

32-Tap Digital Up/Down Control Potentiometer

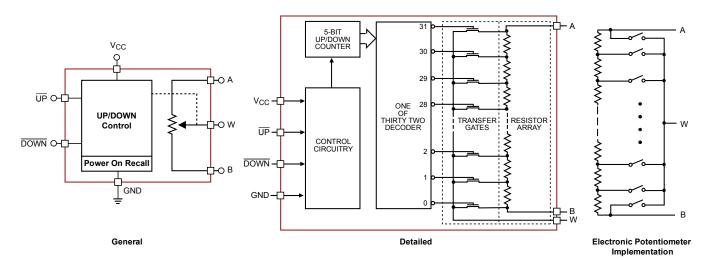
FEATURES

- 32-position linear taper potentiometer
- Low power CMOS technology
- Single supply operation: 2.5V 5.5V
- Discrete step-up/step-down digital control
- Resistance values: 10kΩ, 50kΩ and 100kΩ
- Available in SOT-23 8-lead Pb-free package

APPLICATIONS

- Automated product calibration
- Remote control adjustments
- Offset, gain and zero control
- Tamper-proof calibrations
- Contrast, brightness and volume controls
- Motor controls and feedback systems
- Programmable analog functions

For Ordering Information details, see page 7.


DESCRIPTION

The CAT5128 is a single digitally programmable potentiometer (DPP™) designed as an electronic replacement for mechanical potentiometers and trim pots. Ideal for automated adjustments on high volume production lines, they are also well suited for applications where equipment requiring periodic adjustment is either difficult to access or located in a hazardous or remote environment.

The CAT5128 contains a 32-tap series resistor array connected between two terminals A and B. An up/down counter and decoder that are controlled by two input pins, determines which tap is connected to the wiper, W. Wiper-control of the CAT5128 is accomplished with two input control pins, $\overline{\text{UP}}$ and $\overline{\text{DOWN}}$. A high-to-low transition on the $\overline{\text{UP}}$ input increments the wiper position and a high-to-low transition on the $\overline{\text{DOWN}}$ input decrements the wiper position. The tap position is not stored in memory. The wiper is always set to the mid point, tap 15 at power up.

The digitally programmable potentiometer can be used as a three-terminal resistive divider or as a two-terminal variable resistor. DPPs bring variability and programmability to a wide variety of applications including control, parameter adjustments, and signal processing.

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

SOT-23 8-Lead UP 1 8 V_{CC} DOWN 2 7 NC A 3 6 B GND 4 5 W

PIN DESCRIPTION

UP: Step-Up Control Input

When DOWN input is high, a high-to-low transition on UP input will cause the wiper to move one increment toward the A terminal.

DOWN: Step-Down Control Input

A high-to-low transition on $\overline{\text{DOWN}}$ input will cause the wiper to move one increment towards the B terminal.

A: High End Potentiometer Terminal

A is the high end terminal of the potentiometer. It is not required that this terminal be connected to a potential greater than the B terminal. Voltage applied to the A terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND.

W: Wiper Potentiometer Terminal

W is the wiper terminal of the potentiometer. Its position on the resistor array is controlled by the control inputs, $\overline{\text{UP}}$ and $\overline{\text{DOWN}}$. Voltage applied to the W terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND.

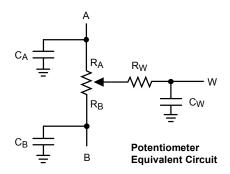
B: Low End Potentiometer Terminal

B is the low end terminal of the potentiometer. It is not required that this terminal be connected to a potential less than the A terminal. Voltage applied to the B terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND. B and A are electrically interchangeable.

PIN DESCRIPTIONS

Name	Function
ŪP	Step-Up Control
DOWN	Step-Down Control
Α	Potentiometer High Terminal
GND	Ground
W	Wiper Terminal
В	Potentiometer Low Terminal
NC	Not Connected
V _{CC}	Supply Voltage

DEVICE OPERATION


The CAT5128 operates like a digitally controlled potentiometer with A and B equivalent to the high and low terminals and W equivalent to the mechanical potentiometer's wiper. There are 32 available tap positions including the resistor end points, A and B. There are 31 resistor elements connected in series between the A and B terminals. The wiper terminal is connected to one of the 32 taps and controlled by two inputs, $\overline{\text{UP}}$ and $\overline{\text{DOWN}}$. These inputs control a five-bit up/down counter whose output is decoded to select the wiper position.

A high-to-low transition on $\overline{\text{DOWN}}$ input will decrement one step the wiper position (R_{WB} will decrease with 1LSB and R_{WA} will increase with 1LSB). If and only if $\overline{\text{DOWN}}$ input is high, a high-to-low transition on $\overline{\text{UP}}$ input will increment one step the wiper position (R_{WB} will increase with 1LSB and R_{WA} will decrease with 1LSB).

The wiper, when at either fixed terminal, acts like its mechanical equivalent and does not move beyond the last position. When the CAT5128 is powered-down, the wiper position is reset. When power is restored, the counter is set to the mid point, tap 15.

OPERATION MODES

ÜP	DOWN	Operation
High to Low	High	Wiper toward A – R _W Increment
X	Low	Wiper does not change
High	High to Low	Wiper toward B – R _W Decrement
High to Low	High to Low	Wiper toward B – R _W Decrement
Low	X	Wiper does not change
High	High	Wiper does not change

ABSOLUTE MAXIMUM RATINGS (1)

Parameters	Ratings	Units
Supply Voltage		
V _{CC} to GND	-0.5 to +7V	V
Inputs		
UP to GND	-0.5 to V _{CC} +0.5	V
DOWN to GND	-0.5 to V _{CC} +0.5	V
A, B, W to GND	-0.5 to V _{CC} +0.5	V
Operating Ambient Temperature		
Industrial ('I' suffix)	-40 to +85	°C
Junction Temperature	+150	°C
Storage Temperature	-65 to 150	°C
Lead Soldering (10 seconds max)	+300	°C
Thermal Resistance θ_{JA}	230	°C/W

DC ELECTRICAL CHARACTERISTICS

 V_{CC} = +2.5V to +5.5V unless otherwise specified

Power Supply

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{CC}	Operating Voltage Range		2.5	ı	5.5	V
	I _{CC1} Supply Current (Increment)	$V_{CC} = 5.5V$, $f = 1MHz$, $I_{W} = 0$	ı	ı	100	μA
I _{CC1}	Supply Culterit (increment)	$V_{CC} = 5.5V$, $f = 250kHz$, $I_{W} = 0$	_	_	50	μA
I _{SB1} ⁽³⁾	Supply Current (Standby)	$\overline{\text{UP}}$, $\overline{\text{DOWN}} = V_{\text{CC}}$ or GND		0.01	1	μA

Notes:

(1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions outside of those listed in the operational sections of this specification is not implied. Exposure to any absolute maximum rating for extended periods may affect device performance and reliability.

LOGIC INPUTS

 V_{CC} = +2.5V to +5.5V unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{IH}	Input Leakage Current $V_{IN} = V_{CC}$		_	_	10	μΑ
I _{IL}	Input Leakage Current	V _{IN} = 0V	_	_	-10	μΑ
V _{IH1}	TTL High Level Input Voltage	4.5V ≤ V _{CC} ≤ 5.5V	2	_	V _{CC}	V
V _{IL1}	TTL Low Level Input Voltage	$4.5V \leq V_{CC} \leq 5.5V$	0	_	0.8	V
V _{IH2}	CMOS High Level Input Voltage	2.5V ≤ V _{CC} ≤ 5.5V	V _{CC} x 0.7	_	V _{CC} + 0.3	V
V _{IL2}	CMOS Low Level Input Voltage	$2.5V \leq V_{CC} \leq 5.5V$	-0.3	_	V _{CC} x 0.2	V

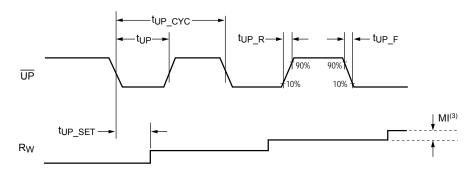
POTENTIOMETER CHARACTERISTICS

 V_{CC} = +2.5V to +5.5V unless otherwise specified

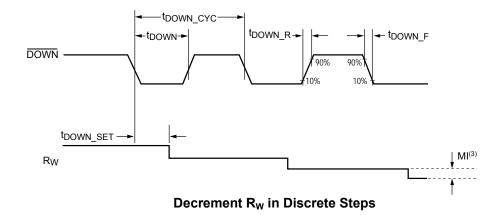
Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Units	
		-10 Device		10			
R_{POT}	Potentiometer Resistance	-50 Device		50		kΩ	
		-00 Device		100			
	Pot. Resistance Tolerance				±20	%	
V_A	Voltage on A pin		0		V_{CC}	V	
V_{B}	Voltage on B pin		0		V_{CC}	V	
	Resolution			3.2		%	
INL	Integral Linearity Error	I _W ≤ 2μA	-0.5	0.1	0.5	LSB	
DNL	Differential Linearity Error	I _W ≤ 2μA	-0.5	0.05	0.5	LSB	
D. Winer Desistance	Winer Registeres	V_{CC} = 5V, I_W = 1mA		70		Ω	
R_{WI}	Wiper Resistance	$V_{CC} = 2.5V, I_{W} = 1mA$		150	300	Ω	
l _W	Wiper Current	(2)			1	mA	
TC _{RPOT}	TC of Pot Resistance	(3)		50		ppm/°C	
TC _{RATIO}	Ratiometric TC	(3)		5	20	ppm/°C	
V _N ⁽³⁾	Noise	100kHz / 1kHz		8/24		nV/√Hz	
C _A /C _B /C _W	Potentiometer Capacitances	(3)		8/8/25		pF	
fc (3)	Frequency Response	Passive Attenuator, 10kΩ		1.7		MHz	

- (1) Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.
- (2) I_W = source or sink.
- (3) These parameters are periodically sampled and are not production tested.

AC CONDITIONS OF TEST

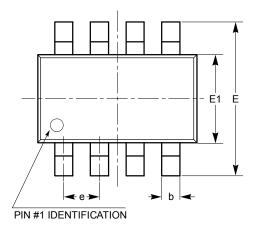

V _{CC} Range	$2.5V \le V_{CC} \le 5.5V$
Input Pulse Levels	$0.2V_{CC}$ to $0.7V_{CC}$
Input Rise and Fall Times	10ns
Input Reference Levels	0.5V _{CC}

AC OPERATING CHARACTERISTICS

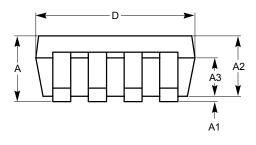

 V_{CC} = +2.5V to +5.5V, V_{H} = V_{CC} , V_{L} = 0V, unless othewise specified

Symbol	Parameter	Min	Typ ⁽¹⁾	Max	Units
t _{UP}	UP LOW Period	500	_	_	ns
t_{DOWN}	DOWN LOW Period	500	_	_	ns
t _{UP_CYC}	UP Cycle Time	1	_	_	μs
t _{DOWN_CYC}	DOWN Cycle Time	1	_	_	μs
$t_{UP_R,} t_{UP_F}^{(2)}$	UP Rise and Fall Time	_	_	500	ns
t _{DOWN_R} , t _{DOWN_F} ⁽²⁾	DOWN Rise and Fall Time	_	_	500	ns
t _{UP_SET}	UP Settling Time	200	_	_	ns
t _{DOWN_SET}	DOWN Settling Time	200	_	_	ns
t _{PU} ⁽²⁾	Power-up to Wiper Stable	_	_	1	ms

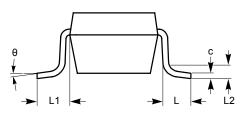
INTERFACE TIMING DIAGRAM


Increment R_w in Discrete Steps

- (1) Typical values are for $T_A = 25$ °C and nominal supply voltage.
- (2) This parameter is periodically sampled and not 100% tested.
- (3) MI in the A.C. Timing diagram refers to the minimum incremental change in the W output due to a change in the wiper position.

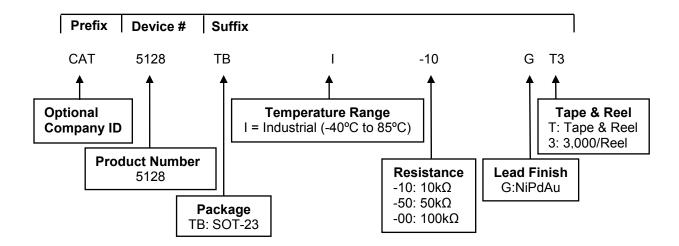

PACKAGE OUTLINE DRAWING

SOT-23 8-Lead (TB) ⁽¹⁾⁽²⁾



TOP VIEW

SYMBOL	MIN NOM		MAX
Α	0.90		1.45
A1	0.00		0.15
A2	0.90	1.10	1.30
A3	0.60		0.80
b	0.28		0.38
С	0.08		0.22
D	2.90 BSC		
Е	2.80 BSC		
E1	1.60 BSC		
е		0.65 BSC	
L	0.30	0.45	0.60
L1	0.60 REF		
L2	0.25 REF		
θ	0°		8°


SIDE VIEW

END VIEW

- (1) All dimensions are in millimeters.
- (2) Complies with JEDEC standard MO-178.

EXAMPLE OF ORDERING INFORMATION

ORDERABLE PART NUMBER

Orderable Part Number	Resistance	Package	Lead Finish
CAT5128TBI-10GT3	10kΩ		
CAT5128TBI-50GT3	50kΩ	SOT-23-8	NiPdAu
CAT5128TBI-00GT3 (5)	100kΩ		

- (1) All packages are RoHS-compliant (Lead-free, Halogen-free).
- (2) The standard lead finish is NiPdAu.
- (3) This device used in the above example is a CAT5128TBI-10GT3 (SOT-23, Industrial Temperature, 10kΩ, NiPdAu, Tape & Reel, 3,000/Reel).
- (4) For additional package and temperature options, please contact your nearest ON Semiconductor Sales office.
- (5) Contact factory for availability.

REVISION HISTORY

Date	Rev.	Description
19-Mar-08	Α	Initial Release
21-Nov-08	В	Change logo and fine print to ON Semiconductor
27-Jul-09	С	Update Orderable Part Number

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canad Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center: Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: CAT5128TBI-00GT3