
LV5683P

BI-CMOSIC Multi Voltage Regulator IC for Car Audio Systems

Overview

The LV5683P is a multi voltage regulator suitable for USB silicon tuner car-audio systems. This IC has 4 outputs, V_{DD} 5V(3.3V), AUDIO(8.5V), SWU(3.3V) and USB5V(CD 8V: available). About protection circuits, it has Over-current-protection, Over-voltage-protection and Thermal-shut-down. V_{CC}1(SWU and USB supply) is independent terminal from V_{CC}, and accepts lower voltage (ex. From DC/DC converter) which enables to reduce power dissipation.

HZIP15

Features

4 system regulator

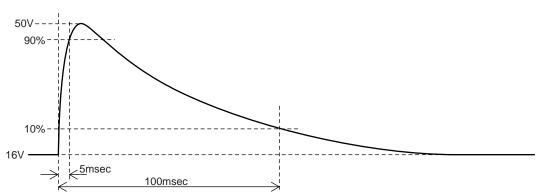
V _{DD} (LCD micon)	: V _{OUT} 5.0V(3.3V), I _O max 300mA,
	reverse current prevention.
Audio	: VOUT 8.5V, IO max 400mA
SWU(systems)	: VOUT 3.3V, IO max 500mA
USB	: VOUT 5.0V(8.0V available for CD),
	IO max 1100mA

- Over-current-protection
- Thermal-shut-down Typ 175°C
- Over-voltage-protection: Typ 21V(except VDD)
- Applied Pch-LDMOS for output stages.

(Warning)The protector functions only improve the IC's tolerance and they do not guarantee the safety of the IC if used under the conditions out of safety range or ratings. Use of the IC such as use under overcurrent protection range or thermal shut down state may degrade the IC's reliability and eventually damage the IC.

Specifications

Absolute Maximum Ratings at Ta = 25°C


Parameter	Conditions	Conditions	Ratings	Unit
Supply voltage	V _{CC} max		36	V
Allowable Power dissipation Pd max		IC unit	1.3	W
	(*Ta ≤ 25°C)	With AI heatsink(50×50×1.5mm ³)	5.3	W
		Infinite heat rediation	26	W
Peak supply voltage	V _{CC} peak	See below pulse wave.	50	V
Operating ambient temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +150	°C
Junction temperature	Tj max		150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.

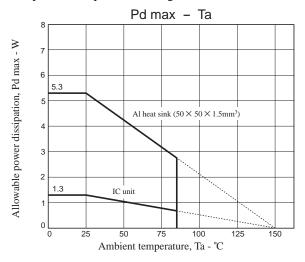
Peak voltage testing pulse wave

Recommended Operating condition at $Ta=25^{\circ}C$

Parameter	Conditions	Ratings	Unit
Power supply voltage rating 1	V _{DD} output(5V/3.3V)	7 to 16	V
Power supply voltage rating 2	USB(5V) output, SWU output: V _{CC} =V _{CC} 1	7.5 to 16	V
Power supply voltage rating 3	AUDIO output	10 to 16	V
Power supply voltage rating 4	USB(8V) output: V _{CC} =V _{CC} 1	10.5 to 16	V

Electrical Characteristics at Ta = 25° C, V_{CC} = V_{CC}1 = 14.4V (*1)

Parameter	Symbol Conditions		Ratings			Unit	
- diamotor	Cy501	-,		typ	max		
Quiescent current I_{CC} V_{DD} no load, ALL EN terminal = $\lfloor L \rfloor$			50	100	μA		
AUDIO_EN Input							
Low input voltage	V _{IL} 1		0		0.5	V	
High input voltage	V _{IH} 1		2.8		5.5	V	
Input impedance	R _{IN} 1		280	400	520	kΩ	
SWU_EN Input							
Low input voltage	V _{IL} 2		0		0.5	V	
High input voltage	V _{IH} 2		2.8		5.5	V	
Input impedance	R _{IN} 2		280	400	520	kΩ	
USB_EN input	•	·	· •				
Low input voltage	V _{IL} 3		0		0.5	V	
High input voltage	V _{IH} 3		2.8		5.5	V	
Input impedance	R _{IN} 3		280	400	520	kΩ	
V _{DD} (5V/3.3V)output(revers	e current preventio	on diode implemented)	•				
V _{DD} output voltage 1	V _O 11	I _O 11 = 200mA, IKV _{DD} =OPEN, or V _{DD} out	4.75	5.0	5.25	V	
V _{DD} output current 1	I _O 11	$V_011 \ge 4.7V$	300			mA	
V _{DD} output voltage 2	V _O 12	I _O 12 = 200mA, IKV _{DD} =GND	3.13	3.3	3.47	V	
V _{DD} output current 2	I _O 12	I _O 12 V _O 12 ≥ 3.1V				mA	
Line regulation	∆V _{OLN} 1	7V < V _{CC} < 16V, I _O 1 = 200mA		50	100	mV	
Load regulation	ΔV _{OLD} 1	1mA < I _O 11, I _O 12 < 200mA		80	150	mV	
Dropout voltage 1	V _{DROP} 1	I _O 1 = 200mA (implemented diode)		1.5	2.5	V	
V _{CC} ripple rejection	R _{REJ} 1	f=120Hz, V _{CC} =1V _{PP} , I _O 1=200mA	40(*2)	50(*2)		dB	
V _{DD} reverse current	I _{REV}	V _O 11=5.0V, V _{CC} =0V		10	100	μA	
USB/CD output ; USB_EN =	High						
USB output voltage 1	V _O 21	I _O 21 = 1000mA, IKUSB=OPEN, or USBout	7.6	8.0	8.4	V	
USB output current 1	I _O 21	V _O 21 ≥ 7.45V	1100	ľ		mA	
USB output voltage 2	V _O 22	I _O 22 = 1000mA, IKUSB=GND	4.75	5.0	5.25	V	
USB output current 2	I _O 22	$V_022 \ge 4.6V$	1100			mA	
Line regulation	ΔV _{OLN} 2	10.5V < V _{CC} 1 < 16V, I _O 2 = 1000mA		50	100	mV	
Load regulation	ΔV _{OLD} 2 10mA < I _O 21, I _O 22 < 1000mA			100	200	mV	
Dropout voltage	V _{DROP} 2	I _O 21, I _O 22 = 1000mA		1.0	2.0	V	
V _{CC} 1 ripple rejection	R _{REJ} 2	f=120Hz, V _{CC} 1=1V _{PP} , I _O 2=1000mA	40(*2)	50(*2)		dB	

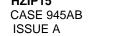

Continued on next page.

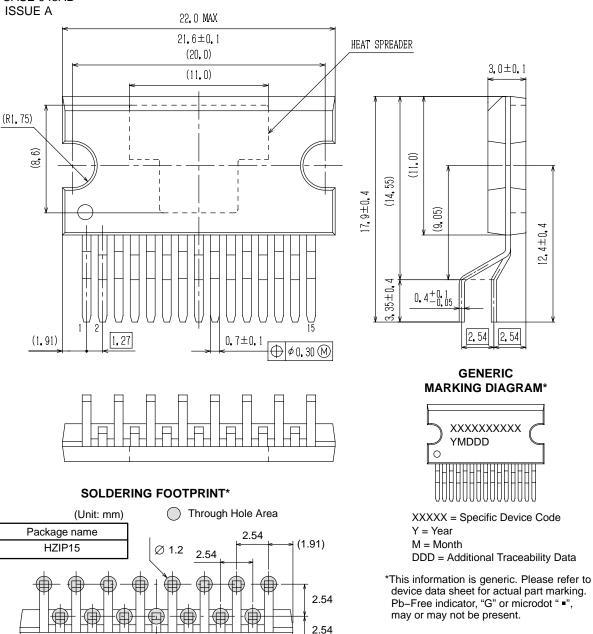
	O week at			Ratings		
Parameter	Symbol	Conditions	min	typ	max	Unit
AUDIO output ; AUDIO_EN = H	igh					
AUDIO output voltage	V _O 3	I _O 3 = 300mA	8.1	8.5	8.9	V
AUDIO output current	I _O 3	$V_{O}3 \ge 8V$	400			mA
Line regulation ΔV_{OLN} 3 10V < V _{CC} < 16V, I _O 3 = 10V < V _{CC} < 16V, I _O 3 = 10V < V _{CC} < 16V, I _O 3 = 10V < 10		$10V < V_{CC} < 16V, I_O3 = 300mA$		30	100	mV
Load regulation	$\Delta V_{OLD}3$	1mA < I _O 3 < 300mA		70	140	mV
Dropout voltage V _{DROP} 3 I _O 3 = 30		I _O 3 = 300mA		0.6	1.05	V
V _{CC} ripple rejection	R _{REJ} 3	f = 120Hz, V _{CC} =1V _{PP} , I _O 3=300mA	40(*2)	50(*2)		dB
SWU (3.3V) Output ; SEU_EN =	= High					
SWU output voltage	V _O 4	I _O 4 = 400mA	3.13	3.3	3.47	V
SWU output current	I _O 4	$V_0 4 \ge 3.1V$	500			mA
Line regulation	$\Delta V_{OLN}4$	$7.5V < V_{CC}1 < 16V, I_{O}4 = 400mA$		30	100	mV
Load regulation	$\Delta V_{OLD}4$	1mA < I _O 4 < 400mA		80	150	mV
V _{CC} 1 ripple rejection	R _{REJ} 4	f = 120Hz, V _{CC} 1=1V _{PP} , I _O 4=400mA	40(*2)	50(*2)		dB

*1: The entire specification has been defined based on the tests performed under the conditions where Tj and Ta(=25°C) are almost equal. There tests were performed with pulse load to minimize the increase of junction temperature(Tj).

*2 : design certification

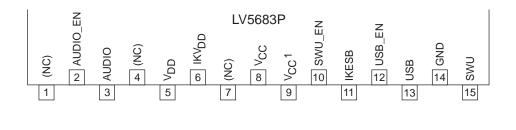
Allowable power dissipation derating curve

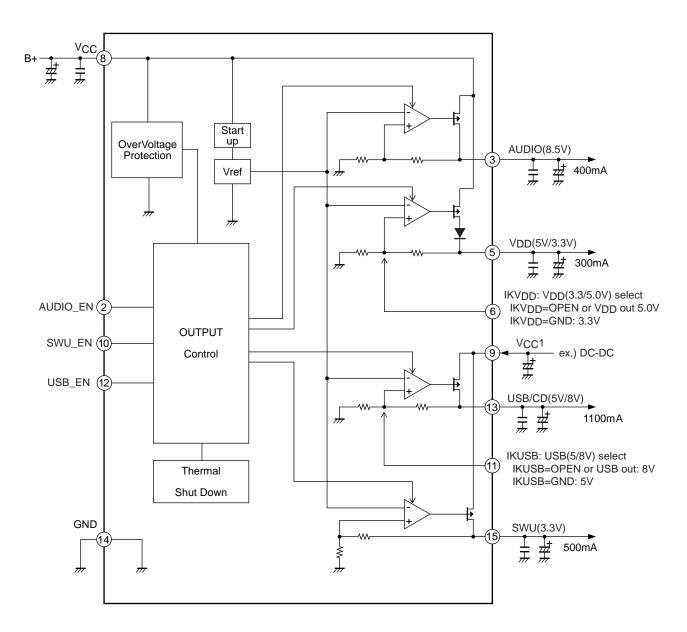



- (a) IC unit(HZIP15)
- (b) With Al heatsink(50×50×1.5mm³) Al heatsink mounting conditions Tightening torque: 39N⋅cm, using silicone grease

Package Dimensions

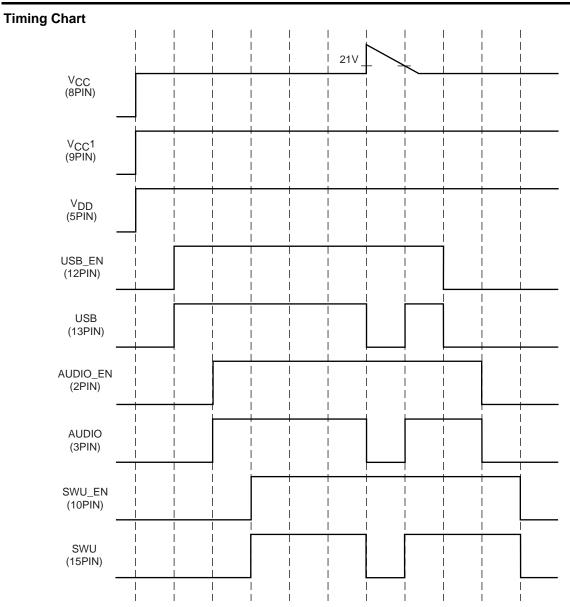
unit : mm


HZIP15



NOTE: The measurements are not to guarantee but for reference only. *For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

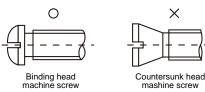
Pin assignment

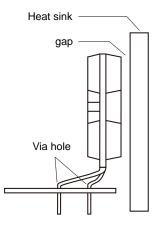

Block Diagram

Pin Fu	Pin Function							
Pin No.	Pin name	Description	Equivalent Circuit					
1	N.C.	-						
2	AUDIO_EN	AUDIO output CTRL	(2) + (1)					
3	AUDIO	AUDIO output when AUDIO_EN = High, ON 8.5V/0.4A	$ \begin{array}{c} $					
4	N.C.	-	-					
5	VDD	V _{DD} output 5.0V, 3.3V/0.3A	$ \begin{array}{c} $					
6	IKVDD	V _{DD} output voltage select OPEN : V _{DD} = 5.0V GND : V _{DD} = 3.3V	$ \begin{array}{c} $					
7	N.C.	-	-					
8	Vcc	Vcc						
9	V _{CC} 1	V _{CC} 1	(14) GND					

Continued on next page.

	om preceding pag]
Pin No.	Pin name	Description	Equivalent Circuit
10	SWU_EN	SWU output CTRL	
			(14)
11	IKUSB	USB output voltage select OPEN : V _{DD} = 8.0V GND : V _{DD} = 5.0V	$9 \qquad V_{CC1}$
12	USB_EN	USB output CTRL	$9 \qquad V_{CC1}$
13	USB	USB output when USB_EN = High, ON 5.0V, 8.0V/1.1A	9 13 $136k\Omega$ 13 $136k\Omega$ 13 $136k\Omega$ $10k\Omega$ $110k\Omega$ $110k\Omega$ 110 10 0 0 0 0 0 0 0 0 0
14 15	GND SWU	GND SWU output when SWU_EN = High, ON 3.3V/0.5A	9 15 $75k\Omega$ $45k\Omega$ $45k\Omega$ 14 CC1 VcC1 V


HZIP15 Heat sink attachment


Heat sinks are used to lower the semiconductor device junction temperature by leading the head generated by the device to the outer environment and dissipating that heat.

- a. Unless otherwise specified, for power ICs with tabs and power ICs with attached heat sinks, solder must not be applied to the heat sink or tabs.
- b. Heat sink attachment
 - \cdot Use flat-head screws to attach heat sinks.
 - \cdot Use also washer to protect the package.
 - \cdot Use tightening torques in the ranges 39-59Ncm(4-6kgcm) .
 - If tapping screws are used, do not use screws with a diameter larger than the holes in the semiconductor device itself.
 - Do not make gap, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
 - Take care a position of via hole .
 - \cdot Do not allow dirt, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
 - \cdot Verify that there are no press burrs or screw-hole burrs on the heat sink.
 - · Warping in heat sinks and printed circuit boards must be no more than
 - 0.05 mm between screw holes, for either concave or convex warping.
 - \cdot Twisting must be limited to under 0.05 mm.
 - Heat sink and semiconductor device are mounted in parallel.
 - Take care of electric or compressed air drivers
 - The speed of these torque wrenches should never exceed 700 rpm, and should typically be about 400 rpm.
- c. Silicone grease
 - \cdot Spread the silicone grease evenly when mounting heat sinks.
 - · Our company recommends YG-6260 (Momentive Performance Materials Japan LLC)

d. Mount

- · First mount the heat sink on the semiconductor device, and then mount that assembly on the printed circuit board.
- \cdot When attaching a heat sink after mounting a semiconductor device into the printed circuit board, when tightening up a heat sink with the screw, the mechanical stress which is impossible to the semiconductor device and the pin doesn't hang.
- e. When mounting the semiconductor device to the heat sink using jigs, etc.,
 - \cdot Take care not to allow the device to ride onto the jig or positioning dowel.
 - · Design the jig so that no unreasonable mechanical stress is not applied to the semiconductor device.
- f. Heat sink screw holes
 - · Be sure that chamfering and shear drop of heat sinks must not be larger than the diameter of screw head used.
 - When using nuts, do not make the heat sink hole diameters larger than the diameter of the head of the screws used. A hole diameter about 15% larger than the diameter of the screw is desirable.
 - \cdot When tap screws are used, be sure that the diameter of the holes in the heat sink are not too small. A diameter about 15% smaller than the diameter of the screw is desirable.
- g. There is a method to mount the semiconductor device to the heat sink by using a spring band. But this method is not recommended because of possible displacement due to fluctuation of the spring force with time or vibration.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LV5683P-E	HZIP15 (Pb-Free)	20 / Fan-Fold

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC with san Equal Opportunity/Affirmative Action Employeer. This literature is subject to all applicable copyright and so in or nave of parsenal injury or manufacture of the solutors or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employeer. This literature is subject to all applicable copyright and is not for resale in any manner.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: