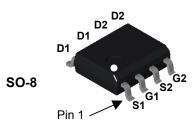
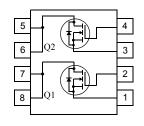


ON Semiconductor®

FDS8984-F085

N-Channel PowerTrench[®] MOSFET 30V, 7A, 23m Ω


General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{\text{DS(ON)}}$ and fast switching speed.

Features

- Max $r_{DS(on)} = 23m\Omega$, $V_{GS} = 10V$, $I_D = 7A$
- Max $r_{DS(on)} = 30m\Omega$, $V_{GS} = 4.5V$, $I_D = 6A$
- Low gate charge
- 100% R_G tested
- Qualified to AEC Q101
- RoHS Compliant

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V_{DS}	Drain to Source Voltage		30	V
V_{GS}	Gate to Source Voltage		±20	V
	Drain Current Continuous (Not	e 1a)	7	Α
ID	Pulsed		30	Α
E _{AS}	Single Pulse Avalache Energy (Note	2)	32	mJ
D	Power Dissipation for Single Operation		1.6	W
P_{D}	Derate above 25°C		13	mW/°C
T _J , T _{STG}	Operating and Storage Temperature		-55 to 150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDS8984	FDS8984-F085	SO-8	330mm	12mm	2500 units

Max

Тур

Min

Units

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter

Off Char	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C		23		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24V$ $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			1 250	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 V, V_{DS} = 0 V$			±100	nA

Test Conditions

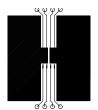
On Characteristics (Note 3)

Symbol

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.2	1.7	2.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C		- 4.3		mV/°C
	Drain to Source On Resistance	$V_{GS} = 10V, I_D = 7A$		19	23	
rno.		$V_{GS} = 4.5V, I_D = 6A$		24	30	mΩ
r _{DS(on)}	Brain to Godree Off Resistance	$V_{GS} = 10V, I_D = 7A,$ $T_J = 125^{\circ}C$		26	32	11152

Dynamic Characteristics

C _{iss}	Input Capacitance	\\ -45\\\\ -0\\	475	635	pF
C _{oss}	Output Capacitance	V _{DS} = 15V, V _{GS} = 0V, f = 1.0MHz	100	135	pF
C _{rss}	Reverse Transfer Capacitance	- 1.0WH12	65	100	pF
R_G	Gate Resistance	f = 1MHz	0.9	1.6	Ω


Switching Characteristics (Note 3)

t _{d(on)}	Turn-On Delay Time		5	10	ns
t _r	Rise Time	V _{DD} = 15V, I _D = 7A	9	18	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10V, R_{GS} = 33 Ω	42	68	ns
t _f	Fall Time		21	34	ns
Q_g	Total Gate Charge	$V_{DS} = 15V, V_{GS} = 10V,$ $I_{D} = 7A$	9.2	13	nC
Q_g	Total Gate Charge	$V_{DS} = 15V, V_{GS} = 5V,$	5.0	7	nC
Q _{gs}	Gate to Source Gate Charge	I _D = 7A	1.5		nC
Q_{gd}	Gate to Drain "Miller" Charge		2.0		nC

Drain-Source Diode Characteristics

.,	0	I _{SD} = 7A	T	0.9	1.25	V
V_{SD}	Source to Drain Diode Voltage	I _{SD} = 2.1A		0.8	1.0	V
t _{rr}	Diode Reverse Recovery Time	I _F = 7A, di/dt = 100A/μs			33	ns
Q _{rr}	Diode Reverse Recovery Charge				20	nC

¹³ R_{0,IA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0,IC} is guaranteed by design while R_{0,CA} is determined by the user's board design.

a) 78°C/W when mounted on a 0.5in^2 pad of 2 oz copper

ယ္မှ*မွ* b) 125°C/W when mounted on a 0.02 in² pad of oz copper

c) 135°C/W when mounted on a mounted on a minimun pad

Scale 1: 1 on letter size paper

- 2: Starting T $_J$ = 25°C, L = 1mH, I $_{AS}$ = 8A, V $_{DD}$ = 27V, V $_{GS}$ = 10V. 3: Pulse Test:Pulse Width <300 μ S, Duty Cycle <2%.

Typical Characteristics T_J = 25°C unless otherwise noted

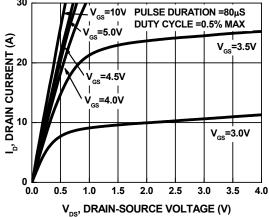


Figure 1. On Region Characteristics

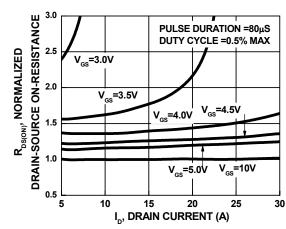


Figure 2. On-Resistance vs Drain Current and Gate Voltage

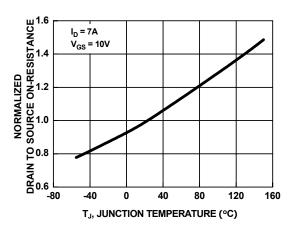


Figure 3. On Resistance vs Temperature

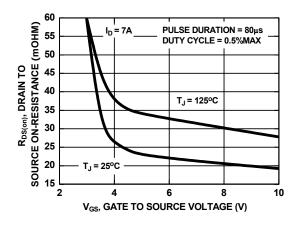
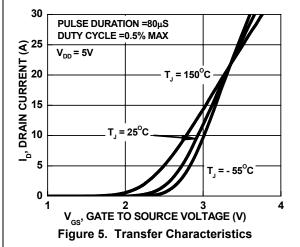



Figure 4. On-Resistance vs Gate to Source Votlage

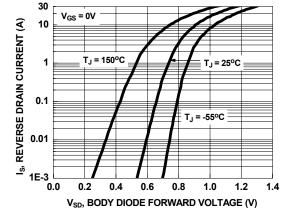


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

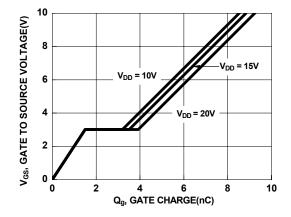


Figure 7. Gate Charge Characteristics

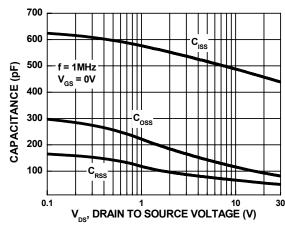


Figure 8. Capacitance vs Drain to Source Voltage

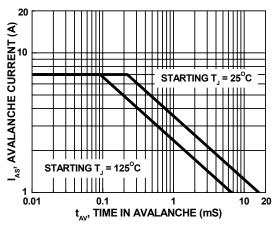


Figure 9. Unclamped Inductive Switching Capability

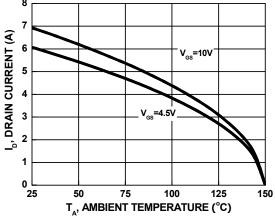


Figure 10. Maximum Continuous Drain Current vs
Ambient Temperature

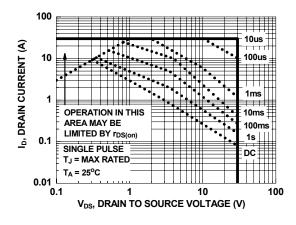


Figure 11. Forward Bias Safe Operating Area

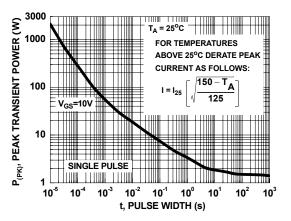


Figure 12. Single Pulse Maximum Power Dissipation

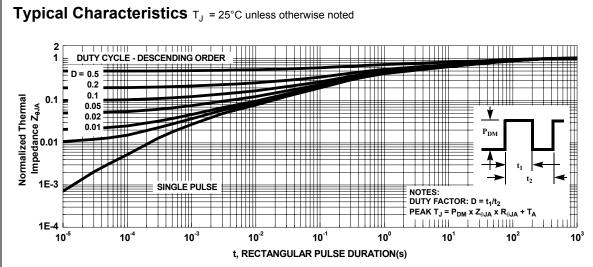


Figure 13. Transient Thermal Response Curve

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

FDS8984-F085