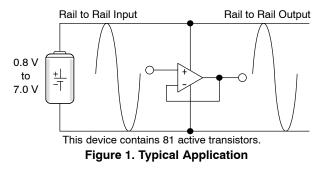
Sub-One Volt Rail-to-Rail Operational Amplifier with Enable Feature

The NCS2002 is an industry first sub-one volt operational amplifier that features a rail-to-rail common mode input voltage range, along with rail-to-rail output drive capability. This amplifier is guaranteed to be fully operational down to 0.9 V, providing an ideal solution for powering applications from a single cell Nickel Cadmium (NiCd) or Nickel Metal Hydride (NiMH) battery. Additional features include no output phase reversal with overdriven inputs, trimmed input offset voltage of 0.5 mV, extremely low input bias current of 40 pA, and a unity gain bandwidth of 1.1 MHz at 5.0 V.


The NCS2002 also has an active high enable pin that allows external shutdown of the device. In the standby mode, the supply current is typically 1.9 μ A at 1.0 V. Because of its small size and enable feature, this amplifier represents the ideal solution for small portable electronic applications. The NCS2002 is available in the space saving SOT23–6 (TSOP–6) package with two industry standard pinouts.

Features

- 0.9 V Guaranteed Operation
- Standby Mode: $I_D = 1.9 \ \mu A$ at 1.0 V, Typical
- Rail-to-Rail Common Mode Input Voltage Range
- Rail-to-Rail Output Drive Capability
- No Output Phase Reversal for Over-Driven Input Signals
- 0.5 mV Trimmed Input Offset
- 10 pA Input Bias Current
- 1.1 MHz Unity Gain Bandwidth at ± 2.5 V, 1.0 MHz at ± 0.5 V
- Tiny SOT23-6 (TSOP-6) Package
- NCV Parts AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Typical Applications

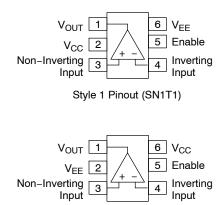
- Single Cell NiCd / NiMH Battery Powered Applications
- Cellular Telephones
- Pagers
- Personal Digital Assistants
- Electronic Games
- Digital Cameras
- Camcorders
- Hand Held Instruments

ON Semiconductor®

http://onsemi.com

TSSOP-6 SN SUFFIX CASE 318G

MARKING DIAGRAM



AA = Device Code

- x = Marking Defined on Page 15 in
- Ordering Information
- A = Assembly Location
- Y = Year W - Work V
- V = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

Style 2 Pinout (SN2T1)

ORDERING AND MARKING INFORMATION

See detailed ordering, marking, and shipping information in the package dimensions section on page 15 of this data sheet.

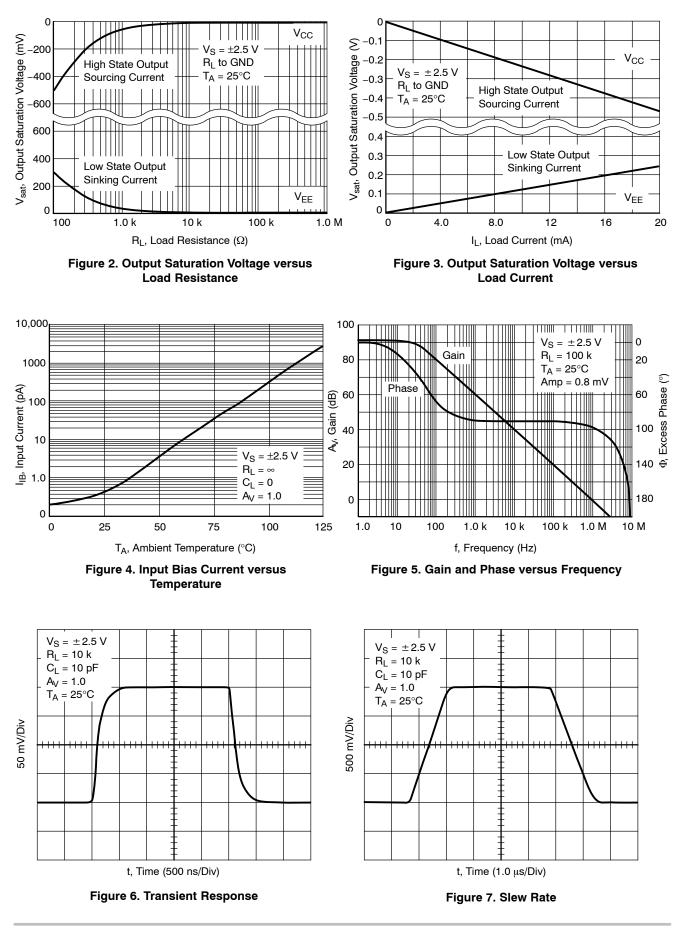
MAXIMUM RATINGS

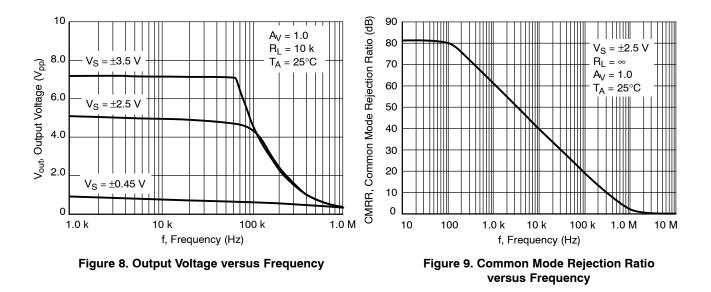
Rating	Symbol	Value	Unit
Supply Voltage (V _{CC} to V _{EE})	V _S	7.0	V
Input Differential Voltage Range (Note 1)	V _{IDR}	$V_{\mbox{\scriptsize EE}}{-}300$ mV to $$ 7.0 V $$	V
Input Common Mode Voltage Range (Note 1)	V _{ICR}	$V_{\mbox{\scriptsize EE}}{-}300$ mV to $$ 7.0 V	V
Output Short Circuit Duration (Note 2)	t _{Sc}	Indefinite	sec
Junction Temperature	TJ	150	°C
Power Dissipation and Thermal Characteristics SOT23–6 Package Thermal Resistance, Junction–to–Air Power Dissipation @ T _A = 70°C	R _{θJA} P _D	235 340	°C/W mW
Operating Ambient Temperature Range NCS2002 NCV2002 (Note 3)	T _A	-40 to 105 -40 to 125	°C
Storage Temperature Range	T _{stg}	-65 to 150	°C
ESD Protection at any Pin Human Body Model (Note 4)	V _{ESD}	1500	V

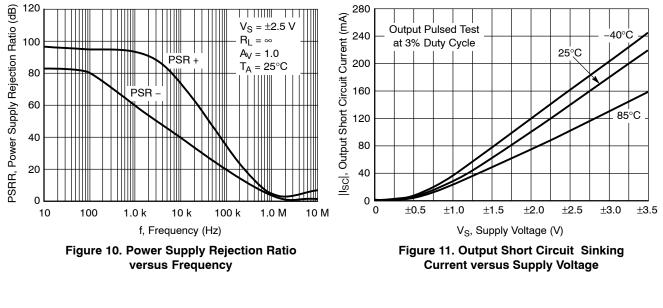
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

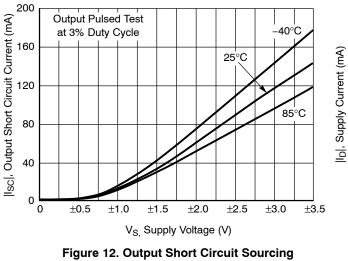
Either or both inputs should not exceed the range of V_{EE} - 300 mV to V_{EE} + 7.0 V.
 Maximum package power dissipation limits must be observed to ensure that the maximum junction temperature is not exceeded.

 $\begin{array}{l} T_J T_A + (P_D \; R_{\theta JA}) \\ \textbf{3. NCV prefix is for automotive and other applications requiring site and change control. \\ \textbf{4. ESD data available upon request.} \end{array}$

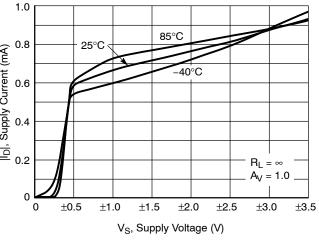

DC ELECTRICAL CHARACTERISTICS (V_{CC} = 2.5 V, V_{EE} = -2.5 V, V_{CM} = V_O = 0 V, R_L to GND, T_A = 25°C, unless otherwise noted)

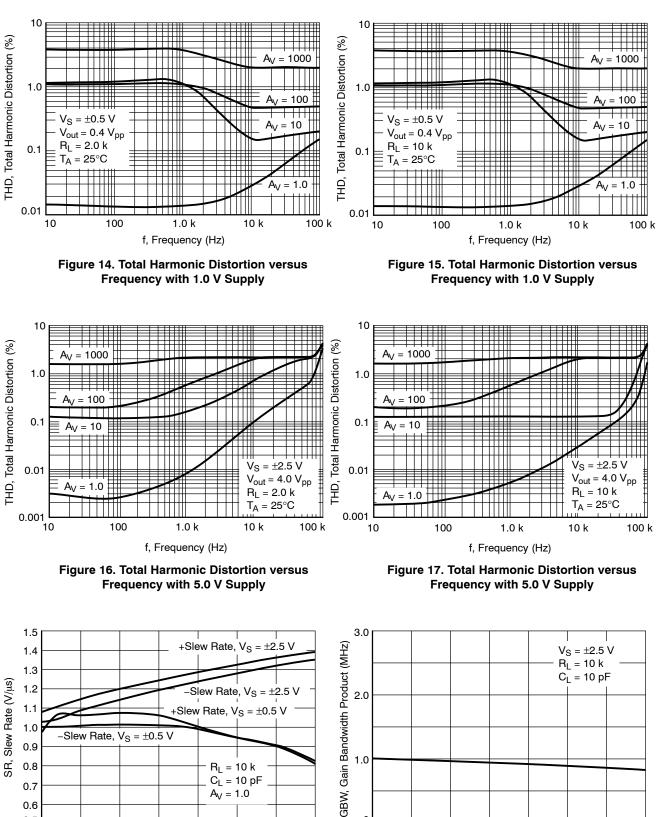

$ \begin{array}{ c c c c c c } V_{CC}^{-} = 0.45 \ V, \ V_{EE}^{-} = -0.45 \ V \\ T_A = 25^{\circ}C \\ T_A = 0^{\circ}C \ to \ 70^{\circ}C \\ T_A = -40 \ to \ +125^{\circ}C \\ V_{CC} = 1.5 \ V, \ V_{EE} = -1.5 \ V \\ T_A = 25^{\circ}C \\ T_A = 0^{\circ}C \ to \ 70^{\circ}C \\ T_A = 0^{\circ}C \ to \ 70^{\circ}C \\ T_A = -40 \ to \ +125^{\circ}C \\ V_{CC} = 2.5 \ V, \ V_{EE} = -2.5 \ V \\ T_A = 25^{\circ}C \\ T_A = 0^{\circ}C \ to \ 70^{\circ}C \\ T_A = -40 \ to \ +125^{\circ}C \\ V_{CC} = 2.5 \ V, \ V_{EE} = -2.5 \ V \\ T_A = 25^{\circ}C \\ T_A = 0^{\circ}C \ to \ 70^{\circ}C \\ T_A = -40 \ to \ +125^{\circ}C \\ T_A = -40 \ to \ +125^{\circ}C \\ \end{array} $	Rating	Symbol	Min	Тур	Max	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		V _{IO}				mV
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-6.0	0.5	6.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-8.5	-	8.5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-9.5	-	9.5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				0.5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-7.5	-	7.5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			6.0	0.5	6.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				0.5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>A</i>		-7.5	_	7.5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\Delta V_{IO} / \Delta T$	-	8.0	-	μV/°C
Input Common Mode Voltage Range V_{ICR} - V_{EE} to V_{CC} -VLarge Signal Voltage Gain $V_{CC} = 0.45$ V, $V_{EE} = -0.45$ V A_{VOL} A_{VOL} kV/A $V_{CC} = 0.45$ V, $V_{EE} = -0.45$ V $ 40$ - $N_{CC} = 1.5$ V, $V_{EE} = -1.5$ V $ 40$ - $N_{CC} = 2.5$ V, $V_{EE} = -2.5$ V $ 40$ - $N_{CC} = 2.5$ V, $V_{EE} = -2.5$ V $ 10$ 40 - $N_{CC} = 2.5$ V, $V_{EE} = -2.5$ V $ 10$ 40 - $N_{CC} = 0.45$ V, $V_{EE} = -0.45$ V $V_{CE} = 0.45$ V $V_{CE} = 0.45$ V $V_{CE} = 0.45$ V				10		n۸
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1100000000000000000000000000000000000	ЧВ	-	10	_	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Common Mode Voltage Range	V _{ICR}	-	V_{EE} to V_{CC}	-	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		A _{VOL}				kV/V
$ \begin{array}{c c} V_{CC} = 1.5 \text{ V}, V_{EE} = -1.5 \text{ V} \\ R_L = 10 \text{ k} \\ V_{CC} = 2.5 \text{ V}, V_{EE} = -2.5 \text{ V} \\ R_L = 10 \text{ k} \end{array} \qquad $			_	40	_	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-10		
$ \begin{array}{c c} V_{CC} = 2.5 \text{ V}, V_{EE} = -2.5 \text{ V} \\ \hline R_L = 10 \text{ k} \end{array} \begin{array}{c c} 10 & 40 & - \end{array} \end{array} \\ \hline 0 \text{ output Voltage Swing, High State Output (V_{ID} = + 0.5 \text{ V})} & V_{OH} \\ \hline T_A = T_{Iow} \text{ to } T_{high} \\ V_{CC} = 0.45 \text{ V}, V_{EE} = -0.45 \text{ V} \end{array} \end{array} $			_	40	_	
$\begin{tabular}{ c c c c c c } \hline R_L = 10 k & 10 & 40 & - \\ \hline Output Voltage Swing, High State Output (V_{ID} = + 0.5 V) & V_{OH} & V \\ \hline T_A = T_{Iow} to T_{high} & V_{CC} = 0.45 V, V_{EE} = -0.45 V & V \\ \hline \end{tabular}$						
$T_{A} = T_{low} \text{ to } T_{high}$ $V_{CC} = 0.45 \text{ V}, \text{ V}_{EE} = -0.45 \text{ V}$			10	40	-	
$V_{CC} = 0.45 \text{ V}, V_{EE} = -0.45 \text{ V}$		V _{OH}				V
	$T_A = T_{low}$ to T_{high}					
R _L = 10 k 0.40 0.442 -						
					-	
R _L = 2.0 k 0.35 0.409 -			0.35	0.409	-	
$V_{CC} = 1.5 V, V_{EE} = -1.5 V$ $B_{U} = 10 k$ 1.45 1.494 -			1 45	1 404		
R _L = 10 k 1.45 1.494 - R _I = 2.0 k 1.40 1.473 -					_	
$V_{CC} = 2.5 \text{ V}, V_{EE} = -2.5 \text{ V}$			1.40	1.475	_	
$R_{\rm I} = 10 \rm k$ 2.45 2.493 -			2.45	2,493	_	
$R_L = 2.0 k$ 2.400 –					_	

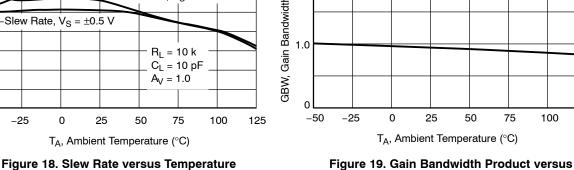

Rating	Symbol	Min	Тур	Max	Unit
Output Voltage Swing, Low State Output ($V_{ID} = -0.5 V$) T _A = -40 to +125°C	V _{OL}				V
$V_{CC} = 0.45 \text{ V}, V_{EE} = -0.45 \text{ V}$ $R_L = 10 \text{ k}$ $R_L = 2.0 \text{ k}$			-0.446 -0.432	-0.40 -0.35	
$V_{CC} = 1.5 \text{ V}, V_{EE} = -1.5 \text{ V}$ $R_L = 10 \text{ k}$ $R_L = 2.0 \text{ k}$ $V_{CC} = 5 \text{ V} \text{ V}$			-1.497 -1.484	-1.45 -1.40	
V _{CC} = 2.5 V, V _{EE} = -2.5 V R _L = 10 k R _L = 2.0 k			-2.496 -2.481	-2.45 -2.40	
Common Mode Rejection Ratio (V _{in} = 0 to 5.0 V)	CMRR	60	82	-	dB
Power Supply Rejection Ratio ($V_{CC} = 0.5 \text{ V}$ to 2.5 V, $V_{EE} = -2.5 \text{ V}$)	PSRR	60	85	-	dB
Output Short Circuit Current $V_{CC} = 0.45 \text{ V}, V_{EE} = -0.45 \text{ V}, V_{ID} = \pm 0.4 \text{ V}$	I _{SC}				mA
Source Current High Output State Sink Current Low Output State $V_{CC} = 1.5 V$, $V_{FF} = -1.5 V$, $V_{ID} = \pm 0.5 V$		0.5	1.0 –3.0	-2.0	
Source Current High Output State Sink Current Low Output State		25 -	32 -58	_ _45	
V _{CC} = 2.5 V, V _{EE} = -2.5 V, V _{ID} = ±0.5 V Source Current High Output State Sink Current Low Output State		65 -	86 -128	_ -100	
Power Supply Current (Per Amplifier, $V_O = 0 V$) $T_A = -40 \text{ to } +125^{\circ}C$ $V_{CC} = 0.5 V \text{ to } V_{EE} = -0.5 V$	۱ _D				μΑ
Venable = V_{CC} Venable = V_{EE}			480 1.5	600 3.0	
$V_{CC} = 1.5 V \text{ to } V_{EE} = -1.5 V$ Venable = V_{CC} Venable = V_{EE}			720 2.2	900 5.0	
$V_{CC} = 2.5 V \text{ to } V_{EE} = -2.5 V$ Venable = V_{CC} Venable = V_{EE}			820 2.5	1000 5.0	
Enable Input Threshold Voltage (V _{CC} = 2.5 V, V _{EE} = -2.5 V) Operating Disabled	V _{th(EN)}	_ 1.7 V + V _{EE}	2.7 V + V _{EE} 1.9	2.8 V + V _{EE} -	V
Enable Input Current (V _{CC} = 5.0 V, V _{EE} = 0) Enable = 5.0 V Enable = GND	I _{Enable}		1.1 1.1	2.0 2.0	μA


Rating	Symbol	Min	Тур	Max	Unit
Differential Input Resistance (V _{CM} = 0 V)	R _{in}	-	>1.0	_	tera Ω
Differential Input Capacitance (V _{CM} = 0 V)	C _{in}	-	3.0	_	pf
Equivalent Input Noise Voltage (f = 1.0 kHz)	e _n	-	100	_	nV/√Hz
	GBW	_ _ 0.6	0.8 0.8 0.9	_ _ _	MHz
Gain Margin (R_L = 10 k, C_L = 5.0 pf)	Am	-	6.5	-	dB
Phase Margin (R_L = 10 k, C_L = 5.0 pf)	φm	-	60	-	Deg
Power Bandwidth (V_O = 4.0 V_{PP}, R_L = 2.0 k, THD = 1.0 %, A_V = 1.0)	BWP	-	80	_	kHz
Total Harmonic Distortion (V_O = 4.0 V_PP, R_L = 2.0 k, A_V = 1.0) f = 1.0 kHz f = 10 kHz	THD		0.008 0.08		%
Slew Rate (V _S = \pm 2.5 V, V _O = -2.0 V to 2.0 V, R _L = 2.0 k, A _V = 1.0) Positive Slope Negative Slope	SR	0.85 0.85	1.2 1.3		V/µs
Time Delay for Device to Turn On $(R_L = 10 \text{ k})$	t _{on}	-	5.5	7.5	μs
Time Delay for Device to Turn Off (R _L = 10 k)	t _{off}	-	2.5	3.0	μs

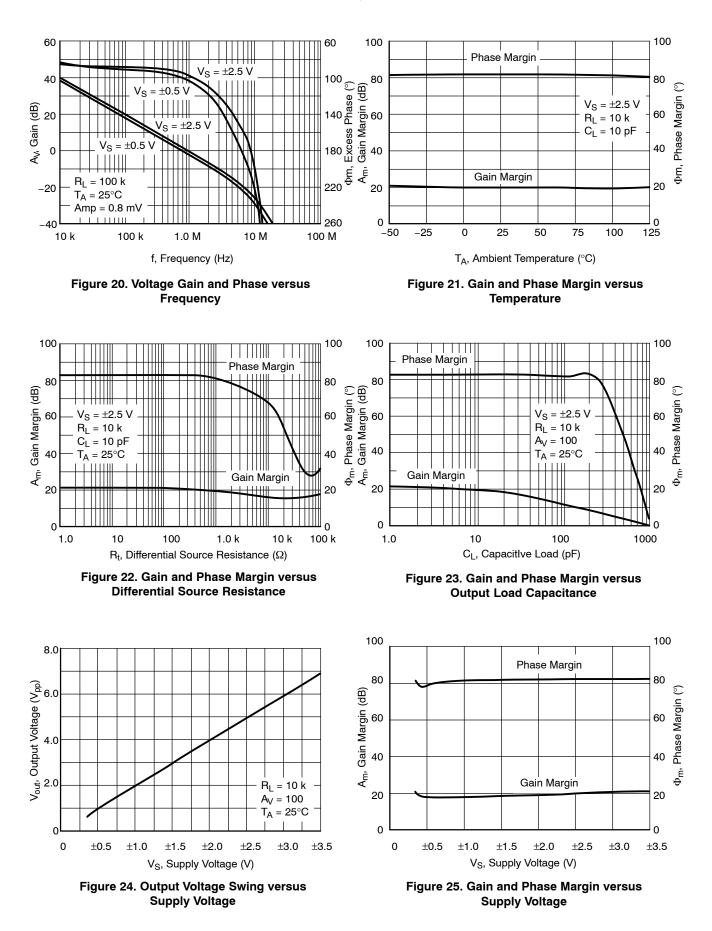
AC ELECTRICAL CHARACTERISTICS (V _{CC} = 2.5 V, V _{EE} =	= -2.5 V, $V_{CM} = V_O = 0$ V, R_L to GND, $T_A = 25^{\circ}$ C, unless otherwise noted)
---	---

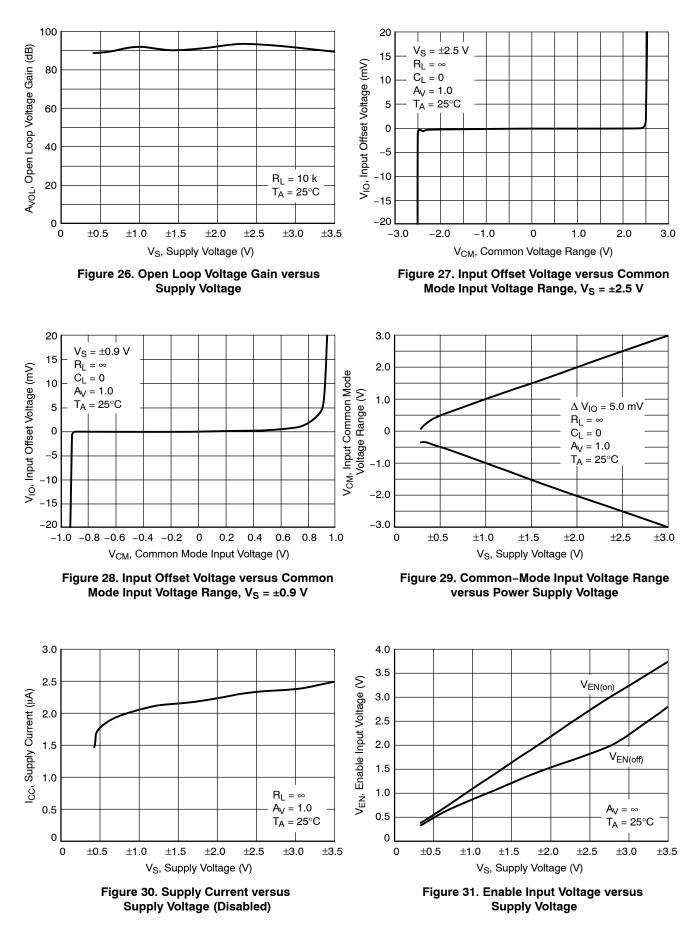






Current versus Supply Voltage


125


Temperature

0.7

0.6 0.5

-50

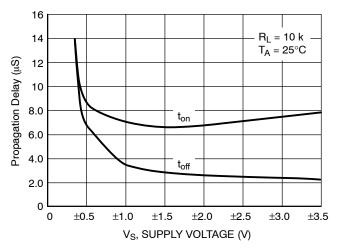
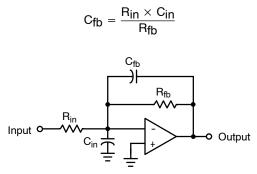


Figure 32. Propagation Delay versus Supply Voltage

APPLICATION INFORMATION AND OPERATING DESCRIPTION


GENERAL INFORMATION

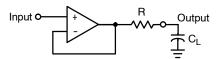
The NCS2002 is an industry first rail-to-rail input, rail-to-rail output amplifier that features guaranteed sub one volt operation. This unique feature set is achieved with the use of a modified analog CMOS process that allows the implementation of depletion MOSFET devices. The amplifier has a 1.0 MHz gain bandwidth product, 1.2 V/ μ s slew rate and is operational over a power supply range less than 0.9 V to as high as 7.0 V.

Inputs

The input topology chosen for this device series is unconventional when compared to most low voltage operational amplifiers. It consists of an N-channel depletion mode differential transistor pair that drives a folded cascade stage and current mirror. This configuration extends the input common mode voltage range to encompass the V_{EE} and V_{CC} power supply rails, even when powered from a combined total of less than 0.9 volts. Figures 27, 28 and 29 show the input common mode voltage range versus power supply voltage.

The differential input stage is laser trimmed in order to minimize offset voltage. The N-channel depletion mode MOSFET input stage exhibits an extremely low input bias current of less than 10 pA. The input bias current versus temperature is shown in Figure 4. Either one or both inputs can be biased as low as V_{EE} minus 300 mV to as high as 7.0 V without causing damage to the device. If the input common mode voltage range is exceeded, the output will not display a phase reversal. If the maximum input positive or negative voltage ratings are to be exceeded, a series resistor must be used to limit the input current to less than 2.0 mA. The ultra low input bias current of the NCS2002 allows the use of extremely high value source and feedback resistor without reducing the amplifier's gain accuracy. These high value resistors, in conjunction with the device input and printed circuit board parasitic capacitances C_{in} , will add an additional pole to the single pole amplifier in Figure 33. If low enough in frequency, this additional pole can reduce the phase margin and significantly increase the output settling time. The effects of C_{in} , can be canceled by placing a zero into the feedback loop. This is accomplished with the addition of capacitor C_{fb} . An approximate value for C_{fb} can be calculated by:

Cin = Input and printed circuit board capacitance


Figure 33. Input Capacitance Pole Cancellation

Output

The output stage consists of complementary P and N channel devices connected to provide rail-to-rail output drive. With a 2.0 k load, the output can swing within 50 mV of either rail. It is also capable of supplying over 75 mA when powered from 5.0 V and 1.0 mA when powered from 0.9 V.

When connected as a unity gain follower, the NCS2002 can directly drive capacitive loads in excess of 820 pF at room temperature without oscillating but with significantly reduced phase margin. The unity gain follower configuration exhibits the highest bandwidth and is most prone to oscillations when driving a high value capacitive load. The capacitive load in combination with the amplifier's output impedance, creates a phase lag that can result in an under-damped pulse response or a continuous oscillation. Figure 35 shows the effect of driving a large capacitive load in a voltage follower type of setup. When driving capacitive loads exceeding 820 pF, it is recommended to place a low value isolation resistor between the output of the op amp and the load, as shown in Figure 34. The series resistor isolates the capacitive load from the output and enhances the phase margin. Refer to Figure 36. Larger values of R will result in a cleaner output waveform but excessively large values will degrade the

large signal rise and fall time and reduce the output amplitude. Depending upon the capacitor characteristics, the isolation resistor value will typically be between 50 to 500 Ω . The output drive capability for resistive and capacitive loads is shown in Figures 2, 3, and 23.

Isolation resistor R = 50 to 500

Figure 34. Capacitance Load Isolation

Note that the lowest phase margin is observed at cold temperature and low supply voltage.

Enable Pin

The enable pin allows the user to externally control the device. if the enable pin is pulled below the input disable threshold voltage ($V_{EN} < 45\% V_{CC}$), the amplifier is disabled. Once the enable pin is taken above the threshold voltage ($V_{EN} = 60\% V_{CC}$), the amplifier will turn on. In the event the enable pin is not connected, the amplifier will remain on by default

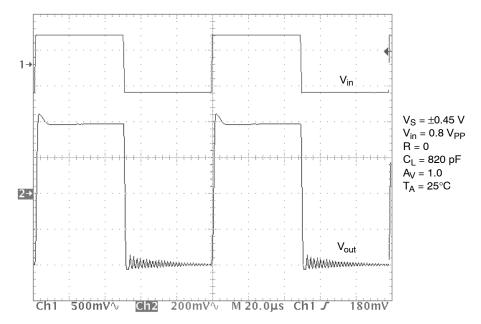


Figure 35. Small Signal Transient Response with Large Capacitive Load

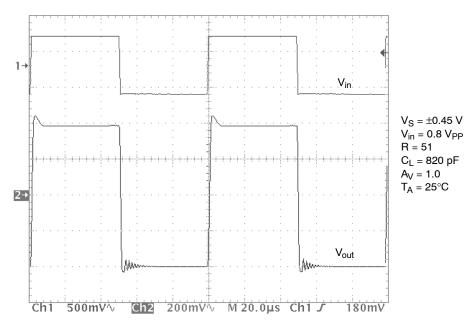
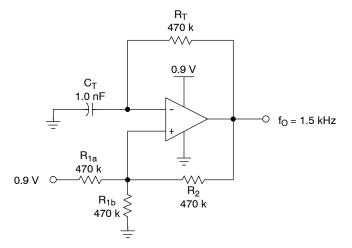
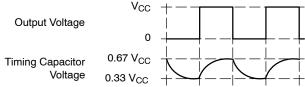
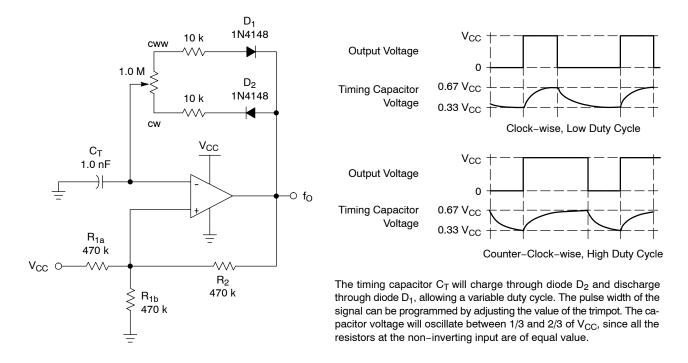
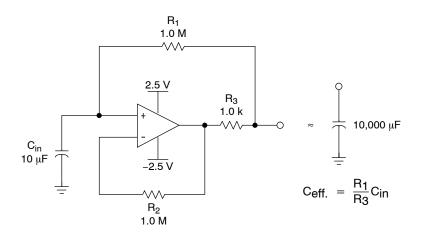
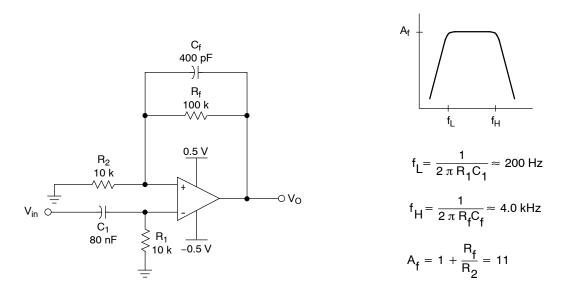




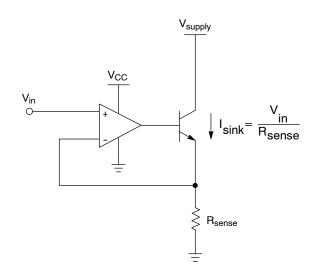
Figure 36. Small Signal Transient Response with Large Capacitive Load and Isolation Resistor.

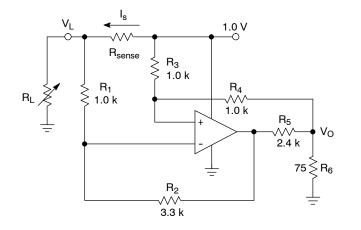



The non-inverting input threshold levels are set so that the capacitor voltage oscillates between 1/3 and 2/3 of V_{CC}. This requires the resistors R_{1a}, R_{1b} and R₂ to be of equal value. The following formula can be used to approximate the output frequency.

$$f_{O} = \frac{1}{1.39 \ R_{T}C_{T}}$$



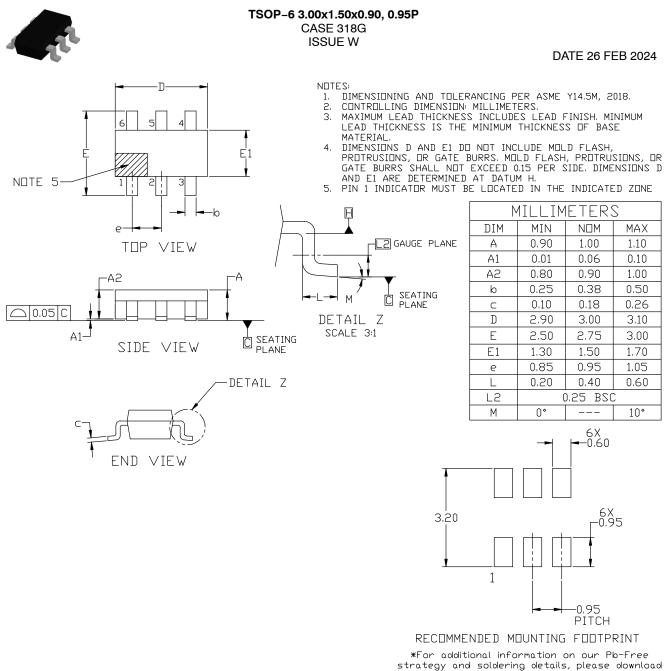




ls	vo
435 mA	34.7 mV
212 mA	36.9 mV

For best performance, use low tolerance resistors.

Figure 42. High Side Current Sense


ORDERING INFORMATION1

Device	Marking	Package	Shipping [†]
NCS2002SN1T1G	Р		
NCS2002SN2T1G	Q	TSOP-6	3000 / Tape & Reel
NCV2002SN1T1G	Р	(Pb-Free)	SOUD / Tape & Reel
NCV2002SN2T1G	Q		

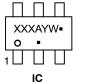
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NCV2002: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control. AEC-Q100 Qualified and PPAP Capable.

strategy and soldering details, please download th e DN Semiconductor Soldering and Mounting Techniques Reference manual, SDLDERRM/D.

DOCUMENT NUMBER:	98ASB14888C Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.95P PAGE 1 OF		PAGE 1 OF 2		
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves					

the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights of others.


TSOP-6 3.00x1.50x0.90, 0.95P CASE 318G **ISSUE W**

DATE 26 FEB 2024

GENERIC **MARKING DIAGRAM***

Μ

.

XXX = Specific Device Code

= Pb-Free Package

= Date Code

XXX = Specific Device Code

А =Assembly Location

= Year

Y W = Work Week

= Pb-Free Package .

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 2: PIN 1. EMITTER 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. BASE 2 6. COLLECTOR 2	STYLE 3: PIN 1. ENABLE 2. N/C 3. R BOOST 4. Vz 5. V in 6. V out	STYLE 4: PIN 1. N/C 2. V in 3. NOT USED 4. GROUND 5. ENABLE 6. LOAD	STYLE 5: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR
STYLE 7: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. N/C 5. COLLECTOR 6. EMITTER	STYLE 8: PIN 1. Vbus 2. D(in) 3. D(in)+ 4. D(out)+ 5. D(out) 6. GND	STYLE 9: PIN 1. LOW VOLTAGE GA 2. DRAIN 3. SOURCE 4. DRAIN 5. DRAIN 6. HIGH VOLTAGE GA	2. GND ´ 3. D(OUT)– 4. D(IN)– 5. VBUS	STYLE 11: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1/GATE 2	STYLE 12: PIN 1. I/O 2. GROUND 3. I/O 4. I/O 5. VCC 6. I/O
STYLE 13: PIN 1. GATE 1 2. SOURCE 2 3. GATE 2 4. DRAIN 2 5. SOURCE 1 6. DRAIN 1	STYLE 14: PIN 1. ANODE 2. SOURCE 3. GATE 4. CATHODE/DRAIN 5. CATHODE/DRAIN 6. CATHODE/DRAIN		TYLE 16: PIN 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE 6. CATHODE	STYLE 17: PIN 1. EMITTER 2. BASE 3. ANODE/CATHODE 4. ANODE 5. CATHODE 6. COLLECTOR	

DOCUMENT NUMBER:	98ASB14888C Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.95P		PAGE 2 OF 2
·			

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

NCS2002SN1T1 NCS2002SN1T1G NCS2002SN2T1 NCS2002SN2T1G NCV2002SN1T1 NCV2002SN1T1G NCV2002SN2T1G