

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

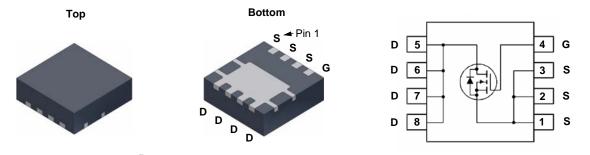
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

FDMC8651 N-Channel Power Trench[®] MOSFET 30 V, 20 A, 6.1 m Ω

Features

- Max $r_{DS(on)}$ = 6.1 m Ω at V_{GS} = 4.5 V, I_D = 15 A
- Max $r_{DS(on)}$ = 9.3 m Ω at V_{GS} = 2.5 V, I_D = 12 A
- Low Profile 1 mm max in Power 33
- 100% UIL Tested
- RoHS Compliant



General Description

This device has been designed specifically to improve the efficiency of DC/DC converters. Using new techniques in MOSFET construction, the various components of gate charge and capacitance have been optimized to reduce switching losses. Low gate resistance and very low Miller charge enable excellent performance with both adaptive and fixed dead time gate drive circuits. Very low $r_{DS(on)}$ has been maintained to provide a sub logic-level device.

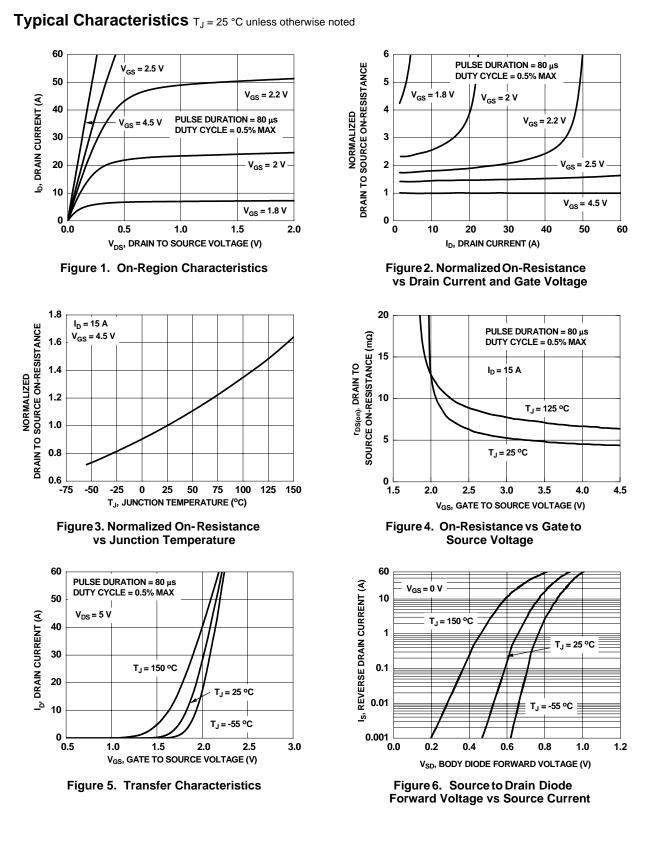
Applications

- Synchronous rectifier
- 3.3 V input synchronous buck switch

Power 33

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

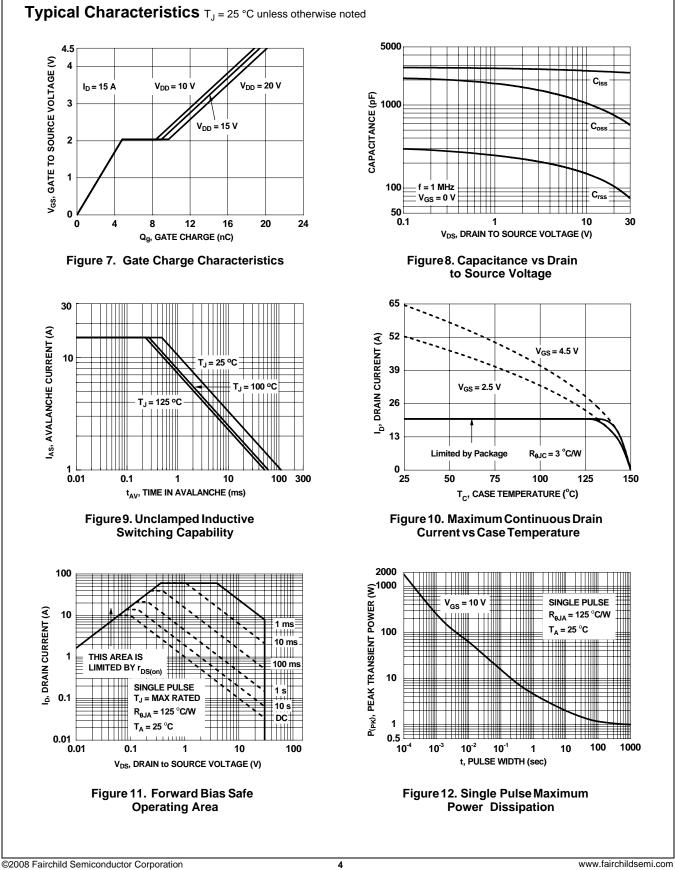
Symbol	Parameter			Ratings	Units		
V _{DS}	Drain to Source Voltage		30	V			
V _{GS}	Gate to Source Voltage			±12	V		
	Drain Current-Continuous (Package limited) $T_C = 25 \ ^{\circ}C$ -Continuous (Silicon limited) $T_C = 25 \ ^{\circ}C$			20			
				64			
I _D		-Continuous	T _A = 25 °C	C (Note 1a)	15	Α	
		-Pulsed			60		
E _{AS}	Single Pulse Avalanche Energy (Note 3)			128	mJ		
р	Power Dis	sipation	T _C = 25 °	C	41	w	
P _D	Power Dis	sipation	T _A = 25 °C	C (Note 1a)	2.3	VV	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C		
Thermal Ch	naracterist	tics					
$R_{\theta JC}$	Thermal Resistance, Junction to Case			3	9 0 AA		
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient (Note 1a)			53	°C/W		
Package M	arking and	d Ordering Information					
Device Ma	arking	Device	Package	Reel Size	Tape Width	Quantity	

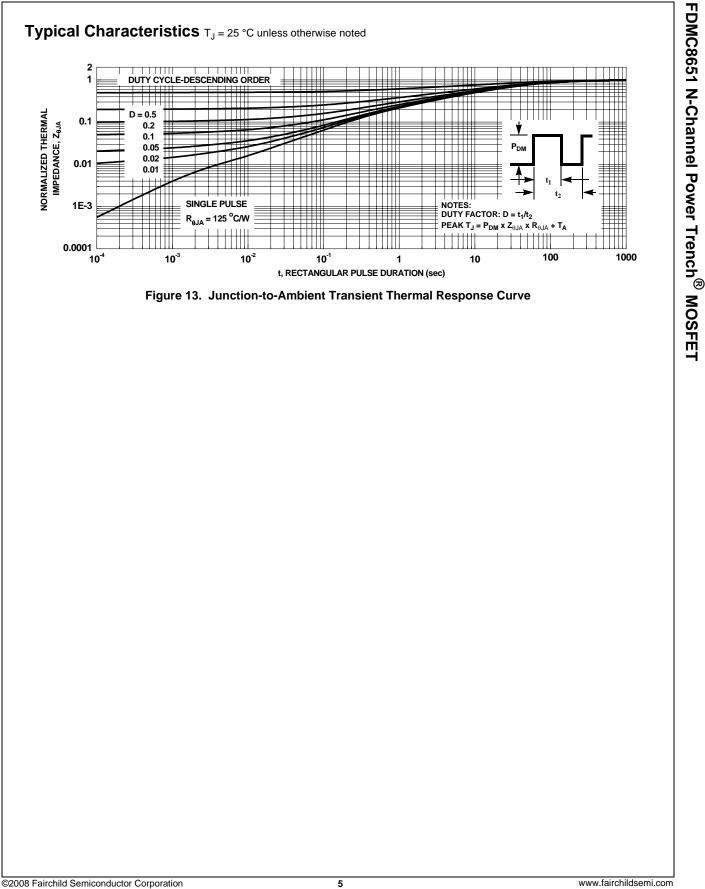

FDMC8651 FDMC8651 Power 33 13 " 12 mm	3000 units

$\begin{array}{c c} \Delta BV_{DSS} \\ \overline{\Delta}T_{J} \\ \hline \\ I_{DSS} \\ \hline \\ I_{GSS} \\ \hline \\ I_{GSS} \\ \hline \\ \hline \\ I_{GSS} \\ \hline \\ \hline \\ \hline \\ On Charact \\ \hline \\ $	Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current	$\begin{split} & _{D} = 250 \ \mu\text{A}, \ V_{GS} = 0 \ V \\ & _{D} = 250 \ \mu\text{A}, \ referenced \ to \ 25 \ ^{\circ}\text{C} \\ &V_{DS} = 24 \ V, \ V_{GS} = 0 \ V \\ &V_{GS} = \pm 12 \ V, \ V_{DS} = 0 \ V \\ \hline &V_{GS} = \pm 12 \ V, \ V_{DS} = 0 \ V \\ \hline &V_{GS} = 4.5 \ V, \ I_{D} = 15 \ \text{A} \\ &V_{GS} = 4.5 \ V, \ I_{D} = 15 \ \text{A} \\ \hline &V_{GS} = 4.5 \ V, \ I_{D} = 15 \ \text{A} \\ \hline &V_{DD} = 5 \ V, \ I_{D} = 15 \ \text{A} \\ \hline &V_{DS} = 15 \ V, \ V_{GS} = 0 \ V, \\ f = 1 \ \text{MHz} \\ \hline &V_{DD} = 15 \ V, \ I_{D} = 15 \ \text{A}, \\ \hline &V_{DD} = 15 \ V, \ I_{D} = 15 \ \text{A}, \\ \hline &V_{DD} = 15 \ V, \ I_{D} = 15 \ \text{A}, \\ \hline &V_{DD} = 15 \ V, \ I_{D} = 15 \ \text{A}, \\ \hline &V_{DD} = 15 \ V, \ I_{D} = 15 \ \text{A}, \\ \hline &V_{DD} = 15 \ V, \ I_{D} = 15 \ \text{A}, \\ \hline &V_{DD} = 15 \ V, \ I_{D} = 15 \ \text{A}, \\ \hline &V_{DD} = 15 \ V, \ I_{D} = 15 \ \text{A}, \\ \hline &V_{DD} = 15 \ V, \ I_{D} = 15 \ \text{A}, \\ \hline &V_{DD} = 15 \ V, \ I_{D} = 15 \ \text{A}, \\ \hline &V_{DD} = 15 \ V, \ I_{D} = 15 \ \text{A}, \\ \hline &V_{DD} = 15 \ V, \ V_{DD} = 15 \ V, \$	30	27.5 1.1 -4.4 4.3 6.2 6.3 91 2530 865 140 0.8 18	1 ±100 1.5 6.1 9.3 9.0 3365 1150 205 31	V mV/°C μA nA V mV/°C mΩ S pF pF pF Ω
$\begin{array}{c c} 3V_{DSS} & \Gamma \\ \hline \Delta BV_{DSS} & \hline \\ \overline{\Delta T_J} & C \\ \hline \\ DSS & \overline{2} \\ \hline \\ GSS & \overline{2} \\ \hline \\ GSS & \overline{2} \\ \hline \\ On Charact \\ \hline \\ \hline \\ V_{GS(th)} & \overline{1} \\ \hline \\ \hline \\ \hline \\ \hline \\ C_{S}(on) & \overline{1} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ DS(on) & \overline{1} \\ \hline \\ $	Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current teristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance haracteristics Input Capacitance Output Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	$I_{D} = 250 \ \mu\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C}$ $V_{DS} = 24 \ ^{\circ}\text{V}, V_{GS} = 0 \ ^{\circ}\text{V}$ $V_{GS} = \pm 12 \ ^{\circ}\text{V}, V_{DS} = 0 \ ^{\circ}\text{V}$ $V_{GS} = \frac{12 \ ^{\circ}\text{V}, V_{DS} = 0 \ ^{\circ}\text{V}$ $I_{D} = 250 \ ^{\mu}\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C}$ $V_{GS} = 4.5 \ ^{\circ}\text{V}, I_{D} = 15 \ ^{\circ}\text{A}$ $V_{GS} = 2.5 \ ^{\circ}\text{V}, I_{D} = 15 \ ^{\circ}\text{A}, T_{J} = 125 \ ^{\circ}\text{C}$ $V_{DD} = 5 \ ^{\circ}\text{V}, I_{D} = 15 \ ^{\circ}\text{A}$ $V_{DS} = 15 \ ^{\circ}\text{V}, V_{GS} = 0 \ ^{\circ}\text{V}, I_{D} = 15 \ ^{\circ}\text{A}$ $V_{DD} = 15 \ ^{\circ}\text{V}, V_{GS} = 0 \ ^{\circ}\text{V}, I_{D} = 15 \ ^{\circ}\text{A}, I_{D} = 15 \ ^{\circ}\text{A},$		1.1 -4.4 4.3 6.2 6.3 91 2530 865 140 0.8	±100 1.5 6.1 9.3 9.0 3365 1150 205	mV/°C μA nA V mV/°C mQ S pF pF pF pF
$\begin{array}{c c} \Delta B V_{DSS} & F \\ \hline \Delta T_{J} & C \\ \hline \Delta T_{J} & C \\ \hline \Delta T_{J} & C \\ \hline DSS & 2 \\ \hline DSS & 2 \\ \hline On Charact \\ \hline On Charact \\ \hline V_{GS(th)} & C \\ \hline \Delta V_{GS(th)} & C \\ \hline \Delta T_{J} & T \\ \hline DS(on) & F \\ \hline Opnamic Cl \\ \hline C_{iss} & F \\ \hline Opnamic Cl \\ \hline C_{iss} & F \\ \hline Opnamic Cl \\ \hline C_{iss} & F \\ \hline Opnamic Cl \\ \hline C_{iss} & F \\ \hline Opnamic Cl \\ \hline C_{iss} & F \\ \hline Opnamic Cl \\ \hline C_{iss} & F \\ \hline Opnamic Cl \\ \hline C_{iss} & F \\ \hline Opnamic Cl \\ \hline C_{iss} & F \\ \hline Opnamic Cl \\ \hline C_{iss} & F \\ \hline Opnamic Cl \\ \hline C_{iss} & F \\ \hline Opnamic Cl \\ \hline C_{iss} & F \\ \hline Opnamic Cl \\ \hline Opn$	Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current teristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance haracteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	$I_{D} = 250 \ \mu\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C}$ $V_{DS} = 24 \ ^{\circ}\text{V}, V_{GS} = 0 \ ^{\circ}\text{V}$ $V_{GS} = \pm 12 \ ^{\circ}\text{V}, V_{DS} = 0 \ ^{\circ}\text{V}$ $V_{GS} = \frac{12 \ ^{\circ}\text{V}, V_{DS} = 0 \ ^{\circ}\text{V}$ $I_{D} = 250 \ ^{\mu}\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C}$ $V_{GS} = 4.5 \ ^{\circ}\text{V}, I_{D} = 15 \ ^{\circ}\text{A}$ $V_{GS} = 2.5 \ ^{\circ}\text{V}, I_{D} = 15 \ ^{\circ}\text{A}, T_{J} = 125 \ ^{\circ}\text{C}$ $V_{DD} = 5 \ ^{\circ}\text{V}, I_{D} = 15 \ ^{\circ}\text{A}$ $V_{DS} = 15 \ ^{\circ}\text{V}, V_{GS} = 0 \ ^{\circ}\text{V}, I_{D} = 15 \ ^{\circ}\text{A}$ $V_{DD} = 15 \ ^{\circ}\text{V}, V_{GS} = 0 \ ^{\circ}\text{V}, I_{D} = 15 \ ^{\circ}\text{A}, I_{D} = 15 \ ^{\circ}\text{A},$	0.8	1.1 -4.4 4.3 6.2 6.3 91 2530 865 140 0.8	±100 1.5 6.1 9.3 9.0 3365 1150 205	μΑ nA V mV/°C mΩ S S
$\begin{array}{c c} \hline & & & \\ \hline DSS & & Z \\ \hline GSS & & C \\ \hline \\ \hline GSS & & C \\ \hline \\$	Zero Gate Voltage Drain Current Gate to Source Leakage Current teristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance haracteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = V_{DS}, I_D = 250 \text{ µA}$ $I_D = 250 \text{ µA}, \text{ referenced to } 25 \text{ °C}$ $V_{GS} = 4.5 \text{ V}, I_D = 15 \text{ A}$ $V_{GS} = 2.5 \text{ V}, I_D = 12 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 15 \text{ A}, T_J = 125 \text{ °C}$ $V_{DD} = 5 \text{ V}, I_D = 15 \text{ A}$ $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $V_{DD} = 15 \text{ V}, I_D = 15 \text{ A},$	0.8	-4.4 4.3 6.2 6.3 91 2530 865 140 0.8	±100 1.5 6.1 9.3 9.0 3365 1150 205	nA V mV/°C mΩ S PF pF pF
GSS GSS On Charact $\sqrt{GS(th)}$ G $\Delta V_{GS(th)}$ G ΔT_J T DS(on) S DFS F Dynamic Cl Criss I Coss G Criss I Coss G Criss F Quantic Cl C Coss G Criss F Quantic Cl C Coss G Cass F Quantic Cl C Coss G Quantic Cl C Coss G Quantic Cl C Cass F Quantic Cl T Quantic Cl T <	Gate to Source Leakage Current teristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance haracteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = V_{DS}, I_D = 250 \text{ µA}$ $I_D = 250 \text{ µA}, \text{ referenced to } 25 ^{\circ}\text{C}$ $V_{GS} = 4.5 \text{ V}, I_D = 15 \text{ A}$ $V_{GS} = 2.5 \text{ V}, I_D = 12 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 15 \text{ A}, T_J = 125 ^{\circ}\text{C}$ $V_{DD} = 5 \text{ V}, I_D = 15 \text{ A}$ $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $V_{DD} = 15 \text{ V}, I_D = 15 \text{ A},$	0.8	-4.4 4.3 6.2 6.3 91 2530 865 140 0.8	±100 1.5 6.1 9.3 9.0 3365 1150 205	nA V mV/°C mΩ S S
On Charact $\sqrt{GS(th)}$ Q $\Delta V_{GS(th)}$ Q ΔT_J T DS(on) S Coss G Coss G Gost F Q(off) F Q _{gd} G Drain-Source G	teristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance haracteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$ $I_D = 250 \ \mu A, referenced to 25 \ ^{\circ}C$ $V_{GS} = 4.5 \ V, I_D = 15 \ A$ $V_{GS} = 2.5 \ V, I_D = 12 \ A$ $V_{GS} = 4.5 \ V, I_D = 15 \ A, T_J = 125 \ ^{\circ}C$ $V_{DD} = 5 \ V, I_D = 15 \ A$ $V_{DS} = 15 \ V, V_{GS} = 0 \ V, f = 1 \ MHz$	0.8	-4.4 4.3 6.2 6.3 91 2530 865 140 0.8	1.5 6.1 9.3 9.0 3365 1150 205	V mV/°C mΩ S PF pF pF
$\begin{array}{c c} V_{GS(th)} & C \\ \hline \Delta V_{GS(th)} & T \\ \hline \Delta T_J & T \\ \hline DS(on) & S \\ \hline S \\ \hline DS(on) & S \\ \hline S \\ \hline S \\ S \\ S \\ S \\ S \\ S \\ S \\$	Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance haracteristics Input Capacitance Output Capacitance Qutput Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	$I_{D} = 250 \ \mu\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C}$ $V_{GS} = 4.5 \ V, \ I_{D} = 15 \ \text{A}$ $V_{GS} = 2.5 \ V, \ I_{D} = 12 \ \text{A}$ $V_{GS} = 4.5 \ V, \ I_{D} = 15 \ \text{A}, \ T_{J} = 125 \ ^{\circ}\text{C}$ $V_{DD} = 5 \ V, \ I_{D} = 15 \ \text{A}$ $V_{DS} = 15 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ \text{MHz}$	0.8	-4.4 4.3 6.2 6.3 91 2530 865 140 0.8	6.1 9.3 9.0 3365 1150 205	mV/°C mΩ S pF pF pF
$\begin{array}{c c} \Delta V_{GS(th)} & G \\ \hline \Delta T_J & T \\ \hline DS(on) & S \\ \hline $	Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance haracteristics Input Capacitance Output Capacitance Gate Resistance Gate Resistance Characteristics Turn-On Delay Time Rise Time	$I_{D} = 250 \ \mu\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C}$ $V_{GS} = 4.5 \ V, \ I_{D} = 15 \ \text{A}$ $V_{GS} = 2.5 \ V, \ I_{D} = 12 \ \text{A}$ $V_{GS} = 4.5 \ V, \ I_{D} = 15 \ \text{A}, \ T_{J} = 125 \ ^{\circ}\text{C}$ $V_{DD} = 5 \ V, \ I_{D} = 15 \ \text{A}$ $V_{DS} = 15 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ \text{MHz}$	0.8	-4.4 4.3 6.2 6.3 91 2530 865 140 0.8	6.1 9.3 9.0 3365 1150 205	mV/°C mΩ S pF pF pF
$\begin{array}{c c} \Delta V_{GS(th)} & G \\ \hline \Delta T_J & T \\ \hline DS(on) & S \\ \hline \hline SS(on) & S \\ $	Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance haracteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 15 \text{ A}$ $V_{GS} = 2.5 \text{ V}, \text{ I}_{D} = 12 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 15 \text{ A}, \text{ T}_{J} = 125 \text{ °C}$ $V_{DD} = 5 \text{ V}, \text{ I}_{D} = 15 \text{ A}$ $V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $V_{DD} = 15 \text{ V}, \text{ I}_{D} = 15 \text{ A},$		4.3 6.2 6.3 91 2530 865 140 0.8	9.3 9.0 3365 1150 205	mΩ S pF pF
$\begin{array}{c c} \hline D_{FS} & F \\ \hline Dynamic CI \\ \hline D_{iss} & I \\ \hline D_{ciss} & G \\ \hline D_{rss} & G \\ \hline D_{rss} & F \\ \hline R_g & G \\ \hline \hline Switching G \\ \hline Switching G \\ \hline G \\ \hline Switching G \\ \hline $	Forward Transconductance haracteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	$V_{GS} = 2.5 \text{ V}, I_D = 12 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 15 \text{ A}, T_J = 125 \text{ °C}$ $V_{DD} = 5 \text{ V}, I_D = 15 \text{ A}$ $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $V_{DD} = 15 \text{ V}, I_D = 15 \text{ A},$		6.2 6.3 91 2530 865 140 0.8	9.3 9.0 3365 1150 205	PF pF pF
$\begin{array}{c c} \hline D_{FS} & F \\ \hline Dynamic CI \\ \hline D_{iss} & I \\ \hline D_{ciss} & G \\ \hline D_{rss} & G \\ \hline D_{rss} & F \\ \hline R_g & G \\ \hline \hline Switching G \\ \hline Switching G \\ \hline G \\ \hline Switching G \\ \hline $	Forward Transconductance haracteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	$V_{GS} = 2.5 \text{ V}, I_D = 12 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 15 \text{ A}, T_J = 125 \text{ °C}$ $V_{DD} = 5 \text{ V}, I_D = 15 \text{ A}$ $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $V_{DD} = 15 \text{ V}, I_D = 15 \text{ A},$		6.3 91 2530 865 140 0.8	9.0 3365 1150 205	PF pF pF
$ \begin{array}{c c} \hline PFS & F \\ \hline \hline Dynamic Cl \\ \hline C_{iss} & I \\ \hline C_{oss} & C \\ \hline C_{rss} & F \\ \hline R_g & C \\ \hline \hline Switching C \\ \hline Switching C \\ \hline d(on) & T \\ \hline f \\ \hline A_{g(TOT)} & T \\ \hline A_{gg} & T \\ \hline A_{gd} & C \\ \hline \hline Drain-Source \\ \hline \end{array} $	haracteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	$V_{GS} = 4.5 \text{ V}, I_D = 15 \text{ A}, T_J = 125 \text{ °C}$ $V_{DD} = 5 \text{ V}, I_D = 15 \text{ A}$ $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $V_{DD} = 15 \text{ V}, I_D = 15 \text{ A},$		91 2530 865 140 0.8	3365 1150 205	pF pF pF
Dynamic Cl C_{iss} I C_{oss} Crss Rg Coss Crss Rg Coss Coss </td <td>haracteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time</td> <td>$V_{DD} = 5 \text{ V}, \text{ I}_{D} = 15 \text{ A}$ $V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1 MHz $V_{DD} = 15 \text{ V}, \text{ I}_{D} = 15 \text{ A},$</td> <td></td> <td>2530 865 140 0.8</td> <td>1150 205</td> <td>pF pF pF</td>	haracteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	$V_{DD} = 5 \text{ V}, \text{ I}_{D} = 15 \text{ A}$ $V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1 MHz $V_{DD} = 15 \text{ V}, \text{ I}_{D} = 15 \text{ A},$		2530 865 140 0.8	1150 205	pF pF pF
$\begin{array}{c c} \hline C_{iss} & I \\ \hline C_{oss} & C \\ \hline C_{rss} & F \\ \hline R_g & C \\ \hline Switching C \\ \hline Switching C \\ \hline Switching C \\ \hline G(on) & 1 \\ \hline r & F \\ \hline G(off) & 1 \\ \hline r & F \\ \hline Q_{g(TOT)} & 1 \\ \hline Q_{gs} & 1 \\ \hline Q_{gd} & C \\ \hline Drain-Source \\ \hline \end{array}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	f = 1 MHz V _{DD} = 15 V, I _D = 15 A,		865 140 0.8	1150 205	pF pF
$\begin{array}{c c} \hline C_{iss} & I \\ \hline C_{oss} & C \\ \hline C_{rss} & F \\ \hline R_g & C \\ \hline Switching C \\ \hline Switching C \\ \hline Switching C \\ \hline G(on) & 1 \\ \hline r & F \\ \hline G(off) & 1 \\ \hline r & F \\ \hline Q_{g(TOT)} & 1 \\ \hline Q_{gs} & 1 \\ \hline Q_{gd} & C \\ \hline Drain-Source \\ \hline \end{array}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	f = 1 MHz V _{DD} = 15 V, I _D = 15 A,		865 140 0.8	1150 205	pF pF
$\begin{array}{c c} C_{oss} & C\\ C_{rss} & F\\ R_g & C\\ \hline \\ $	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	f = 1 MHz V _{DD} = 15 V, I _D = 15 A,		865 140 0.8	1150 205	pF pF
C_{rss} F R_g (Switching C Switching C d(on) 7 r F d(off) 7 f F $Q_{g(TOT)}$ 7 Q_{gs} 7 Q_{gd} (Drain-Source	Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	V _{DD} = 15 V, I _D = 15 A,		140 0.8	205	pF
$\begin{array}{c c} \hline & & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	Gate Resistance Characteristics Turn-On Delay Time Rise Time			0.8		
Switching C d(on) 7 r 6 d(off) 7 f 7 $Q_{g(TOT)}$ 7 Q_{gs} 7 Q_{gd} 7 Drain-Source	Characteristics Turn-On Delay Time Rise Time				21	
d(on) 1 r F d(off) 1 f F $\lambda_{g(TOT)}$ 1 λ_{gs} 1 λ_{gd} C Drain-Source	Turn-On Delay Time Rise Time			18	21	-
r r r r r r r r r r	Rise Time			18	21	
$d_{(off)}$ 1 f F $Q_{g(TOT)}$ 1 Q_{gs} 1 Q_{gd} (C) Drain-Source					51	ns
f F $Q_{g(TOT)}$ 7 Q_{gs} 7 Q_{gd} 7 Drain-Source	Turn Off Dolou Timo			9	18	ns
f F F $\lambda_{g(TOT)}$ 1 λ_{gs} 1 λ_{gd} C		V_{GS} = 4.5 V, R_{GEN} = 6 Ω		35	56	ns
ຊ _{gs} 1 ຊ _{gd} (Drain-Sourc	Fall Time			6	12	ns
ຊ _{gs} 1 ຊ _{gd} (Drain-Sourc	Total Gate Charge at 4.5 V			19.4	27.2	nC
ସ _{ୁଗ} ା (Drain-Sourc	Total Gate Charge	V _{DD} = 15 V, I _D = 15 A		4.8		nC
Drain-Sour	Gate to Drain "Miller" Charge			4.2		nC
	ce Diode Characteristics					
V _{SD}		$V_{GS} = 0 V, I_{S} = 15 A$ (Note 2)		0.8	1.3	1
	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 1.7 A$ (Note 2)		0.0	1.2	V
				35	55	200
	Reverse Recovery Time	— I _F = 15 A, di/dt = 100 A/μs				ns
Q _{rr} F NOTES:	Reverse Recovery Charge			17	30	nC
. R _{0JA} is determine the user's board o	ed with the device mounted on a 1in ² pad 2 oz copper pa design.	ad on a 1.5 x 1.5 in. board of FR-4 material. $R_{ ext{ heta}JC}$ is gu	aranteed b	y design while	e R _{θCA} is de	termined b
	a. 53 °C/W when mou 1 in ² pad of 2 oz co			when moun n pad of 2 oz o		
2. Pulse Test: Pulse 3. Starting $T_J = 25^{\circ}$	e Width < 300 μs, Duty cycle < 2.0%.	ι.				

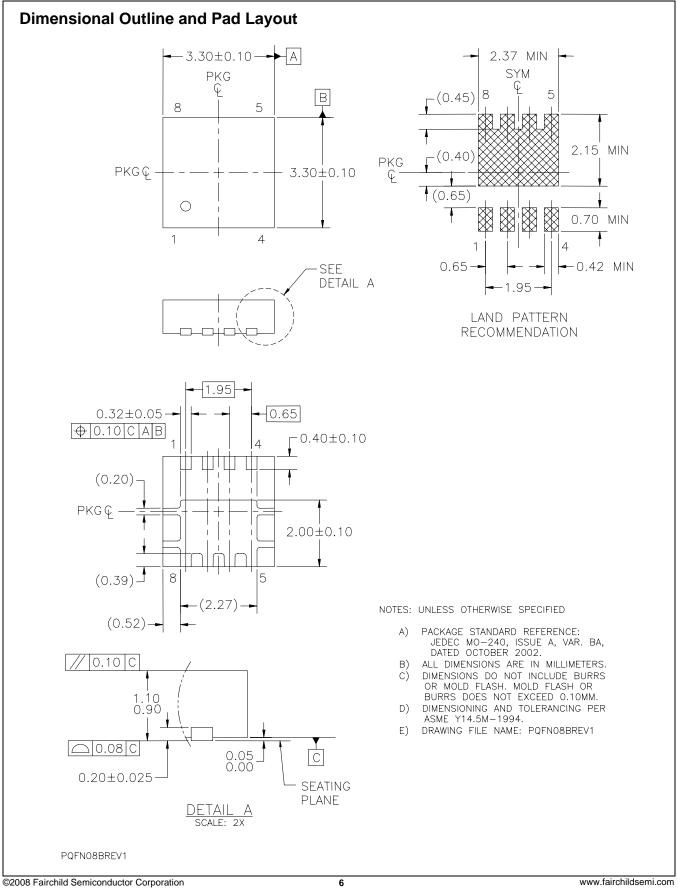
Electrical Characteristics $T_J = 25$ °C unless otherwise noted

©2008 Fairchild Semiconductor Corporation FDMC8651 Rev.C


www.fairchildsemi.com


©2008 Fairchild Semiconductor Corporation FDMC8651 Rev.C

www.fairchildsemi.com



FDMC8651 Rev.C

FDMC8651 Rev.C

www.fairchildsemi.com

FDMC8651 N-Channel Power Trench[®] MOSFET

FDMC8651 Rev.C

SEMICONDUCTOR

DMC8651 N-Channel Power Trench[®] MOSFET

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now TM CorePLUS TM CrePOWER TM CROSSVOLT TM CTL TM Current Transfer Logic TM EcoSPARK [®] EfficentMax TM EZSWITCH TM * TM Fairchild [®] Fairchild [®]	FPS™ F-PFS™ FRFET® Global Power Resource SM Green FPS™ GTO™ IntelliMAX™ ISOPLANAR™ MICROCOUPLER™ MicroFET™ MicroPak™ MilerDrive™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®	PDP SPM™ Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-6 SuperSOT™-8 Super	The Power Franchise [®] Tranchise TinyBoost™ TinyBuck™ TinyLogic® TinyPower™ TinyPower TinyPo
--	--	---	---

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FDMC8651