Operational Amplifier, Railto-Rail Output, 3 MHz BW

The NCx2007x series operational amplifiers provide rail–to–rail output operation, 3 MHz bandwidth, and are available in single, dual, and quad configurations. Rail–to–rail operation enables the user to make optimal use of the entire supply voltage range while taking advantage of 3 MHz bandwidth. The NCx2007x can operate on supply voltages as low as 2.7 V over the temperature range of –40°C to 125°C. At a 2.7 V supply, the high bandwidth provides a slew rate of 2.8 V/µs while only consuming 405 µA of quiescent current per channel. The wide supply range allows the NCx2007x to run on supply voltages as high as 36 V, making it ideal for a broad range of applications. Since this is a CMOS device, high input impedance and low bias currents make it ideal for interfacing to a wide variety of signal sensors. The NCx2007x devices are available in a variety of compact packages. Automotive qualified options are available under the NCV prefix.

Features

- Rail-To-Rail Output
- Wide Supply Range: 2.7 V to 36 V
- Wide Bandwidth: 3 MHz typical at $V_S = 2.7 \text{ V}$
- High Slew Rate: 2.8 V/ μ s typical at V_S = 2.7 V
- Low Supply Current: 405 μ A per channel at $V_S = 2.7 \text{ V}$
- Low Input Bias Current: 5 pA typical
- Wide Temperature Range: -40°C to 125°C
- Available in a variety of packages
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Current Sensing
- Signal Conditioning
- Automotive

End Products

- Notebook Computers
- Portable Instruments
- Power Supplies

ON Semiconductor®

www.onsemi.com

SOT-553 CASE 463B

TSOP-5 CASE 483

Micro8[™] CASE 846A

SOIC-8 CASE 751

TSSOP-8 CASE 948S

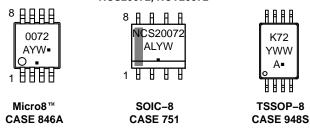
TSSOP-14 CASE 948G

CASE 751A

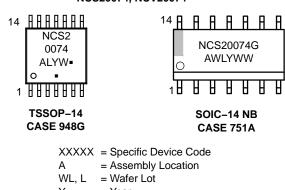
DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 2 of this data sheet.

ORDERING INFORMATION

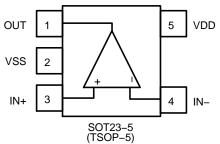

See detailed ordering and shipping information on page 4 of this data sheet.

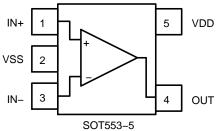
MARKING DIAGRAMS


Single Channel Configuration NCS20071, NCV20071

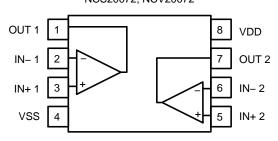
Dual Channel Configuration NCS20072, NCV20072

Quad Channel Configuration NCS20074, NCV20074




= Year WW, W = Work Week

G or ■ = Pb-Free Package


(Note: Microdot may be in either location)

Single Channel Configuration NCS20071, NCV20071

Dual Channel Configuration NCS20072, NCV20072

Quadruple Channel Configuration NCS20074, NCV20074

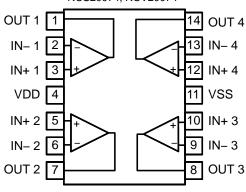


Figure 1. Pin Connections

ORDERING INFORMATION

Device	Configuration	Automotive	Marking	Package	Shipping [†]
NCS20071SN2T1G		No	AEA	TSOP-5 (Pb-Free)	3000 / Tape and Reel
NCS20071XV53T2G	Single	INO	AL	SOT553-5 (Pb-Free)	4000 / Tape and Reel
NCV20071SN2T1G*	Single	Yes	AEA	TSOP-5 (Pb-Free)	3000 / Tape and Reel
NCV20071XV53T2G*		165	AL	SOT553-5 (Pb-Free)	4000 / Tape and Reel
NCS20072DMR2G			0072	Micro8 (MSOP8) (Pb-Free)	4000 / Tape and Reel
NCS20072DR2G		No	NCS20072	SOIC-8 (Pb-Free)	2500 / Tape and Reel
NCS20072DTBR2G	Post		K72	TSSOP-8 (Pb-Free)	2500 / Tape and Reel
NCV20072DMR2G*	Dual		0072	Micro8 (MSOP8) (Pb-Free)	4000 / Tape and Reel
NCV20072DR2G*]	Yes	NCS20072	SOIC-8 (Pb-Free)	2500 / Tape and Reel
NCV20072DTBR2G*			K72	TSSOP-8 (Pb-Free)	2500 / Tape and Reel
NCS20074DR2G		N	NCS20074	SOIC-14 (Pb-Free)	2500 / Tape and Reel
NCS20074DTBR2G	Outed	No	NCS2 0074	TSSOP-14 (Pb-Free)	2500 / Tape and Reel
NCV20074DR2G*	Quad	Vo.	NCS20074	SOIC-14 (Pb-Free)	2500 / Tape and Reel
NCV20074DTBR2G*		Yes	NCS2 0074	TSSOP-14 (Pb-Free)	2500 / Tape and Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable.

ABSOLUTE MAXIMUM RATINGS (Note 1)

	Rating	Symbol	Limit	Unit
Supply Voltage (V _{DD} – V _{SS}) (Note 4)	Vs	40	V
Input Voltage		V _{CM}	$V_{SS} - 0.2$ to $V_{DD} + 0.2$	V
Differential Input Voltage (N	lote 2)	V_{ID}	±V _s	V
Maximum Input Current		I _{IN}	±10	mA
Maximum Output Current (Note 3)	I _O	±100	mA
Continuous Total Power Dis	ssipation (Note 4)	P_{D}	200	mW
Maximum Junction Temper	ature	T_J	150	°C
Storage Temperature Rang	e	T _{STG}	-65 to 150	°C
Mounting Temperature (Infi	rared or Convection – 20 sec)	T _{mount}	260	°C
ESD Capability (Note 5)	Human Body Model Machine Model – NCx20071 Machine Model – NCx20072, NCx20074 Charged Device Model – NCx20071, NCx20072 Charged Device Model – NCx20074	HBM MM MM CDM CDM	2000 200 150 2000 (C6) 1000 (C6)	V
Latch-Up Current (Note 6)		I _{LU}	100	mA
Moisture Sensitivity Level (Note 7)	MSL	Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.
- 2. Maximum input current must be limited to ±10 mA. Series connected resistors of at least 500 Ω on both inputs may be used to limit the maximum input current to ±10 mA.
- 3. Total power dissipation must be limited to prevent the junction temperature from exceeding the 150°C limit.
- 4. Continuous short circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of the maximum output current rating over the long term may adversely affect reliability. Shorting output to either VDD or VSS will adversely affect reliability.
- 5. This device series incorporates ESD protection and is tested by the following methods:
 - ESD Human Body Model tested per JEDEC standard JS-001 (AEC-Q100-002)
 - ESD Machine Model tested per JEDEC standard JESD22-A115 (AEC-Q100-003)
 - ESD Charged Device Model tested per JEDEC standard JESD22-C101 (AEC-Q100-011)
- 6. Latch-up Current tested per JEDEC standard JESD78 (AEC-Q100-004)
- 7. Moisture Sensitivity Level tested per IPC/JEDEC standard J-STD-020A

THERMAL INFORMATION

Parameter	Symbol	Package	Single Layer Board (Note 8)	Multi–Layer Board (Note 9)	Unit	
		SOT23-5 / TSOP5	265	195		
		SOT553-5	325	244		
		Micro8 / MSOP8	236	167		
Junction-to-Ambient	$\theta_{\sf JA}$	SOIC-8	190	131	°C/W	
		TSSOP-8	253	194	1	
		SOIC-14	142	101		
		TSSOP-14	179	128	1	

- 8. Values based on a 1S standard PCB according to JEDEC51-3 with 1.0 oz copper and a 300 mm² copper area
- 9. Values based on a 1S2P standard PCB according to JEDEC51-7 with 1.0 oz copper and a 100 mm² copper area

OPERATING RANGES

Parameter	Symbol	Min	Max	Unit
Operating Supply Voltage (Single Supply)	Vs	2.7	36	V
Operating Supply Voltage (Split Supply)	Vs	±1.35	±18	V
Differential Input Voltage (Note 10)	V_{ID}		V _S	V
Input Common Mode Voltage Range	V _{CM}	V _{SS}	V _{DD} – 1.35	V
Ambient Temperature	T _A	-40	125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

10. Maximum input current must be limited to ± 10 mA. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 2.7 V $T_A = 25^{\circ}\text{C}$; $R_L \ge 10$ kΩ; $V_{CM} = V_{OUT} = \text{mid}$ –supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 11, 12)

Parameter	Symbol	Cond	litions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
		NCv	20071		1.3	±3.5	
Input Offset Valtage	V	NCX.	20071			±4.5	m\/
Input Offset Voltage	Vos	NCv20072	NCx20072, NCx20074		1.3	±3	mV
		NCX20072	, INCX20074			±4	
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	T _A = 25°0	C to 125°C		2		μV/°C
Input Bias Current (Note 12)	L.				5	200	nΛ
Input Bias Current (Note 12)	I _{IB}					1500	pА
		NCv20071	NCv20072		2	75	
Input Officet Current (Note 42)		NCX20071	NCx20071, NCx20072			500	рА
Input Offset Current (Note 12)	los	NOv	20074		2	75	рА
		NCX.	NCx20074			200	
Channel Conserving	VTLK	DC	NCx20072		100		dВ
Channel Separation	XTLK	DC	DC NCx20074		115		dB
Differential Input Resistance	R _{ID}				5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ
Differential Input Capacitance	C _{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF
0 11 5 : 5	OMBB	., ., .,	V/ V/ 4.05.V/	90	110		
Common Mode Rejection Ratio	CMRR $V_{CM} = V_{SS} + 0.2 \text{ V to } V_{DD} - 1.35 \text{ V}$		v to v _{DD} – 1.35 v	69			- dB
OUTPUT CHARACTERISTICS							
0.000 0.000	^			96	118		-in
Open Loop Voltage Gain	A_{VOL}		Ī	86			dB
0 0		Op amp sir	nking current		70		
Output Current Capability (Note 13)	I _O	Op amp sou	rcing current		50		mA
0					0.006	0.15	.,
Output Voltage High	V _{OH}	Voltage output swi	ng from positive rail			0.22	V
	.,				0.005	0.15	.,
Output Voltage Low	V_{OL}	Voltage output swir	ng from negative rail			0.22	V
AC CHARACTERISTICS							
Unity Gain Bandwidth	UGBW	C _L = 25 pF			3		MHz
Slew Rate at Unity Gain	SR	$C_{L} = 20 \text{ pF}$	$R_L = 2 k\Omega$		2.8		V/μs
Phase Margin	φm	C _L =	25 pF		50		٥
Gain Margin	A _m	C _L =	25 pF		14		dB
0.48	Vo = 1 Vpp		Settling time to 0.1%		0.6		μs
Settling Time	t _S G	Gain = 1, C_L = 20 pF Settling time to 0.01%			1.2		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{11.} Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

^{12.} Performance guaranteed over the indicated operating temperature range by design and/or characterization.

^{13.} Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 2.7 V

 $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid}$ –supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 11, 12)

Parameter	Symbol	Cond	itions	Min	Тур	Max	Unit
NOISE CHARACTERISTICS							
Total Harmonic Distortion plus Noise	THD+N	V _{IN} = 0.5 Vpp, f	= 1 kHz, Av = 1		0.05		%
Inner Deferred Valters Naise	f = 1 kHz		f = 1 kHz		30		->///
Input Referred Voltage Noise	e _n	f = 10 kHz			20		nV/√ Hz
Input Referred Current Noise	i _n	f = 1 kHz			90		fA/√ Hz
SUPPLY CHARACTERISTICS							
Davisa Comple Daiostica Datia	2022	No Load		114	135		-10
Power Supply Rejection Ratio	PSRR	NO L	.oad	100			dB
		NC20074	Noteed		420	625	
D		NCx20071	No load			765	_
Power Supply Quiescent Current	I _{DD}		Dan dia sanda a dan d		405	525	μΑ
		NCx20072, NCx20074 Per channel, no load				625	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 11. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.
- 12. Performance guaranteed over the indicated operating temperature range by design and/or characterization.
- 13. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 5 V

 $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply}$ unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 14, 15)

Parameter	Symbol	С	onditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
		NO::00074	1000074		1.3	±3.5	
Innut Offact Valtage	\/	r	ICx20071			±4.5	>/
Input Offset Voltage	Vos	NC20	070 NO. 00074		1.3	±3	mV
		NCx20072, NCx20074				±4	1
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$T_A = 2$	25°C to 125 °C		2		μV/°C
Innuit Diag Current (Note 45)					5	200	π Λ
Input Bias Current (Note 15)	I _{IB}					1500	pА
		NCx20071, NCx20072			2	75	
land Offert Comment (Nets 45)	1					500	π Λ
Input Offset Current (Note 15)	los		1000074		2	75	- pA
		r	ICx20074			200	
Ohana al Oaranatia a	VTLK	D0	NCx20072		100		.ID
Channel Separation	XTLK	DC	NCx20074		115		dB
Differential Input Resistance	R _{ID}		•		5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ
Differential Input Capacitance	C _{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 14. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.
- 15. Performance guaranteed over the indicated operating temperature range by design and/or characterization.
- 16. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 5 V $T_A = 25^{\circ}C$; $R_L \ge 10$ kΩ; $V_{CM} = V_{OUT} = \text{mid}$ –supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to 125°C. (Notes 14, 15)

Parameter	Symbol	Cond	itions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
0 11 5 : 5	OMBB	, , , , , , , , , , , , , , , , , , ,	V. V. 4.05.V.	102	125		i.
Common Mode Rejection Ratio	CMRR	$V_{CM} = V_{SS} + 0.2$	V to V _{DD} – 1.35 V	80			- dB
OUTPUT CHARACTERISTICS		•					
Open Lean Valtage Cain	۸			96	120		٩D
Open Loop Voltage Gain	A_{VOL}			86			dB
Output Current Conchility (Note 16)	,	Op amp sin	king current		50		A
Output Current Capability (Note 16)	IO	Op amp sou	rcing current		60		mA
Output Voltage High	V	Valta aa autaut audi	a a from positive roil		0.013	0.20	V
Output Voltage High	V _{OH}	Voltage output swing from positive rail				0.25	V
Output Voltage Low	V	Voltago output owir	og from pogotivo roil		0.01	0.10	V
Output Voltage Low	V _{OL}	voltage output swir	ng from negative rail			0.15	V
AC CHARACTERISTICS							
Unity Gain Bandwidth	UGBW	C _L =	25 pF		3		MHz
Slew Rate at Unity Gain	SR	$C_{L} = 20 \text{ pF}$	$R_L = 2 k\Omega$		2.7		V/μs
Phase Margin	ϕ_{m}	C _L =	25 pF		50		٥
Gain Margin	A_{m}	C _L =	25 pF		14		dB
Comilia a Timo o		$V_{O} = 3 \text{ Vpp},$ Gain = 1, C _L = 20 pF	Settling time to 0.1%		1.2		
Settling Time	t _S	Gain = 1, $C_L = 20 \text{ pF}$	Settling time to 0.01%		5.6		μS
NOISE CHARACTERISTICS							
Total Harmonic Distortion plus Noise	THD+N	$V_{IN} = 2.5 \text{ Vpp, f}$	= 1 kHz, Av = 1		0.009		%
Innuit Defermed Valteria Naina	_	f = 1	kHz		30		->///
Input Referred Voltage Noise	e _n	f = 10	0 kHz		20		nV/√ Hz
Input Referred Current Noise	i _n	f = 1	kHz		90		fA/√ Hz
SUPPLY CHARACTERISTICS							
5 0 15: " 5"	2022			114	135		i.
Power Supply Rejection Ratio	PSRR	No Load		100			dB
		NC-20074	Noteed		430	635	
Power Supply Quiescent Current		NCx20071	No load			775	
	I _{DD} NC	NCv20072 NCv20074 5	Development and and		410	530	μΑ
		NCx20072, NCx20074 Per channel, no load				630	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{14.} Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

^{15.} Performance guaranteed over the indicated operating temperature range by design and/or characterization.

^{16.} Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT $V_S = 10 \text{ V}$

 $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid}$ –supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 17, 18)

Parameter	Symbol	Cond	itions	Min	Тур	Max	Unit	
INPUT CHARACTERISTICS								
Innut Officet Vallege	N/	NO	20074		1.3	±3.5	mV	
Input Offset Voltage	V _{OS}	NCX2	20071			±4.5	mV	
Input Offset Voltage	V	NCv20072	NCx20074		1.3	±3	mV	
input Onset voltage	V _{OS}	NOX20072	110220074			±4	mV	
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	T _A = 25°C	to 125°C		2		μV/°C	
Input Bias Current (Note 18)	I _{IB}				5	200	рA	
	.10					1500	μ, .	
		NCx20071.	NCx20072		2	75	pA	
Input Offset Current (Note 18)	I _{OS}					500		
put Gilber Guirein (i tete 16)	.03	NCxX	20074		2	75		
						200		
Channel Separation	XTLK	DC	DC NCx20072		100		dB	
	XILK	20	NCx20074		115		4.5	
Differential Input Resistance	R _{ID}				5		GΩ	
Common Mode Input Resistance	R _{IN}				5		GΩ	
Differential Input Capacitance	C _{ID}				1.5		pF	
Common Mode Input Capacitance	C _{CM}				3.5		pF	
Common Mode Rejection Ratio	CMRR	Von = Voc + 0.2	V to V _{DD} – 1.35 V	110	130		dB	
Common Mode Rejection ratio	Omar	VCIVI — VSS 1 0.2	* to *DD * 1.00 *	87			(I)	
OUTPUT CHARACTERISTICS					_			
Open Loop Voltage Gain	A _{VOL}			98	120		dB	
	, vol			88			4.5	
Output Current Capability (Note 19)	I _O	Op amp sin	king current		50		mA	
Catput Carrent Capability (140to 15)	10	Op amp sou	rcing current		65		1117.	
Output Voltage High	V _{OH}	Voltage output swi	ng from positive rail		0.023	0.08	V	
- Calput Voltage Flight	VОН	voltage output swii	ig irom poolave raii			0.10	v	
Output Voltage Low	V _{OL}	Voltage output swir	ng from negative rail		0.022	0.3	V	
- Catput Voltage Low	VOL	voltage output swii	ig irom riegative raii			0.35	·	
AC CHARACTERISTICS								
Unity Gain Bandwidth	UGBW	C _L =	25 pF		3		MHz	
Slew Rate at Unity Gain	SR	$C_{L} = 20 \text{ pF}$	$R_L = 2 k\Omega$		2.6		V/μs	
Phase Margin	ϕ_{m}	C _L =	25 pF		50		٥	
Gain Margin	A _m	C _L =	25 pF		14		dB	
Settling Time	to	$V_{O} = 8.5 \text{ Vpp},$	Settling time to 0.1%		3.4		li 6	
Committee of the commit	t _S G	Gain = 1, $C_L = 20 \text{ pF}$	Settling time to 0.01%		6.8		μs	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{17.} Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

^{18.} Performance guaranteed over the indicated operating temperature range by design and/or characterization.

^{19.} Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 10 V

 $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply}$ unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 17, 18)

Parameter	Symbol	Cond	itions	Min	Тур	Max	Unit
NOISE CHARACTERISTICS							
Total Harmonic Distortion plus Noise	THD+N	V _{IN} = 7.5 Vpp, f	= 1 kHz, Av = 1		0.004		%
Inner Defermed Voltage Naise	f = 1 kHz		f = 1 kHz		30		->///
Input Referred Voltage Noise	e _n	f = 10 kHz			20		- nV/√ Hz
Input Referred Current Noise	i _n	f = 1 kHz			90		fA/√ Hz
SUPPLY CHARACTERISTICS							
Davisa Comple Daiostica Datia	2022	No Load		114	135		-10
Power Supply Rejection Ratio	PSRR	NO L	-oad	100			dB
		NC20074	Noteed		430	645	
D		NCx20071	No load			785	1 ,
Power Supply Quiescent Current	I _{DD}		Day shawasi wa laad		416	540	μΑ
		NCx20072, NCx20074 Per channel, no load				640	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 17. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.
- 18. Performance guaranteed over the indicated operating temperature range by design and/or characterization.
- 19. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 36 V

 $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply}$ unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 20, 21)

Parameter	Symbol	Con	ditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
		NCx20071			1.3	±3.5	mV
land Office Valtage	V/	NC)	(20071			±4.5	mV
Input Offset Voltage	Vos	NCv2007	0. NCv20074		1.3	±3	mV
		NCX2007.	2, NCx20074			±4	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$T_A = 25^{\circ}$	°C to 125°C		2		μV/°C
					5	200	
Input Bias Current (Note 21)	I _{IB}	NCx20071, NCx20072				2000	pА
		NC:			1500		
		NCv2007	NCx20071, NCx20072		2	75	
Innut Offert Comment (Nata 24)		NCX2007	1, NCX20072			1000	- pA
Input Offset Current (Note 21)	los	NO	.00074		2	75	
		NC)	k20074			200	
Channel Consention	VTLK	DC.	NCx20072		100		40
Channel Separation	XTLK	DC	NCx20074		115		dB
Differential Input Resistance	R _{ID}				5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 20. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.
- 21. Performance guaranteed over the indicated operating temperature range by design and/or characterization.
- 22. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 36 V $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid}$ –supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 20, 21)

Parameter	Symbol	Cond	litions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS		•	<u>, , , , , , , , , , , , , , , , , , , </u>				•
Differential Input Capacitance	C _{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF
			$V_{CM} = V_{CC} + 0.2 \text{ V to}$	118	135		
		NCx20071	$V_{CM} = V_{SS} + 0.2 \text{ V to}$ $V_{DD} - 1.35 \text{ V}$	95			
			$V_{CM} = V_{SS} + 0.2 \text{ V to}$ $V_{DD} - 1.35 \text{ V}$	120	145		ļ .
Common Mode Rejection Ratio	CMRR	NCx20072		95			dB
		NCx20074	$V_{CM} = V_{SS} + 0.2 \text{ V to}$	120	145		1
			V _{DD} – 1.35 V	85			1
OUTPUT CHARACTERISTICS							
On an Lean Wallana On's	Δ.			98	120		JD
Open Loop Voltage Gain	A_{VOL}			88			dB
0 0		Op amp sinking current			50		
Output Current Capability (Note 22)	nt Capability (Note 22) I _O Op amp sourcing current			65		mA	
			NO 00074		0.074	0.15	
Output Voltage High			NCx20071			0.22	- - V
		Voltage output swing	NO 00070		0.074	0.10	
	V_{OH}	from positive rail	NCx20072			0.15	
			NO 00074		0.074	0.10	
			NCx20074			0.12	
0	.,				0.065	0.3	Ţ.,
Output Voltage Low	V_{OL}	Voltage output swir	ng from negative rail			0.35	V
AC CHARACTERISTICS			<u>.</u>				
Unity Gain Bandwidth	UGBW	C _L =	25 pF		3		MHz
Slew Rate at Unity Gain	SR	$C_{L} = 20 \text{ pF}$	$R_L = 2 k\Omega$		2.4		V/μs
Phase Margin	ϕ_{m}	C _L =	25 pF		50		0
Gain Margin	A _m	C _L =	25 pF		14		dB
Cottling Times		V _O = 10 Vpp,	Settling time to 0.1%		3.2		
Settling Time	t _S	Gain = 1, $C_L = 20 \text{ pF}$	Settling time to 0.01%		7		μS
NOISE CHARACTERISTICS							
Total Harmonic Distortion plus Noise	THD+N	V _{IN} = 28.5 Vpp,	f = 1 kHz, Av = 1		0.001		%
Input Poforred Voltage Noise	-	f = 1	kHz		30		nV/√ H z
Input Referred Voltage Noise	e _n	f = 1	0 kHz		20		11V/ VH2
Input Referred Current Noise	i _n	f = 1	kHz		90		fA/√Hz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{20.} Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

^{21.} Performance guaranteed over the indicated operating temperature range by design and/or characterization.

^{22.} Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 36 V $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid}$ –supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 20, 21)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
SUPPLY CHARACTERISTICS							
Dawar Cumply Dejection Datio	DCDD	No			135		dB
Power Supply Rejection Ratio	PSRR	No Load		100			uБ
		NCv20074	No lead		480	700	
		NCx20071 No load	No load			840	
Dower Cumply Ouisesent Current		NO 20072		465	570	^	
Power Supply Quiescent Current	I _{DD}	NCx20072	Per channel, no load			700	μΑ
		NCv20074 Per shannel ne lead		465	600		
		NCx20074	Per channel, no load			700	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 20. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.
- 21. Performance guaranteed over the indicated operating temperature range by design and/or characterization.
- 22. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

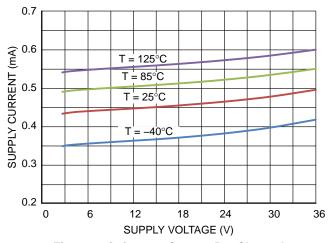


Figure 2. Quiescent Current Per Channel vs. **Supply Voltage**

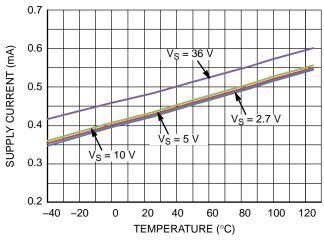


Figure 3. Quiescent Current vs. Temperature

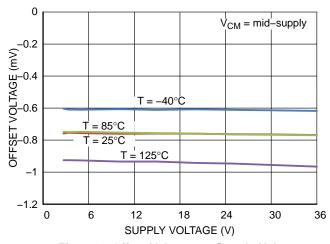


Figure 4. Offset Voltage vs. Supply Voltage

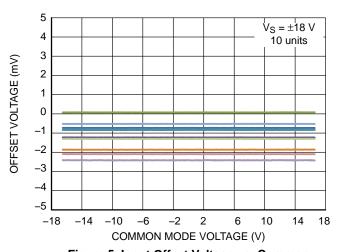


Figure 5. Input Offset Voltage vs. Common **Mode Voltage**

V_S = 2.7 V, Gain

V_S = 36 V, Gain

 $V_S = 2.7 V$, Phase

V_S = 36 V, Phase

180

135

90

0 -45 DHASE

-90

-135

100M

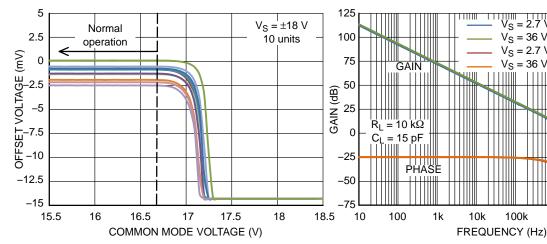


Figure 6. Input Offset Voltage vs. Common **Mode Voltage**

Figure 7. Gain and Phase vs. Frequency

100k

1M

10M

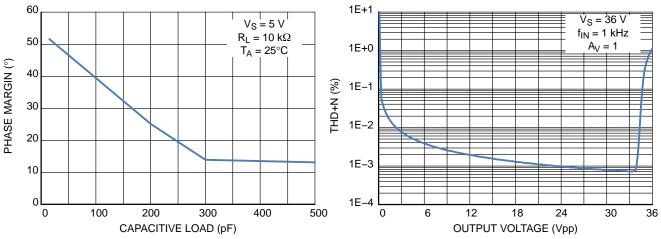


Figure 8. Phase Margin vs. Capacitive Load

Figure 9. THD+N vs. Output Voltage

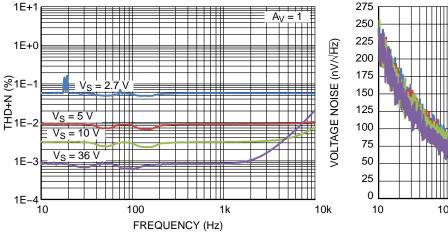


Figure 10. THD+N vs. Frequency

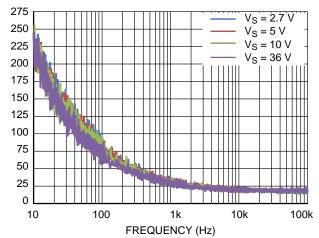


Figure 11. Input Voltage Noise vs. Frequency

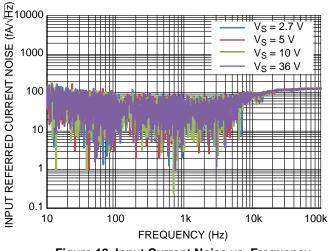


Figure 12. Input Current Noise vs. Frequency

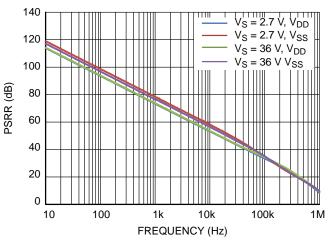
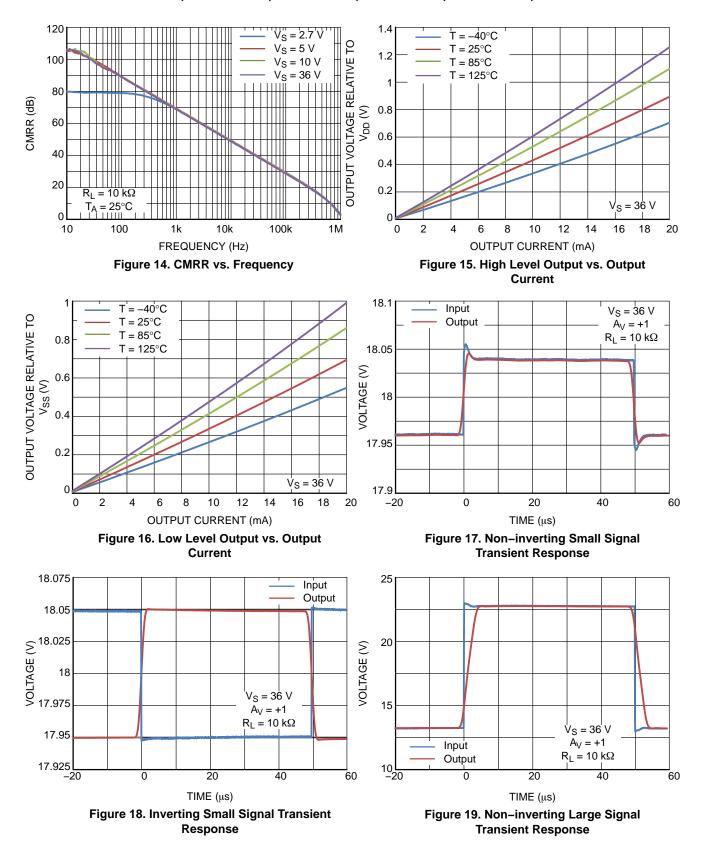



Figure 13. PSRR vs. Frequency

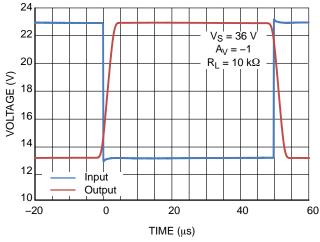


Figure 20. Inverting Large Signal Transient Response

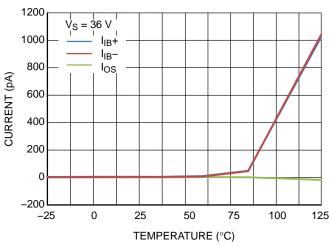


Figure 21. Input Bias and Offset Current vs.
Temperature

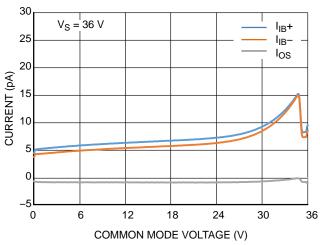


Figure 22. Input Bias Current vs. Common Mode Voltage

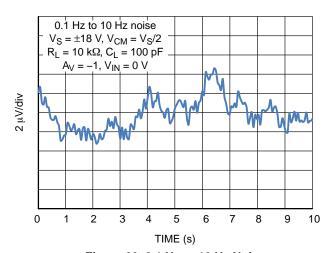


Figure 23. 0.1 Hz to 10 Hz Noise

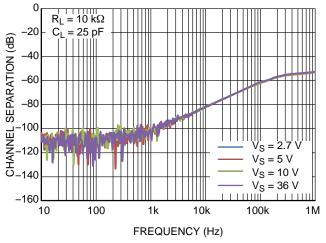


Figure 24. Channel Separation vs. Frequency

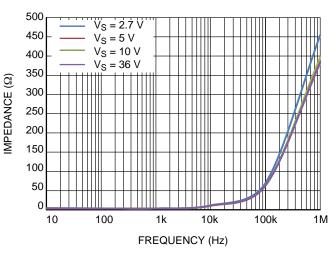


Figure 25. Open Loop Output Impedance

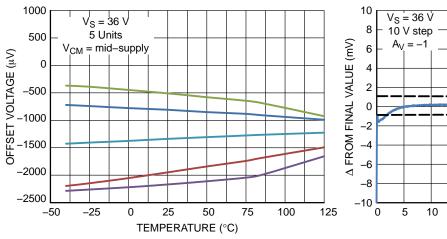


Figure 26. Offset Voltage vs. Temperature

Figure 27. Large Signal Settling Time

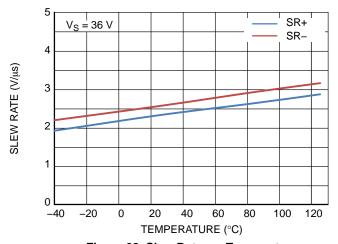


Figure 28. Slew Rate vs. Temperature

APPLICATIONS INFORMATION

Input Circuit

The NCS2007x input stage has a PMOS input pair and ESD protection diodes. The input pair is internally connected by back–to–back Zener diodes with a reverse voltage of 5.5 V. To protect the internal circuitry, the input current must be limited to 10 mA. When operating the

NCS2007x at differential voltages greater than $V_{ID} = 26$ V, series resistors can be added externally to limit the input current flowing between the input pins. Adding 500 Ω resistors in series with the input prevents the current from exceeding 10 mA over the entire operating range up to 36 V.

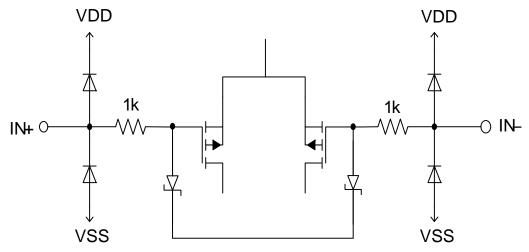


Figure 29. Differential Input Pair

Output

The NCS2007x has a class AB output stage with rail-to-rail output swing.

High output currents can cause the junction temperature to exceed the 150°C absolute maximum rating. In the case of a short circuit where the output is connected to either supply rail, the amount of current the op amp can source and sink is described by the output current capability parameter

listed in the Electrical Characteristics. The junction temperature at a given power dissipation, P, can be calculated using the following formula:

$$T_J = T_A + P \times \theta_{JA}$$

The thermal resistance between junction and ambient, θ_{JA} , is provided in the Thermal Information section of this datasheet.

SOT-553-5 1.60x1.20x0.55, 0.50P CASE 463B ISSUE D

DATE 21 FEB 2024

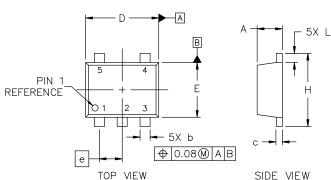
MILLIMETERS

MAX.

0.60

0.27

0.18

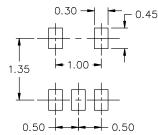

1.65

1.25

1.65

0.30

NOM.



NOTES:

- . DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
- ALL DIMENSION ARE IN MILLIMETERS.
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

DIM

	А	0.50	0.55	
	b	0.17	0.22	
	С	0.08	0.13	
5	D	1.55	1.60	
	E	1.15	1.20	
	е	1	0.50 BSC	;
	Н	1.55	1.60	
	L	0.10	0.20	
				_

RECOMMENDED MOUNTING FOOTPRINT*

* FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

M = Date Code

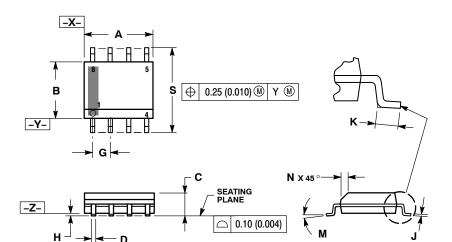
= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

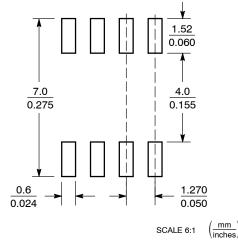
STYLE 1: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 2: PIN 1. CATHODE 2. COMMON ANODE 3. CATHODE 2 4. CATHODE 3 5. CATHODE 4	STYLE 3: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. CATHODE 1	STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3. SOURCE 1 4. GATE 1 5. GATE 2	STYLE 5: PIN 1. ANODE 2. EMITTER 3. BASE 4. COLLECTOR 5. CATHODE
STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 1 5. COLLECTOR 2/BASE 1	STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER	STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE	

DOCUMENT NUMBER:	98AON11127D	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-553-5 1.60x1.20x0.55	5, 0.50P	PAGE 1 OF 1


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

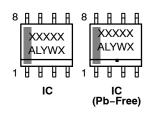
SOIC-8 NB CASE 751-07 **ISSUE AK**

DATE 16 FEB 2011


XS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	1.27 BSC		0 BSC
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0 ° 8 °		0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244


SOLDERING FOOTPRINT*

0.25 (0.010) M Z Y S

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week W

= Pb-Free Package

XXXXXX XXXXXX AYWW AYWW H \mathbb{H} Discrete **Discrete** (Pb-Free)

XXXXXX = Specific Device Code = Assembly Location Α ww = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

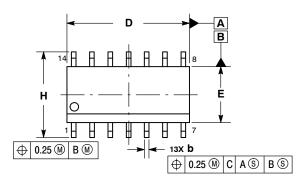
SOIC-8 NB CASE 751-07 ISSUE AK

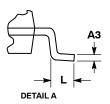
DATE 16 FEB 2011

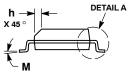
STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER	STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1	STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1	STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE
STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE	7. BASE, #1 8. EMITTER, #1 STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE	STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd	STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2
STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON	STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND	STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1	STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN	STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN	STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON	STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1
STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC	STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE	STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
5. RXE 6. VEE 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6	STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND	STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT	STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE
STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT	STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V MON 6. VBULK 7. VBULK 8. VIN
STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1	STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1		

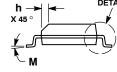
DOCUMENT NUMBER:	98ASB42564B	98ASB42564B Electronic versions are uncontrolled except when accessed directly from the Document Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

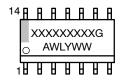





△ 0.10


SOIC-14 NB CASE 751A-03 ISSUE L

DATE 03 FEB 2016

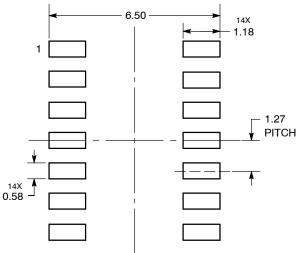


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
 - ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 - DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT
 - MAXIMUM MATERIAL CONDITION.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE

	MILLIN	IETERS	INC	HES
DIM	MIN MAX		MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
АЗ	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
e	1.27	BSC	0.050 BSC	
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
М	0 °	7°	0 °	7°

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code Α = Assembly Location


WL = Wafer Lot Υ = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

SOLDERING FOOTPRINT*

C SEATING PLANE

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B	SB42565B Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2	

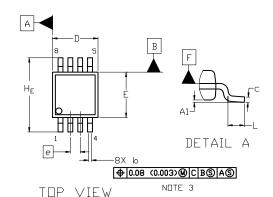
onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

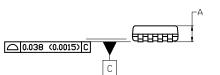
SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

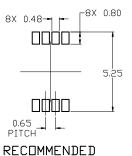
DOCUMENT NUMBER:	98ASB42565B	98ASB42565B Electronic versions are uncontrolled except when accessed directly from the Doc Printed versions are uncontrolled except when stamped "CONTROLLED COPY" is	
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.



Micro8 CASE 846A-02 ISSUE K

DATE 16 JUL 2020



SIDE VIEW

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10 mm IN EXCESS OF MAXIMUM MATERIAL CONDITION.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSION E DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE. DIMENSIONS D AND E ARE DETERMINED AT DATUM F.
- DATUMS A AND B ARE TO BE DETERMINED AT DATUM F.
- A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

MOUNTING FOOTPRINT

DIM	MILLIMETERS		
MIM	MIN.	N□M.	MAX.
Α			1.10
A1	0.05	0.08	0.15
b	0.25	0.33	0.40
С	0.13	0.18	0.23
D	2.90	3.00	3.10
Е	2.90	3.00	3.10
е	0.65 BSC		
HE	4.75	4.90	5.05
L	0.40	0.55	0.70

8. N-DRAIN

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

Υ = Year W = Work Week = Pb-Free Package

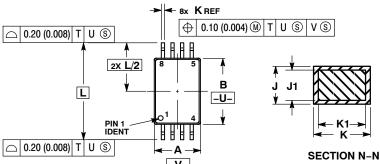
(Note: Microdot may be in either location)

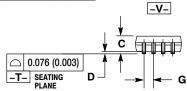
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

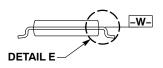
STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. SOURCE	PIN 1. SOURCE 1	PIN 1. N-SOURCE
2. SOURCE	2. GATE 1	2. N-GATE
SOURCE	SOURCE 2	P-SOURCE
4. GATE	4. GATE 2	4. P-GATE
5. DRAIN	5. DRAIN 2	5. P-DRAIN
6. DRAIN	6. DRAIN 2	6. P-DRAIN
7. DRAIN	7. DRAIN 1	7. N-DRAIN

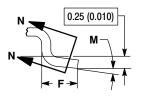
8. DRAIN 1

DOCUMENT NUMBER:	98ASB14087C	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	MICRO8		PAGE 1 OF 1


onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.






TSSOP-8 3.0x4.4x1.1 **CASE 948S** ISSUE C

DATE 20 JUN 2008

DETAIL E

- IOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD
- FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	4.30	4.50	0.169	0.177
C		1.10		0.043
D	0.05	0.15	0.002	0.006
F	0.50	0.70	0.020	0.028
G	0.65 BSC		0.026 BSC	
7	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0°	8°	0°	8°

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code = Assembly Location Α

= Year ww = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON00697D	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-8 3.0x4.4x1.1		PAGE 1 OF 1

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

NCS20074DR2G NCV20074DTBR2G NCV20074DR2G NCS20072DR2G NCS20072DTBR2G NCV20072DR2G NCS20074DTBR2G NCV20072DMR2G NCS20072DMR2G NCV20072DMR2G NCV20072DTBR2G NCV20071SN2T1G NCS20071SN2T1G NCS20071XV53T2G NCV20071XV53T2G