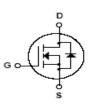


ON Semiconductor®

FQB25N33TM-F085 330V N-Channel MOSFET

Features

- 25A, 330V, $R_{DS(on)} = 0.23\Omega @V_{GS} = 10V$
- Low gate charge (typical 58nC)
- Low Crss (typical 40pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- Qualified to AEC Q101
- RoHS Compliant


D

D²-PAK FQB Series

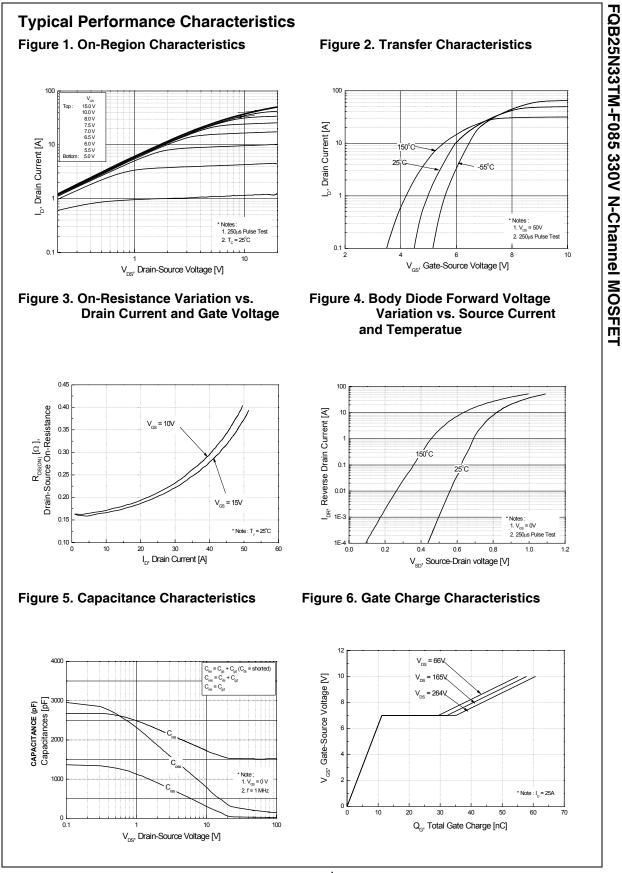
General Description

These N-Channel enhancement mode power field effect transistors are produced using ON Semiconductor's proprietary, planar stripe, DMOS technology.

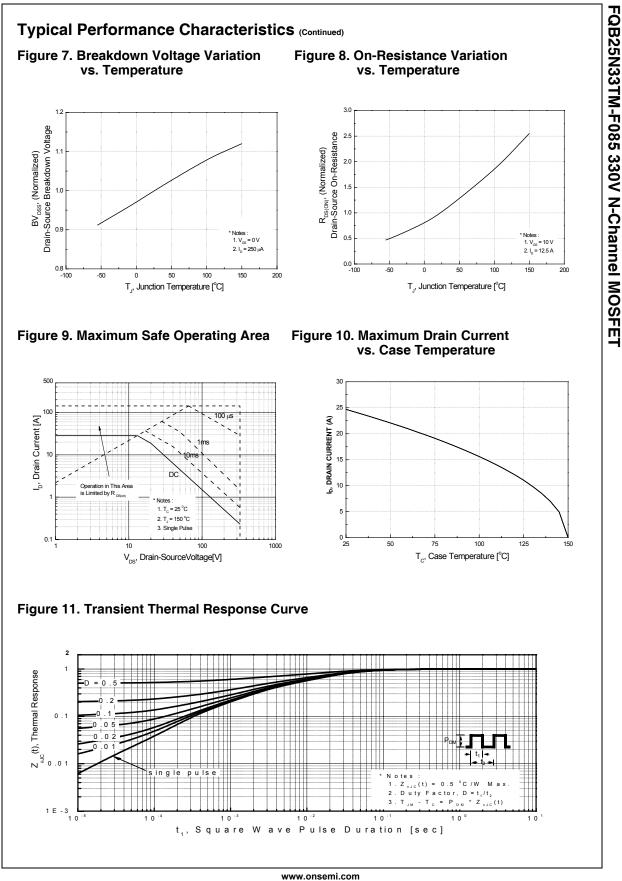
This advanced technology has been especially tailored to minimized on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficient switched mode power supplies, active power factor correction, electronic lamp ballast based on half bridge topology.

Absolute Maximum Ratings

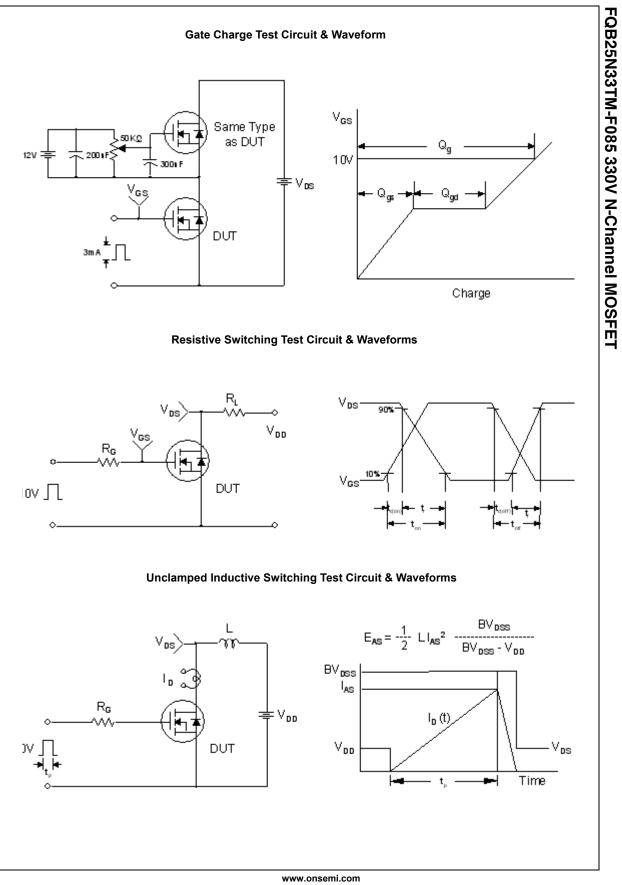
Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		330	V
	Drain Current - Continuous (T _C = 25 ^o C)		25	А
ID	- Continuous (T _C = 100 ^o C)		16.0	А
I _{DM}	Drain Current - Pulsed	(Note 1)	100	А
V _{GSS}	Gate -Source Voltage		±30	V
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	370	mJ
I _{AR}	Avalanche Current	(Note 1)	25	А
E _{AR}	Repetitive Avalance Energy	(Note 1)	37	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
	Power Dissipation ($T_A = 25^{\circ}C$) *		3.1	W
PD	Power Dissipation ($T_c = 25^{\circ}C$)		250	W
	- Derate above 25°C		2.0	W/ºC
T _J , T _{STG}	Operating and Storage Temperature		-55 to +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8 from case for 5 seconds		300	°C

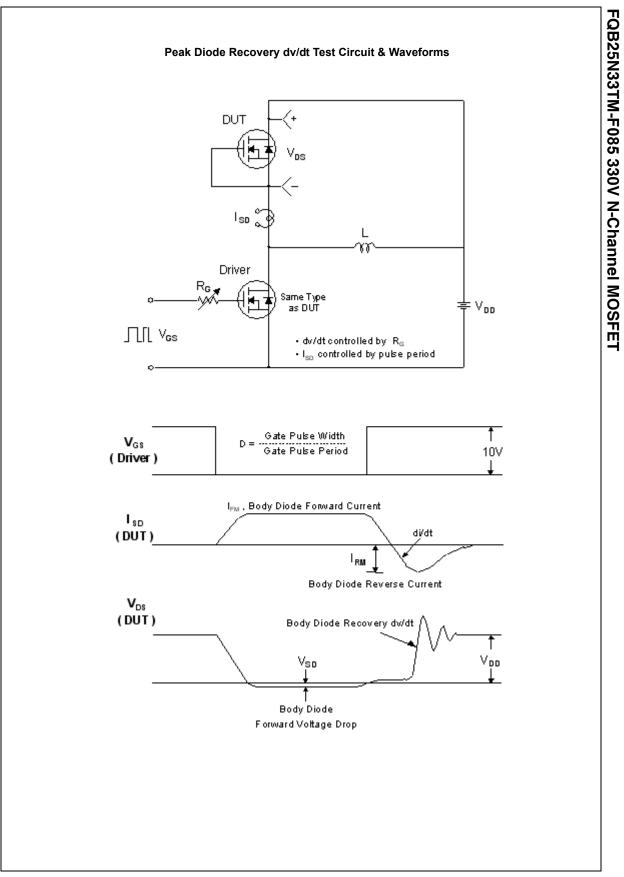

Thermal Characteristics

Symbol	Parameter	Ratings	Units
$R_{\theta JC}$	Thermal Resistance, Junction to Case	0.5	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient *	40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	62.5	°C/W


 * When mounted on the minimum pad size recommended (PCB Mount)

cteristics	FQB25N33TM-F085 acteristics $T_C = 2$ Parameter	D			T				ntity
cteristics	-		2-PAK	330mm		24m	im	8	00
cteristics	Devemeter	25°C unle	ess otherwise	e noted					
	Parameter		Test	Conditions		Min	Тур	Max	Units
Drain-Source									
	e Breakdown Voltage		I _D = 250μA,	$V_{GS} = 0V$		330			V
	/oltage Temperature Co	oefficient			25°C		0.34		V/ºC
Zero Gate Vo	oltage Drain Current		V _{DS} = 330V V _{DS} = 264V					1 10	μ A
Gate-Body L	eakage Current, Forwar	rd	$V_{GS} = 30V$,	$V_{DS} = 0V$				100	nA
	-							-100	nA
teristics						l			
	old Voltage		VV	I_ = 250µA		3.0		5.0	V
				-					Ω
					ote 4)				S
			.05,	. <u>D</u> . <u>L</u> .e., (,10 .)				
							1510	2010	pF
				$V_{GS} = 0V,$					pF
Reverse Trar			f = 1.0MHz				200	000	
Characteristic	s						40	60	pF
Turn-On Dela Turn-On Rise	s ay Time e Time		V _{DD} = 165V R _{GS} = 25Ω	′, I _D = 25A			20 100	35 160	pF ns ns
Turn-On Dela Turn-On Rise Turn-Off Dela	s ay Time e Time ay Time		V _{DD} = 165V R _{GS} = 25Ω	′, I _D = 25A (Note	4, 5)		20 100 90	35 160 145	ns ns ns
Turn-On Dela Turn-On Rise Turn-Off Dela Turn-Off Fall	s ay Time e Time ay Time Time		R _{GS} = 25Ω	(Note	4, 5)	 	20 100 90 70	35 160 145 110	ns ns ns
Turn-On Dela Turn-On Rise Turn-Off Dela Turn-Off Fall Total Gate C	s ay Time e Time ay Time Time harge		R _{GS} = 25Ω V _{DS} = 297V	(Note	4, 5)	 	20 100 90 70 58	35 160 145 110 75	ns ns ns ns nC
Turn-On Dela Turn-On Rise Turn-Off Dela Turn-Off Fall Total Gate C	s ay Time e Time ay Time Time		R _{GS} = 25Ω	(Note	4, 5)	 	20 100 90 70	35 160 145 110	ns ns ns
Turn-On Dela Turn-On Rise Turn-Off Dela Turn-Off Fall Total Gate C	s ay Time e Time ay Time Time harge ce Gate Charge		R _{GS} = 25Ω V _{DS} = 297V	(Note		 	20 100 90 70 58	35 160 145 110 75	ns ns ns ns nC
Turn-On Dela Turn-On Rise Turn-Off Dela Turn-Off Fall Total Gate C Gate to Sour Gate to Drair	s ay Time e Time ay Time Time harge ce Gate Charge	um Ratin	$R_{GS} = 25\Omega$ $V_{DS} = 297V$ $V_{GS} = 15V$,	(Note , I _D = 25A,		 	20 100 90 70 58 11.2	35 160 145 110 75 	ns ns ns nS nC nC
Turn-On Dela Turn-On Rise Turn-Off Dela Turn-Off Fall Total Gate C Gate to Sour Gate to Drair ce Diode Cha	s ay Time e Time ay Time Time harge ce Gate Charge n Charge		$R_{GS} = 25\Omega$ $V_{DS} = 297V$ $V_{GS} = 15V$, gs	(Note , I _D = 25A, (Note -		 	20 100 90 70 58 11.2	35 160 145 110 75 	ns ns ns nC nC
Turn-On Dela Turn-On Rise Turn-Off Dela Turn-Off Fall Total Gate C Gate to Sour Gate to Drair ce Diode Cha Maximum Co	s ay Time e Time ay Time Time harge ce Gate Charge n Charge	Diode Fo	$R_{GS} = 25\Omega$ $V_{DS} = 297V$ $V_{GS} = 15V$, gs prward Curre	(Note , I _D = 25A, (Note -		 	20 100 90 70 58 11.2 21	35 160 145 110 75 	ns ns ns nC nC nC
Turn-On Dela Turn-On Rise Turn-Off Dela Turn-Off Fall Total Gate C Gate to Sour Gate to Drain ce Diode Cha Maximum Co Maximum Pu	s ay Time e Time ay Time Time harge ce Gate Charge n Charge aracteristics and Maximu ontinuous Drain-Source	Diode Fo le Forwa	$R_{GS} = 25\Omega$ $V_{DS} = 297V$ $V_{GS} = 15V$, gs prward Curre	(Note , I _D = 25A, (Note -		 	20 100 90 70 58 11.2 21	35 160 145 110 75 25	ns ns ns nC nC nC
Turn-On Dela Turn-On Rise Turn-Off Dela Turn-Off Fall Total Gate C Gate to Sour Gate to Drain ce Diode Cha Maximum Co Maximum Pu	s ay Time ay Time ay Time Time harge ce Gate Charge n Charge aracteristics and Maximu ontinuous Drain-Source ilsed Drain-Source Diod e Diode Forward Voltage	Diode Fo le Forwa	$R_{GS} = 25\Omega$ $V_{DS} = 297V$ $V_{GS} = 15V$, gs prward Current	(Note , I _D = 25A, (Note - nt = 25A = 25A,		 	20 100 90 70 58 11.2 21 	35 160 145 110 75 25 100	ns ns ns nC nC nC A A
	Gate-Body L Gate-Body L teristics Gate Thresho Drain to Sour Forward Trar haracteristics Input Capacit Output Capa	Gate-Body Leakage Current, Forwar Gate-Body Leakage Current, Forwar teristics Gate Threshold Voltage Drain to Source On Resistance Forward Transonductance haracteristics Input Capacitance Output Capacitance	Gate-Body Leakage Current, Forward Gate-Body Leakage Current, Forward teristics Gate Threshold Voltage Drain to Source On Resistance Forward Transonductance haracteristics Input Capacitance Output Capacitance	$v_{DS} = 264v$ Gate-Body Leakage Current, Forward $V_{GS} = 30V$, Gate-Body Leakage Current, Forward $V_{GS} = -30V$, teristics Gate Threshold Voltage $V_{DS} = V_{GS}$, Drain to Source On Resistance $V_{DS} = 10V$, Forward Transonductance $V_{DS} = 50V$, haracteristics Input Capacitance Output Capacitance $V_{DS} = 25V$, f = 1.0MHz $V_{DS} = 25V$,	VDS $264V$, $I_C = 125°C$ Gate-Body Leakage Current, Forward $V_{GS} = 30V$, $V_{DS} = 0V$ Gate-Body Leakage Current, Forward $V_{GS} = -30V$, $V_{DS} = 0V$ teristics $V_{DS} = V_{GS}$, $I_D = 250\mu A$ Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250\mu A$ Drain to Source On Resistance $V_{GS} = 10V$, $I_D = 12.5A$,Forward Transonductance $V_{DS} = 50V$, $I_D = 12.5A$, (NoharacteristicsInput CapacitanceOutput Capacitance $V_{DS} = 25V$, $V_{GS} = 0V$,	VDS $264V$, $I_C = 125°C$ Gate-Body Leakage Current, Forward $V_{GS} = 30V$, $V_{DS} = 0V$ Gate-Body Leakage Current, Forward $V_{GS} = -30V$, $V_{DS} = 0V$ teristics $V_{DS} = V_{GS}$, $I_D = 250\mu A$ Gate Threshold Voltage $V_{GS} = 10V$, $I_D = 12.5A$,Drain to Source On Resistance $V_{DS} = 50V$, $I_D = 12.5A$, (Note 4)haracteristicsInput Capacitance $V_{DS} = 25V$, $V_{GS} = 0V$,	V_{DS} = 264V, I_C = 125°CGate-Body Leakage Current, Forward $V_{GS} = 30V, V_{DS} = 0V$ Gate-Body Leakage Current, Forward $V_{GS} = -30V, V_{DS} = 0V$ teristics $V_{DS} = V_{GS}, I_D = 250\mu A$ 3.0Drain to Source On Resistance $V_{GS} = 10V, I_D = 12.5A,$ Forward Transonductance $V_{DS} = 50V, I_D = 12.5A,$ haracteristicsInput Capacitance $V_{DS} = 25V, V_{GS} = 0V,$ Output Capacitance $V_{DS} = 25V, V_{GS} = 0V,$	VDS $264V, I_C = 125°C$ Gate-Body Leakage Current, Forward $V_{GS} = 30V, V_{DS} = 0V$ Gate-Body Leakage Current, Forward $V_{GS} = -30V, V_{DS} = 0V$ Gate-Body Leakage Current, Forward $V_{GS} = -30V, V_{DS} = 0V$ teristicsGate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250\mu A$ 3.0 Drain to Source On Resistance $V_{GS} = 10V, I_D = 12.5A,$ 0.18 Forward Transonductance $V_{DS} = 50V, I_D = 12.5A,$ (Note 4)1haracteristicsInput Capacitance $V_{DS} = 25V, V_{GS} = 0V,$ 1510 Output Capacitance $I_D = 1.0MHz$ 290	VDS $2504V$, $I_C = 125^{\circ}C$ 10 Gate-Body Leakage Current, Forward $V_{GS} = 30V$, $V_{DS} = 0V$ 100 Gate-Body Leakage Current, Forward $V_{GS} = 30V$, $V_{DS} = 0V$ 100 Gate-Body Leakage Current, Forward $V_{GS} = -30V$, $V_{DS} = 0V$ -100 teristics Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250\mu A$ 3.0 5.0 Drain to Source On Resistance $V_{GS} = 10V$, $I_D = 12.5A$, 0.18 0.23 Forward Transonductance $V_{DS} = 50V$, $I_D = 12.5A$, (Note 4) 1 haracteristics Input Capacitance $V_{DS} = 25V$, $V_{GS} = 0V$, $f = 1.0MHz$ 1510 2010 0utput Capacitance $V_{DS} = 25V$, $V_{GS} = 0V$, $f = 1.0MHz$ 290 385


FQB25N33TM-F085 330V N-Channel MOSFET


www.onsemi.com 3

vw.onsemi.con 4

ww.onsemi.co

www.onsemi.com 6

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FQB25N33TM-F085