# **24-Stage Frequency Divider**

The MC14521B consists of a chain of 24 flip–flops with an input circuit that allows three modes of operation. The input will function as a crystal oscillator, an RC oscillator, or as an input buffer for an external oscillator. Each flip–flop divides the frequency of the previous flip–flop by two, consequently this part will count up to  $2^{24} = 16,777,216$ . The count advances on the negative going edge of the clock. The outputs of the last seven–stages are available for added flexibility.

#### Features

- All Stages are Resettable
- Reset Disables the RC Oscillator for Low Standby Power Drain
- RC and Crystal Oscillator Outputs Are Capable of Driving External Loads
- Test Mode to Reduce Test Time
- V<sub>DD</sub>' and V<sub>SS</sub>' Pins Brought Out on Crystal Oscillator Inverter to Allow the Connection of External Resistors for Low–Power Operation
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low–Power TTL Loads or One Low–Power Schottky TTL Load over the Rated Temperature Range
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- This Device is Pb-Free and is RoHS Compliant

#### MAXIMUM RATINGS (Voltages Referenced to V<sub>SS</sub>)

| Parameter                                          | Symbol                             | Value                           | Unit |
|----------------------------------------------------|------------------------------------|---------------------------------|------|
|                                                    | eysei                              | Taluo                           | •    |
| DC Supply Voltage Range                            | V <sub>DD</sub>                    | -0.5 to +18.0                   | V    |
| Input or Output Voltage Range<br>(DC or Transient) | V <sub>in</sub> , V <sub>out</sub> | -0.5 to V <sub>DD</sub><br>+0.5 | V    |
| Input or Output Current (DC or Transient) per Pin  | I <sub>in</sub> , I <sub>out</sub> | ±10                             | mA   |
| Power Dissipation, per Package (Note 1)            | PD                                 | 500                             | mW   |
| Ambient Temperature Range                          | T <sub>A</sub>                     | -55 to +125                     | °C   |
| Storage Temperature Range                          | T <sub>stg</sub>                   | -65 to +150                     | °C   |
| Lead Temperature (8–Second Soldering)              | TL                                 | 260                             | °C   |

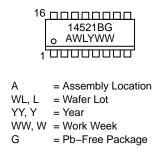
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Package: –7.0 mW/°C From 65°C To 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V<sub>in</sub> and V<sub>out</sub> should be constrained to the range V<sub>SS</sub>  $\leq$  (V<sub>in</sub> or V<sub>out</sub>)  $\leq$  V<sub>DD</sub>.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either  $V_{SS}$  or  $V_{DD}$ ). Unused outputs must be left open.



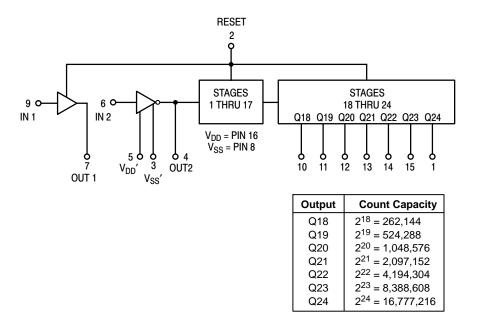
## **ON Semiconductor®**


http://onsemi.com



### **PIN ASSIGNMENT**

| Q24 [               | 1• | 16 |        |
|---------------------|----|----|--------|
| RESET [             | 2  | 15 | ] Q23  |
| V <sub>SS</sub> 4 [ | 3  | 14 | Q22    |
| OUT 2 [             | 4  | 13 | Q21    |
| V <sub>DD</sub> 4 [ | 5  | 12 | ] Q20  |
| IN 2 [              | 6  | 11 | Q19    |
| out1 [              | 7  | 10 | ] Q18  |
| v <sub>ss</sub> [   | 8  | 9  | 1 IN 1 |


#### MARKING DIAGRAMS



### ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

#### **BLOCK DIAGRAM**



#### **ORDERING INFORMATION**

| Device         | Package              | Shipping <sup>†</sup> |
|----------------|----------------------|-----------------------|
| MC14521BDG     | SOIC-16<br>(Pb-Free) | 48 Units / Rail       |
| NLV14521BDG*   | SOIC-16<br>(Pb-Free) | 48 Units / Rail       |
| MC14521BDR2G   | SOIC-16<br>(Pb-Free) | 2500 / Tape & Reel    |
| NLV14521BDR2G* | SOIC-16<br>(Pb-Free) | 2500 / Tape & Reel    |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

\*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

#### ELECTRICAL CHARACTERISTICS (Voltages Referenced to V<sub>SS</sub>)

|                                                                                                                                                                                                                                                                                   |                 |                        | - 5                                   | 5°C                  | 25°C                          |                                |                      | 125                           |                      |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|---------------------------------------|----------------------|-------------------------------|--------------------------------|----------------------|-------------------------------|----------------------|------|
| Characteristic                                                                                                                                                                                                                                                                    | Symbol          | V <sub>DD</sub><br>Vdc | Min                                   | Мах                  | Min                           | Typ<br>(Note 2)                | Max                  | Min                           | Max                  | Unit |
| Output Voltage "0" Level $V_{in} = V_{DD}$ or 0                                                                                                                                                                                                                                   | V <sub>OL</sub> | 5.0<br>10<br>15        | -<br>-<br>-                           | 0.05<br>0.05<br>0.05 | _<br>_<br>_                   | 0<br>0<br>0                    | 0.05<br>0.05<br>0.05 | -<br>-<br>-                   | 0.05<br>0.05<br>0.05 | Vdc  |
| "1" Level $V_{in} = 0 \text{ or } V_{DD}$                                                                                                                                                                                                                                         | V <sub>OH</sub> | 5.0<br>10<br>15        | 4.95<br>9.95<br>14.95                 | _<br>_<br>_          | 4.95<br>9.95<br>14.95         | 5.0<br>10<br>15                | -<br>-<br>-          | 4.95<br>9.95<br>14.95         | _<br>_<br>_          | Vdc  |
| $\label{eq:VO} \begin{array}{ll} \mbox{Input Voltage} & "0" \mbox{Level} \\ (V_O = 4.5 \mbox{ or } 0.5 \mbox{ Vdc}) \\ (V_O = 9.0 \mbox{ or } 1.0 \mbox{ Vdc}) \\ (V_O = 13.5 \mbox{ or } 1.5 \mbox{ Vdc}) \end{array}$                                                           | VIL             | 5.0<br>10<br>15        | -<br>-<br>-                           | 1.5<br>3.0<br>4.0    | _<br>_<br>_                   | 2.25<br>4.50<br>6.75           | 1.5<br>3.0<br>4.0    | _<br>_<br>_                   | 1.5<br>3.0<br>4.0    | Vdc  |
| "1" Level<br>( $V_O = 0.5 \text{ or } 4.5 \text{ Vdc}$ )<br>( $V_O = 1.0 \text{ or } 9.0 \text{ Vdc}$ )<br>( $V_O = 1.5 \text{ or } 13.5 \text{ Vdc}$ )                                                                                                                           | V <sub>IH</sub> | 5.0<br>10<br>15        | 3.5<br>7.0<br>11                      | -<br>-<br>-          | 3.5<br>7.0<br>11              | 2.75<br>5.50<br>8.25           | -<br>-<br>-          | 3.5<br>7.0<br>11              |                      | Vdc  |
| $\begin{array}{l} \text{Output Drive Current} \\ (V_{OH} = 4.5 \ \text{Vdc}) \\ (V_{OH} = 9.0 \ \text{Vdc}) \\ (V_{OH} = 13 \ \text{Vdc}) \end{array} \qquad \begin{array}{l} \text{Source} \\ \text{Pin 4} \end{array}$                                                          | I <sub>ОН</sub> | 5.0<br>10<br>15        | -0.25<br>-0.62<br>-1.8                | _<br>_<br>_          | -0.2<br>-0.5<br>-1.5          | -0.36<br>-0.9<br>-3.5          | _<br>_<br>_          | -0.14<br>-0.35<br>-1.1        | _<br>_<br>_          | mAdo |
| $\begin{array}{ll} (V_{OH} = 2.5 \mbox{ Vdc}) & \mbox{Source} \\ (V_{OH} = 4.6 \mbox{ Vdc}) \mbox{ Pins 1, 7, 10,} \\ (V_{OH} = 9.5 \mbox{ Vdc}) \mbox{ 11, 12, 13, 14} \\ (V_{OH} = 13.5 \mbox{ Vdc}) & \mbox{ and 15} \\ (V_{OL} = 0.4 \mbox{ Vdc}) & \mbox{ Sink} \end{array}$ |                 | 5.0<br>5.0<br>10<br>15 | -3.0<br>-0.64<br>-1.6<br>-4.2         | -<br>-<br>-<br>-     | -2.4<br>-0.51<br>-1.3<br>-3.4 | -4.2<br>-0.88<br>-2.25<br>-8.8 | -<br>-<br>-<br>-     | -1.7<br>-0.36<br>-0.9<br>-2.4 | _<br>_<br>_<br>_     | mAdo |
| $(V_{OL} = 0.5 \text{ Vdc})$<br>$(V_{OL} = 0.5 \text{ Vdc})$<br>$(V_{OL} = 1.5 \text{ Vdc})$                                                                                                                                                                                      | I <sub>OL</sub> | 5.0<br>10<br>15        | 0.64<br>1.6<br>4.2                    | -<br>-<br>-          | 0.51<br>1.3<br>3.4            | 0.88<br>2.25<br>8.8            | -<br>-<br>-          | 0.36<br>0.9<br>2.4            | _<br>_<br>_          | mAdo |
| Input Current                                                                                                                                                                                                                                                                     | l <sub>in</sub> | 15                     | -                                     | ±0.1                 | -                             | ±0.00001                       | ±0.1                 | -                             | ±1.0                 | μAdc |
| Input Capacitance<br>(V <sub>in</sub> = 0)                                                                                                                                                                                                                                        | C <sub>in</sub> | -                      | -                                     | -                    | -                             | 5.0                            | 7.5                  | -                             | -                    | pF   |
| Quiescent Current<br>(Per Package)                                                                                                                                                                                                                                                | I <sub>DD</sub> | 5.0<br>10<br>15        | -<br>-<br>-                           | 5.0<br>10<br>20      | _<br>_<br>_                   | 0.005<br>0.010<br>0.015        | 5.0<br>10<br>20      | _<br>_<br>_                   | 150<br>300<br>600    | μAdc |
| Total Supply Current (Note 3, 4)<br>(Dynamic plus Quiescent,<br>Per Package)<br>( $C_L = 50 \text{ pF}$ on all outputs, all<br>buffers switching)                                                                                                                                 | Ι <sub>Τ</sub>  | 5.0<br>10<br>15        | $I_{T} = (0.85 \mu A/kHz) f + I_{DD}$ |                      |                               |                                |                      | μAdc                          |                      |      |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at 25°C.
4. To calculate total supply current at loads other than 50 pF: I<sub>T</sub>(C<sub>L</sub>) = I<sub>T</sub>(50 pF) + (C<sub>L</sub> - 50) Vfk where: I<sub>T</sub> is in µA (per package), C<sub>L</sub> in pF, V = (V<sub>DD</sub> - V<sub>SS</sub>) in volts, f in kHz is input frequency, and k = 0.003.

#### SWITCHING CHARACTERISTICS (Note 5) (C<sub>L</sub> = 50 pF, T<sub>A</sub> = $25^{\circ}$ C)

| Characteristic                                                                                                                                                                                                                                                         | Symbol                              | V <sub>DD</sub><br>Vdc | Min                | Typ<br>(Note 6)      | Max                 | Unit |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|--------------------|----------------------|---------------------|------|
| Output Rise and Fall Time (Counter Outputs)<br>$t_{TLH}$ , $t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$<br>$t_{TLH}$ , $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$<br>$t_{TLH}$ , $t_{THL} = (0.55 \text{ ns/pF}) C_L + 12.5 \text{ ns}$             | t <sub>TLH</sub> , t <sub>THL</sub> | 5.0<br>10<br>15        | -<br>-<br>-        | 100<br>50<br>40      | 200<br>100<br>80    | ns   |
| Propagation Delay Time<br>Clock to Q18<br>$t_{PHL}$ , $t_{PLH} = (1.7 \text{ ns/pF}) C_L + 4415 \text{ ns}$<br>$t_{PHL}$ , $t_{PLH} = (0.66 \text{ ns/pF}) C_L + 1667 \text{ ns}$<br>$t_{PHL}$ , $t_{PLH} = (0.5 \text{ ns/pF}) C_L + 1275 \text{ ns}$<br>Clock to Q24 | <sup>t</sup> PHL <sup>, t</sup> PLH | 5.0<br>10<br>15        | _<br>_<br>_        | 4.5<br>1.7<br>1.3    | 9.0<br>3.5<br>2.7   | μs   |
| $t_{PHL}$ , $t_{PLH} = (1.7 \text{ ns/pF}) C_L + 5915 \text{ ns}$<br>$t_{PHL}$ , $t_{PLH} = (0.66 \text{ ns/pF}) C_L + 2167 \text{ ns}$<br>$t_{PHL}$ , $t_{PLH} = (0.5 \text{ ns/pF}) C_L + 1675 \text{ ns}$                                                           |                                     | 5.0<br>10<br>15        | -<br>-<br>-        | 6.0<br>2.2<br>1.7    | 12<br>4.5<br>3.5    |      |
| Propagation Delay Time<br>Reset to $Q_n$<br>$t_{PHL} = (1.7 \text{ ns/pF}) C_L + 1215 \text{ ns}$<br>$t_{PHL} = (0.66 \text{ ns/pF}) C_L + 467 \text{ ns}$<br>$t_{PHL} = (0.5 \text{ ns/pF}) C_L + 350 \text{ ns}$                                                     | tphl                                | 5.0<br>10<br>15        | -<br>-<br>-        | 1300<br>500<br>375   | 2600<br>1000<br>750 | ns   |
| Clock Pulse Width                                                                                                                                                                                                                                                      | t <sub>WH(cl)</sub>                 | 5.0<br>10<br>15        | 385<br>150<br>120  | 140<br>55<br>40      | _<br>_<br>_         | ns   |
| Clock Pulse Frequency                                                                                                                                                                                                                                                  | f <sub>cl</sub>                     | 5.0<br>10<br>15        | -<br>-<br>-        | 3.5<br>9.0<br>12     | 2.0<br>5.0<br>6.5   | MHz  |
| Clock Rise and Fall Time                                                                                                                                                                                                                                               | t <sub>TLH</sub> , t <sub>THL</sub> | 5.0<br>10<br>15        | -<br>-<br>-        | -<br>-<br>-          | 15<br>5.0<br>4.0    | μs   |
| Reset Pulse Width                                                                                                                                                                                                                                                      | t <sub>WH(R)</sub>                  | 5.0<br>10<br>15        | 1400<br>600<br>450 | 700<br>300<br>225    | -<br>-<br>-         | ns   |
| Reset Removal Time                                                                                                                                                                                                                                                     | t <sub>rem</sub>                    | 5.0<br>10<br>15        | 30<br>0<br>- 40    | -200<br>-160<br>-110 | _<br>_<br>_         | ns   |

The formulas given are for the typical characteristics only at 25°C.
 Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

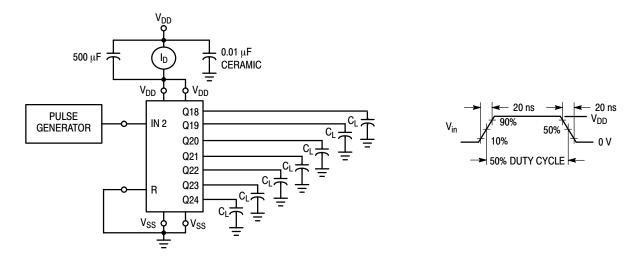



Figure 1. Power Dissipation Test Circuit and Waveform

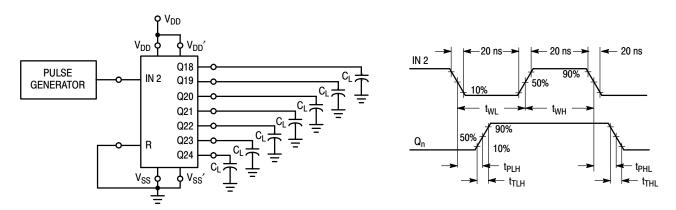
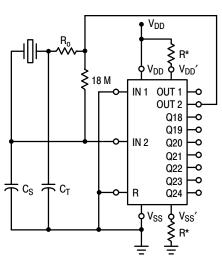
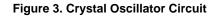
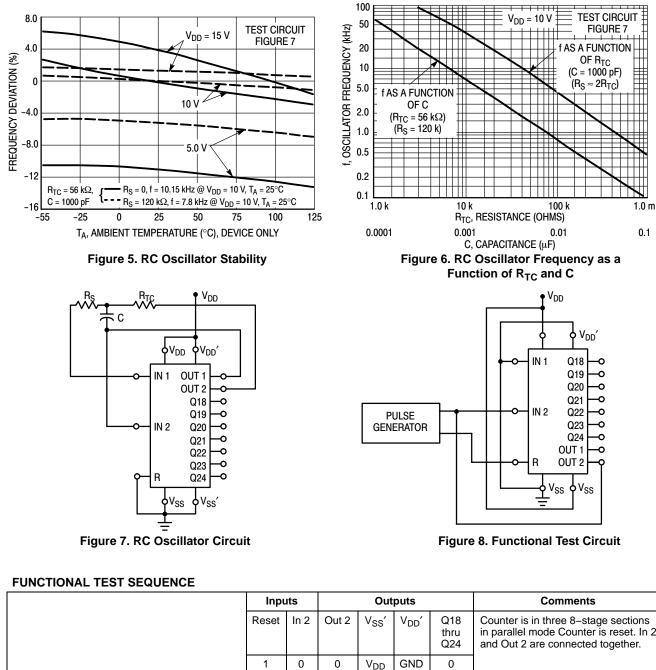





Figure 2. Switching Time Test Circuit and Waveforms




\*Optional for low power operation, 10 k $\Omega \leq R \leq$  70 k $\Omega.$ 



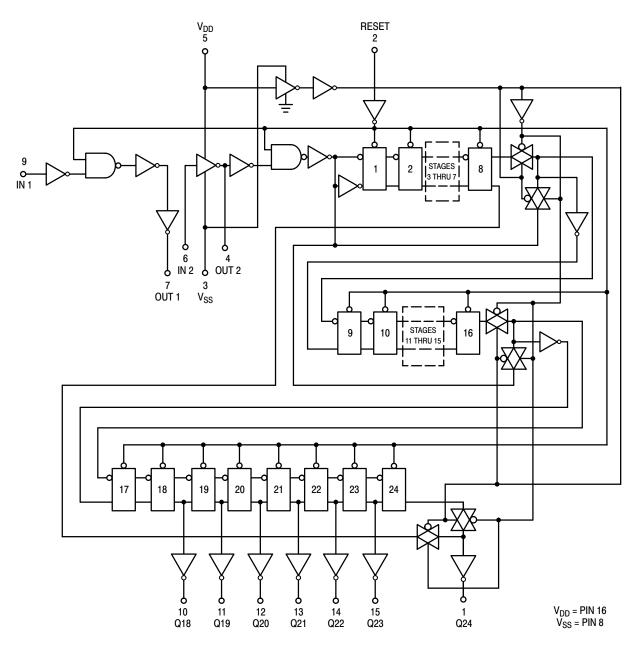
| Characteristic                                                                                                                                                          | 500 kHz<br>Circuit | 50 kHz<br>Circuit | Unit           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|----------------|
| Crystal Characteristics<br>Resonant Frequency<br>Equivalent Resistance, R <sub>S</sub>                                                                                  | 500<br>1.0         | 50<br>6.2         | kHz<br>kΩ      |
| External Resistor/Capacitor Values<br>R <sub>o</sub><br>C <sub>T</sub><br>C <sub>S</sub>                                                                                | 47<br>82<br>20     | 750<br>82<br>20   | kΩ<br>pF<br>pF |
| Frequency Stability<br>Frequency Change as a Function<br>of $V_{DD}$ ( $T_A = 25^{\circ}$ C)<br>$V_{DD}$ Change from 5.0 V to 10 V<br>$V_{DD}$ Change from 10 V to 15 V | + 6.0<br>+ 2.0     | + 2.0<br>+ 2.0    | ppm<br>ppm     |
| Frequency Change as a Function<br>of Temperature (V <sub>DD</sub> = 10 V)<br>T <sub>A</sub> Change from – 55°C to + 25°C<br>MC14521 only<br>Complete Oscillator*        | - 4.0<br>+ 100     | - 2.0<br>+ 120    | ppm<br>ppm     |
| T <sub>A</sub> Change from +25°C to+125°C<br>MC14521 only<br>Complete Oscillator*                                                                                       | – 2.0<br>– 160     | - 2.0<br>- 560    | ppm<br>ppm     |

\*Complete oscillator includes crystal, capacitors, and resistors.

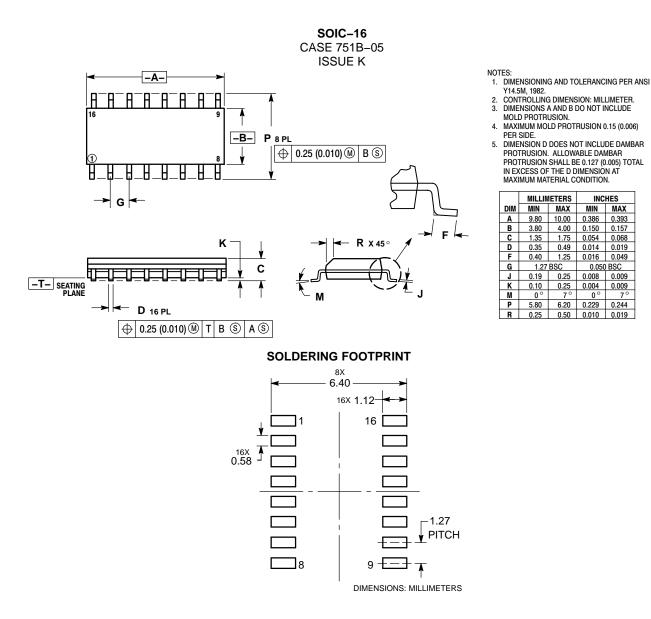
### Figure 4. Typical Data for Crystal Oscillator Circuit



A test function (see Figure 8) has been included for the reduction of test time required to exercise all 24 counter stages. This test function divides the counter into three 8–stage sections, and 255 counts are loaded in each of the 8–stage sections in parallel. All flip–flops are now at a logic "1". The counter is now returned to the normal 24–stages in series configuration. One more pulse is entered into Input 2 (In 2) which will cause the counter to ripple from an all "1" state to an all "0" state.


|                  |                  | Outputs           |                      |                    | Comments                                                                                                             |
|------------------|------------------|-------------------|----------------------|--------------------|----------------------------------------------------------------------------------------------------------------------|
| ln 2             | Out 2            | V <sub>SS</sub> ′ | V <sub>DD</sub> ′    | Q18<br>thru<br>Q24 | Counter is in three 8–stage sections<br>in parallel mode Counter is reset. In 2<br>and Out 2 are connected together. |
| 0                | 0                | $V_{DD}$          | GND                  | 0                  |                                                                                                                      |
| 1                | 1                |                   |                      |                    | First "0" to "1" transition on In 2,<br>Out 2 node.                                                                  |
| 0<br>1<br>-<br>- | 0<br>1<br>-<br>- |                   |                      |                    | 255 "0" to "1" transitions are clocked into this In 2, Out 2 node.                                                   |
| 1                | 1                |                   |                      | 1                  | The 255th "0" to "1" transition.                                                                                     |
| 0<br>0           | 0<br>0           | ↓                 |                      | 1<br>1             |                                                                                                                      |
| 1                | 0                | GND               | ♥<br>V <sub>PD</sub> | 1                  | Counter converted back to 24–stages in series mode.                                                                  |
| 1                | 0                |                   |                      | 1                  | Out 2 converts back to an output.                                                                                    |
|                  |                  |                   |                      | <u>,</u>           | Counter ripples from an all "1" state                                                                                |

0


to an all "0" stage.

0

LOGIC DIAGRAM



#### PACKAGE DIMENSIONS



ON Semiconductor and the use are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application. Buyer shall indemnity and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regard

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

# **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

<u>MC14521BCP</u> <u>MC14521BCPG</u> <u>MC14521BD</u> <u>MC14521BDG</u> <u>MC14521BDR2</u> <u>MC14521BDR2G</u> <u>MC14521BDR2G</u> <u>MC14521BDR2G</u> <u>MC14521BDR2G</u>