

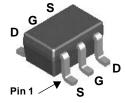
ON Semiconductor®

FDG6332C-F085

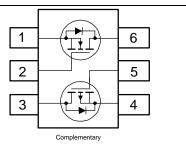
20V N & P-Channel PowerTrench[®] MOSFETs Features

reatures

- Q1 0.7 A, 20V. $R_{DS(ON)} = 300 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$ $R_{DS(ON)} = 400 \text{ m}\Omega @ V_{GS} = 2.5 \text{ V}$
- Q2 -0.6 A, -20V. $R_{DS(ON)} = 420 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$ $R_{DS(ON)} = 630 \text{ m}\Omega @ V_{GS} = -2.5 \text{ V}$
- Low gate charge
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- SC70-6 package: small footprint (51% smaller than SSOT-6); low profile (1mm thick)
- Qualified to AEC Q101
- RoHS Compliant


General Description

The N & P-Channel MOSFETs are produced using ON Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.


These devices have been designed to offer exceptional power dissipation in a very small footprint for applications where the bigger more expensive TSSOP-8 and SSOP-6 packages are impractical.

Applications

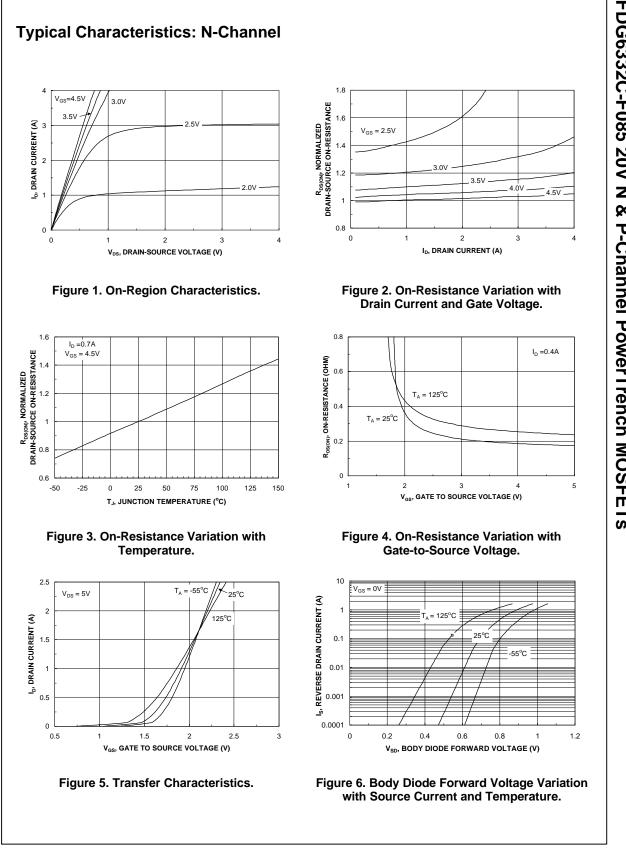
- DC/DC converter
- Load switch
- LCD display inverter

SC70-6

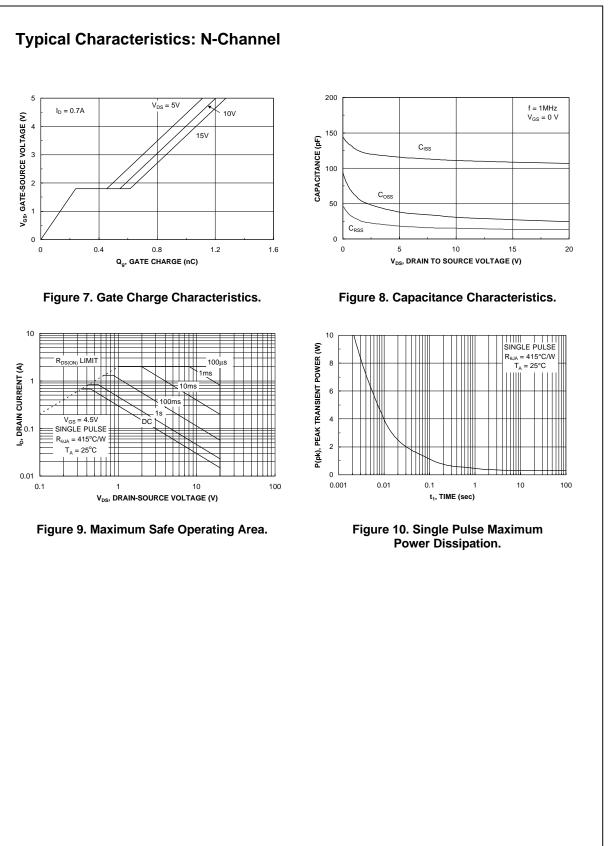
Absolute Maximum Ratings T_A=25°C unless otherwise noted

ADSOIUI		iuni kalings	F _A =25°C unless otherwise no	ted	•		
Symbol		Parameter		Q1	Q2		Units
V _{DSS}	Drain-Sour	ce Voltage		20	-20		V
V _{GSS}	Gate-Source	e Voltage		±12	±12		V
ID	Drain Curre	ent – Continuous	(Note 1)	0.7	-0.6		Α
		 Pulsed 		2.1	-2		
PD	Power Diss	ipation for Single Operation	ation (Note 1)		0.3		W
T _J , T _{STG}	Operating a	and Storage Junction T	emperature Range	-55 t	o +150		°C
Therma	I Charac	teristics					
$R_{\theta JA}$	Thermal Re	esistance, Junction-to-A	Ambient (Note 1)	2	115		°C/W
Packag	e Markin	g and Ordering	g Information				
Device I	Marking	Device	Reel Size	Tape w	idth	Qu	antity
.3	2	FDG6332C-F085	7"	8mr	n	300	0 units

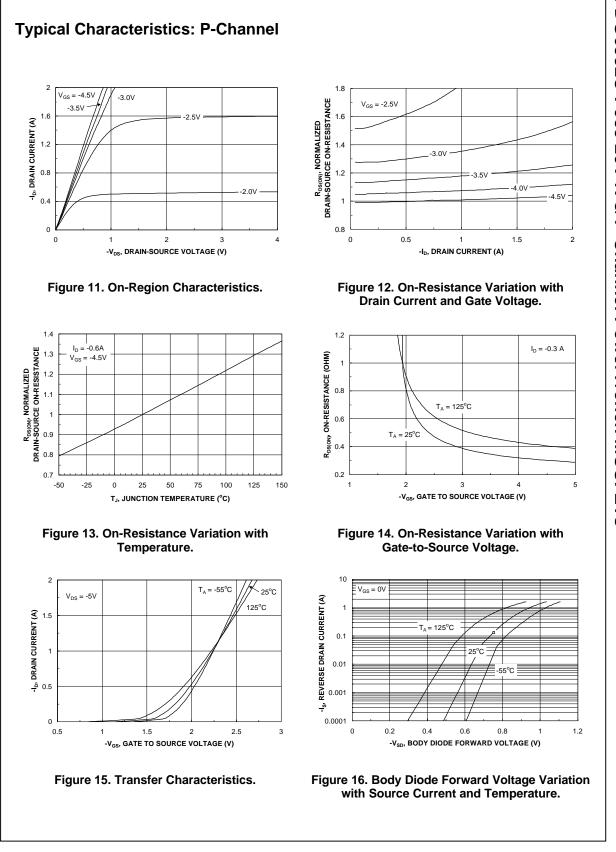
©2009 Semiconductor Components Industries, LLC. September-2017, Rev. 3 Publication Order Number: FDG6332C-F085/D

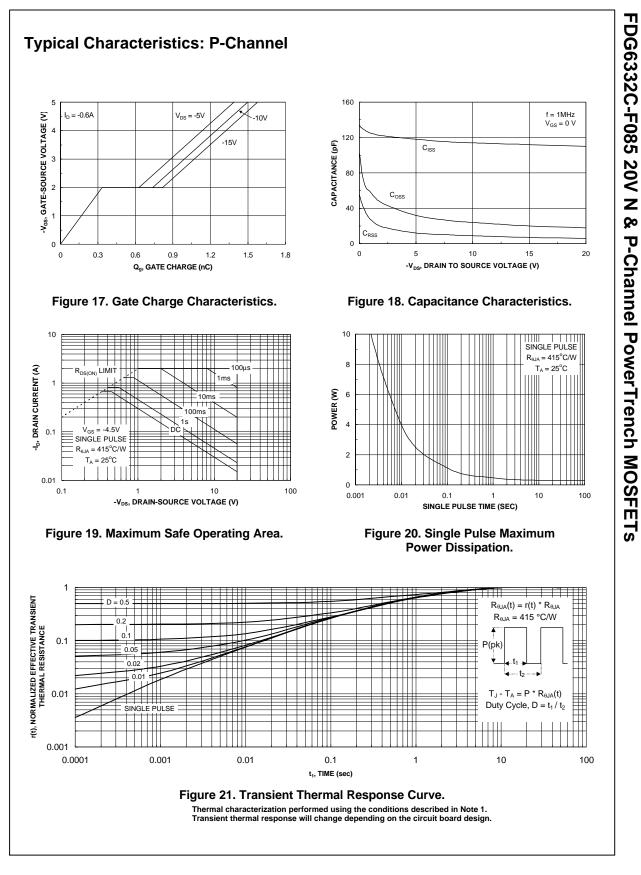

Symbol	Parameter		Test Conditions		Min	Тур	Max	Units	
Off Char	acteristics								
BV _{DSS}	Drain–Source Breakdown Volta	ae	$V_{GS} = 0 V$, $I_D = 250 \mu A$	Q1	20			V	
	Breakdown Voltage Temperatur	0	$V_{GS} = 0 V$, $I_D = -250 \mu A$ $I_D = 250 \mu A$, Ref. to $25^{\circ}C$	Q2 Q1	-20	14		mV/°C	
ΔT_{J}	Coefficient		$I_D = -250 \ \mu A, Ref. to 25^{\circ}C$	Q2		-14			
I _{DSS}	Zero Gate Voltage Drain Currer	nt		Q1 Q2			1 -1	μA	
I _{GSSF} /I _{GSSR}	Gate-Body Leakage, Forward		$V_{GS}=\pm~12~V, V_{DS}=0~V$	~-			±100	nA	
I _{GSSF} /I _{GSSR}	Gate–Body Leakage, Reverse		$V_{GS}=\pm~12V~,~~V_{DS}=0~V$				±100	nA	
On Char	acteristics (Note 2)	1	1						
V _{GS(th)}	Gate Threshold Voltage	Q1	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$		0.6	1.1	1.5	V	
		Q2	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$		-0.6	-1.2	-1.5		
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	Q1 Q2	$I_D = 250 \ \mu A, Ref. To 25^{\circ}C$ $I_D = -250 \ \mu A, Ref. to 25^{\circ}C$			-2.8 3		mV/°C	
R _{DS(on)}	Static Drain–Source	Q1	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 0.7 \text{ A}$			180	300	mΩ	
. ,	On-Resistance		$V_{GS} = 2.5 \text{ V}, I_D = 0.6 \text{ A}$	DE°C		293			
		Q2	$V_{GS} = 4.5 \text{ V}, I_D = 0.7\text{A}, T_J = 12$ $V_{GS} = -4.5 \text{ V}, I_D = -0.6 \text{ A}$	25°C		247 300	442 420		
		QZ	$V_{GS} = -4.5 \text{ V}, \text{ I}_D = -0.5 \text{ A}$ $V_{GS} = -2.5 \text{ V}, \text{ I}_D = -0.5 \text{ A}$			470	630		
			V_{GS} =-4.5 V, I_D =-0.6 A, T_J =12	25°C		400	700		
g fs	Forward Transconductance	Q1	$V_{DS} = 5 \text{ V} \qquad I_D = 0.7 \text{ A}$			2.8		S	
		Q2	$V_{DS} = -5 V \qquad I_D = -0.6A$			1.8			
I _{D(on)}	On–State Drain Current	Q1	$V_{GS} = 4.5 \text{ V}, V_{DS} = 5 \text{ V}$		1			A	
		Q2	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$		-2				
Dynamic	Characteristics	1					1		
C _{iss}	Input Capacitance	Q1	$V_{DS}=10 V, V_{GS}=0 V, f=1.0MI$			113		pF	
0		Q2	V _{DS} =-10 V, V _{GS} = 0 V, f=1.0N V _{DS} =10 V, V _{GS} = 0 V, f=1.0M			114			
Coss	Output Capacitance	Q1	V_{DS} =10 V, V _{GS} = 0 V, 1=1.0M V _{DS} =-10 V, V _{GS} = 0 V, f=1.0M			34		pF	
Crss	Reverse Transfer Capacitance	Q2 Q1	$V_{DS}=10 \text{ V}, \text{ V}_{GS}=0 \text{ V}, \text{ f}=1.0\text{ M}$			24 16		pF	
Urss	Reverse Transier Capacitance	Q2	V_{DS} =-10 V, V _{GS} = 0 V, f=1.0N			9		μr	
Switchin	G Characteristics	QZ				0			
	G Characteristics (Note 2) Turn–On Delay Time	Q1	504			5	10	ne	
t _{d(on)}	Turn-On Delay Time	Q2	For Q1 : V _{DS} =10 V, I _D = 1 A			5.5	11	ns	
tr	Turn–On Rise Time	Q1	V_{GS} = 4.5 V, R_{GEN} = 6 Ω			7	15	ns	
		Q2	For Q2 :			14	25		
t _{d(off)}	Turn-Off Delay Time	Q1	$V_{DS} = -10 \text{ V}, I_D = -1 \text{ A}$ $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$			9	18	ns	
		Q2	$v_{GS} = -4.5 v, R_{GEN} = 0.22$			6	12		
t _f	Turn–Off Fall Time	Q1	-			1.5	3	ns	
Qg	Total Gate Charge	Q2 Q1	For 0 4			1.7 1.1	3.4 1.5	nC	
∝g		Q2	For Q1 : V _{DS} =10 V, I _D = 0.7 A			1.4	2		
Q _{gs}	Gate-Source Charge	Q1	V_{GS} = 4.5 V, R_{GEN} = 6 Ω			0.24		nC	
		Q2	For Q2 : V _{DS} =–10 V, I _D = –0.6 A			0.3			
Q _{gd}	Gate-Drain Charge	Q1	$V_{DS} = -10 \text{ V}, T_D = -0.6 \text{ A}$ $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$			0.3		nC	
		Q2				0.4			

Symbol	Parameter		Test Conditions		Min	Тур	Max	Units
Drain-S	ource Diode Characteris	tics a	nd Maximum Ratings					
Is	Maximum Continuous Drain–So	ource D	Diode Forward Current	Q1			0.25	А
ls	Maximum Continuous Drain–So	ource D		Q1 Q2			0.25 0.25	A
I _S	Maximum Continuous Drain–So Drain–Source Diode Forward			Q2		0.74		A V


Notes:

 R_{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{8JC} is guaranteed by design while R_{8JA} is determined by the user's board design. R_{8JA} = 415°C/W when mounted on a minimum pad of FR-4 PCB in a still air environment.


2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%



FDG6332C-F085 20V N & P-Channel PowerTrench MOSFETs

www.onsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FDG6332C-F085P