN_A2	IN_B3, IN_B4	OUT_B1, OUT_B2	OUT_A3 OUT_A4
Н	х	L	3-State	L
	L	Н		Н
L	L	х	L	3-State
	Н		H	

MAXIMUM RATINGS

Symbol	Rating		Value	Condition	Unit
V _{CCA} , V _{CCB}	DC Supply Voltage		-0.5 to +5.5		V
VI	DC Input Voltage	IN_X _n	-0.5 to +5.5		V
V _C	Control Input	OE	-0.5 to +5.5		V
Vo	DC Output Voltage	(Power Down) OUT_X _n	-0.5 to +5.5	$V_{CCA} = V_{CCB} = 0$	V
	(Active Mode) OUT_X _n		–0.5 to +5.5		
	(Tri-State Mode) OUT_X _n		–0.5 to +5.5		
I _{IK}	DC Input Diode Current		-20	V _I < GND	mA
I _{OK}	DC Output Diode Curr	ent	-50	V _O < GND	mA
Ι _Ο	DC Output Source/Sink Current		±50		mA
I _{CCA} , I _{CCB}	DC Supply Current Per Supply Pin		±100		mA
I _{GND}	DC Ground Current per Ground Pin		±100		mA
T _{STG}	Storage Temperature		-65 to +150		°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CCA}, V_{CCB}	Positive DC Supply Voltage	1.6	3.6	V
VI	Bus Input Voltage	GND	3.6	V
V _C	Control Input OE	GND	3.6	V
V _{IO}	Bus Output Voltage (Power Down Mode) OUT_X _n	GND	3.6	V
	(Active Mode) OUT_X _n	GND	3.6	V
	(Tri-State Mode) OUT_X _n	GND	3.6	V
T _A	Operating Temperature Range	-40	+85	°C
$\Delta t / \Delta V$	Input Transition Rise or Rate V _I , from 30% to 70% of V _{CC} ; V _{CC} = 3.3 V ± 0.3 V	0	10	nS

DC ELECTRICAL CHARACTERISTICS

					–40°C t	o +85°C	
Symbol	Parameter	Test Conditions	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
V _{IH}	Input HIGH Voltage		2.7 – 3.6	1.6 – 3.6	2.0	-	V
			2.3 – 2.7		1.6	-	
			1.4 – 2.3		0.65 * V _{CCA}	-	
V _{IL}	Input LOW Voltage		2.7 – 3.6	1.6 – 3.6	-	0.8	V
			2.3 – 2.7		_	0.7	
			1.6 – 2.3		_	0.35 * V _{CCA}	
V _{OH}	Output HIGH Voltage	$I_{OH} = -100 \ \mu A; \ V_I = V_{IH}$	1.6 – 3.6	1.6 – 3.6	V _{CCB} – 0.2	-	V
		$I_{OH} = -6 \text{ mA}; \text{ V}_{I} = \text{V}_{IH}$	1.6	1.6	1.25	-	
			2.3	2.3	2.0	-	
		$I_{OH} = -12 \text{ mA}; V_I = V_{IH}$	2.3	2.3	1.8	-	
			2.7	2.7	2.2	-	
		I_{OH} = -18 mA; V_I = V_{IH}	2.3	2.3	1.7	-	
			3.0	3.0	2.4	-	
		I_{OH} = -24 mA; V_I = V_{IH}	3.0	3.0	2.2	-	
V _{OL}	Output LOW Voltage	$I_{OL} = 100 \ \mu A; \ V_I = V_{IL}$	1.6 – 3.6	1.6 – 3.6	-	0.2	V
		$I_{OL} = 6 \text{ mA}; V_I = V_{IL}$	1.6	1.6	-	0.3	
		I_{OL} = 12 mA; $V_I = V_{IL}$	2.3	2.3	-	0.4	
			2.7	2.7	-	0.4	
		I_{OL} = 18 mA; $V_I = V_{IL}$	2.3	2.3	-	0.6	
			3.0	3.0	-	0.5	
		I_{OL} = 24 mA; V_I = V_{IL}	3.0	3.0	-	0.6	
I _I	Input Leakage Current	V _I = V _{CCA} or GND	1.6 – 3.6	1.6 – 3.6	-1.0	+1.0	μA
I _{OZ}	I/O Tri-State Output Leakage Current	$T_A = 25^{\circ}C, OE = GND$	1.6 – 3.6	1.6 – 3.6	-	2.0	μA
I _{CCA}	Quiescent Supply Current	$V_{I} = V_{CCA}$ or GND; $I_{O} = 0$	1.6 – 3.6	1.6 – 3.6	-	2.0	μA
I _{CCB}	Quiescent Supply Current	$V_{I} = V_{CCA}$ or GND; $I_{O} = 0$	1.6 – 3.6	1.6 – 3.6	-	2.0	μA
I _{CCA} + I _{CCB}	Quiescent Supply Current	$V_{I} = V_{CCA}$ or GND; $I_{O} = 0$	1.6 – 3.6	1.6 – 3.6	-	4.0	μA

TOTAL STATIC POWER CONSUMPTION (I_{CCA} + I_{CCB})

		–40°C to +85°C					
		V _{CCB} (V)					
	3	3.6 2.8 1.6				.6	
V _{CCA} (V)	Min	Мах	Min	Мах	Min	Max	Unit
3.6		2		2		2	μA
2.8		< 1		< 1		< 0.5	μA
1.6		< 1		< 1		< 0.5	μΑ

NOTE: Connect ground before applying supply voltage V_{CCA} or V_{CCB} . This device is designed with the feature that the power-up sequence of V_{CCA} and V_{CCB} will not damage the IC.

AC ELECTRICAL CHARACTERISTICS

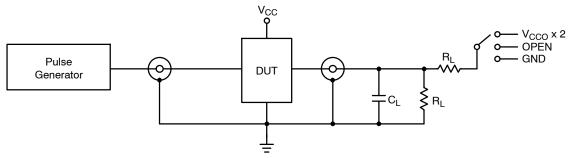
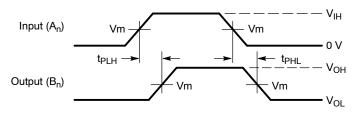
					–40°C 1	to +85°C			
					V _{CC}	_{:В} (V)			
			3	.6	2	2.8	1	.6	
Symbol	Parameter	V _{CCA} (V)	Min	Max	Min	Max	Min	Max	Unit
t _{PLH} ,	Propagation Delay,	3.6		3.4		3.6		3.8	nS
t _{PHL}	A _n to B _n	2.8		3.6		3.8		4.0	
		1.6		3.9		4.0		4.5	
t _{PZH} ,	Output Enable, OE to OUT_X _n	3.6		5.8		6.0		6.2	nS
t _{PZL}		2.8		6.0		6.2		6.4	
		1.6		8.2		8.4		8.6	
t _{PHZ} ,	Output Disable,	3.6		5.8		6.0		6.2	nS
t _{PLZ}	OE to OUT_X _n	2.8		6.0		6.2		6.4	
		1.6		8.2		8.4		8.6	
t _{OSHL} ,	Output-to-Output Skew, Data-to-Output	3.6		0.15		0.15		0.15	nS
t _{OSLH}		2.8		0.15		0.15		0.15	1
		1.6		0.15		0.15		0.15	1

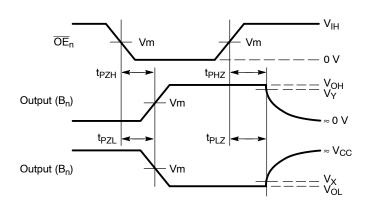
1. Propagation delays defined per Figure 3.

CAPACITANCE

Symbol	Parameter	Test Conditions	Typ (Note 2)	Unit
C _{IN}	Control Pin Input Capacitance	V_{CCA} = V_{CCB} = 3.3 V, V_{I} = 0 V or $V_{CCA/B}$	3.5	pF
C _{I/O}	I/O Pin Input Capacitance	V_{CCA} = V_{CCB} = 3.3 V, V_{I} = 0 V or $V_{CCA/B}$	5.0	pF
C _{PD}	Power Dissipation Capacitance	V_{CCA} = V_{CCB} = 3.3 V, V_{I} = 0 V or V_{CCA},f = 10 MHz	10	pF

2. Typical values are at $T_A = +25^{\circ}C$. 3. C_{PD} is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from: $I_{CC(operating)} \cong C_{PD} \times V_{CC} \times f_{IN} \times N_{SW}$ where $I_{CC} = I_{CCA} + I_{CCB}$ and N_{SW} = total number of outputs switching.


Figure 3. AC (Propagation Delay) Test Circuit

Test	Switch		
t _{PLH} , t _{PHL}	OPEN		
t _{PLZ} , t _{PZL}	V _{CCO} x 2 at VCCB = 3.0 V – 3.6 mV, 2.3 V – 2.7 V, 1.6 V – 1.95 V		
t _{PHZ} , t _{PZH}	GND		
C_L = 15 pF or equivalent (includes probe and jig capacitance) R_L = 2 k Ω or equivalent Z_{OUT} of pulse generator = 50 Ω			

NLSV22T244

 $\label{eq:Waveform 1 - Propagation Delays} \begin{array}{l} \mbox{Waveform 1 - Propagation Delays} \\ t_R = t_F = 2.0 \mbox{ ns, 10\% to 90\%; f = 1 MHz; } t_W = 500 \mbox{ ns} \end{array}$

Waveform 2 – Output Enable and Disable Times t_R = t_F = 2.0 ns, 10% to 90%; f = 1 MHz; t_W = 500 ns

	V _{cc}
Symbol	3.0 V – 3.6 V
V _{mA}	V _{CCA} /2
V _{mB}	V _{CCB} /2
V _X	V _{OL} x 0.1
V _Y	V _{OH} x 0.9

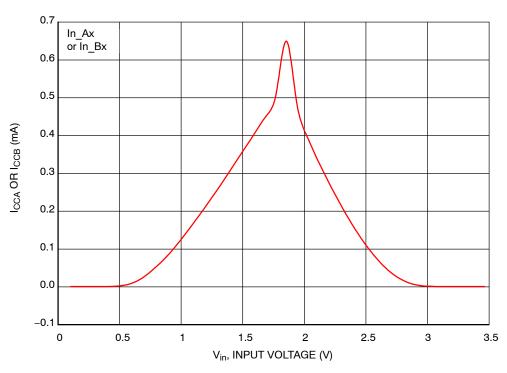
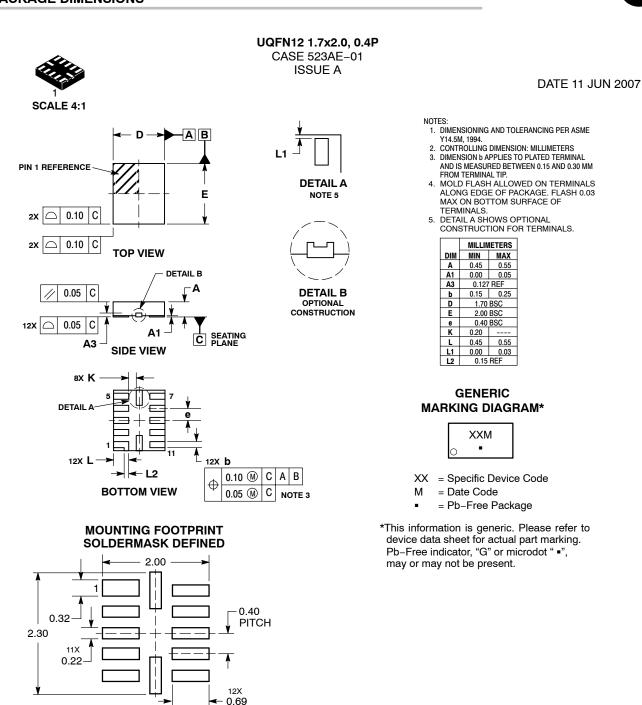



Figure 5. Delta I_{CC} Increase in I_{CC} per Input Voltage, Other Inputs at V_{CCA} / V_{CCB} or GND

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

DOCUMENT NUMBER:	98AON23418D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	UQFN12 1.7 X 2.0, 0.4P		PAGE 1 OF 1
ON Semiconductor and (1) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the			

DIMENSIONS: MILLIMETERS

© Semiconductor Components Industries, LLC, 2019

rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi: NLSV22T244MUTAG