CD4094BC 8-Bit Shift Register/Latch with 3-STATE Outputs

General Description

FAIRCHILD

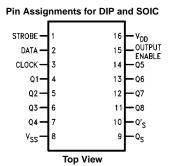
SEMICONDUCTOR

The CD4094BC consists of an 8-bit shift register and a 3-STATE 8-bit latch. Data is shifted serially through the shift register on the positive transition of the clock. The output of the last stage $({\rm Q}_S)$ can be used to cascade several devices. Data on the ${\rm Q}_S$ output is transferred to a second output, ${\rm Q}'_S$, on the following negative clock edge.

The output of each stage of the shift register feeds a latch, which latches data on the negative edge of the STROBE input. When STROBE is HIGH, data propagates through

the latch to 3-STATE output gates. These gates are enabled when OUTPUT ENABLE is taken HIGH.

Features

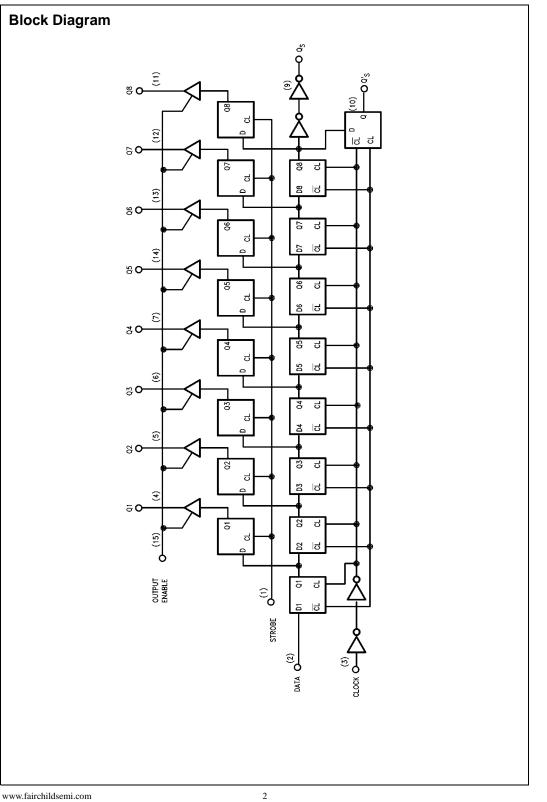

- Wide supply voltage range: 3.0V to 18V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility:
- Fan out of 2 driving 74L or 1 driving 74LS
- 3-STATE outputs

Ordering Code:

Order Number	Package Number	Package Description
CD4094BCWM	M16B	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
CD4094BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram


Truth Table

Clock	Output Strobe		Data	Parallel Outputs		Serial Outputs	
	Enable			Q1	Q _N	Q _S (Note 1)	$\mathbf{Q'}_{\Sigma}$
~	0	Х	Х	Hi-Z	Hi-Z	Q7	No Change
~	0	Х	Х	Hi-Z	Hi-Z	No Change	Q7
<u>`</u>	1	0	Х	No Change	No Change	Q7	No Change
~	1	1	0	0	Q _N -1	Q7	No Change
~	1	1	1	1	Q _N -1	Q7	No Change
~	1	1	1	No Change	No Change	No Change	Q7

X = Don't Care ~ = HIGH-to-LOW

Note 1: At the positive clock edge, information in the 7th shift register stage is transferred to Q8 and Qs.

Absolute Maximum Ratings(Note 2)

(Note 3)	•
Supply Voltage (V _{DD})	-0.5 to $+18$ V _{DC}
Input Voltage (V _{IN})	–0.5 to V_{DD} +0.5 V_{DC}
Storage Temperature Range (T _S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 3)

DC Supply Voltage (V_{DD}) Input Voltage (V_{IN})

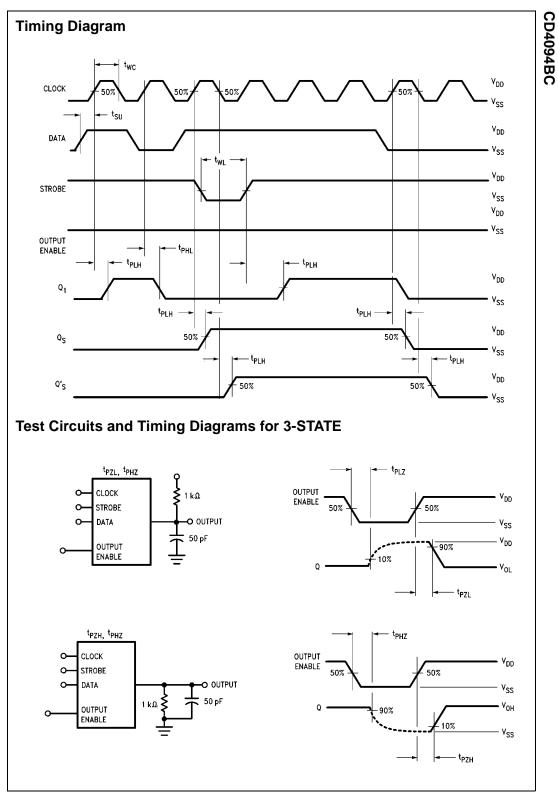
0 to V_{DD} V_{DC}

+3.0 to +15 V_{DC}

CD4094BC

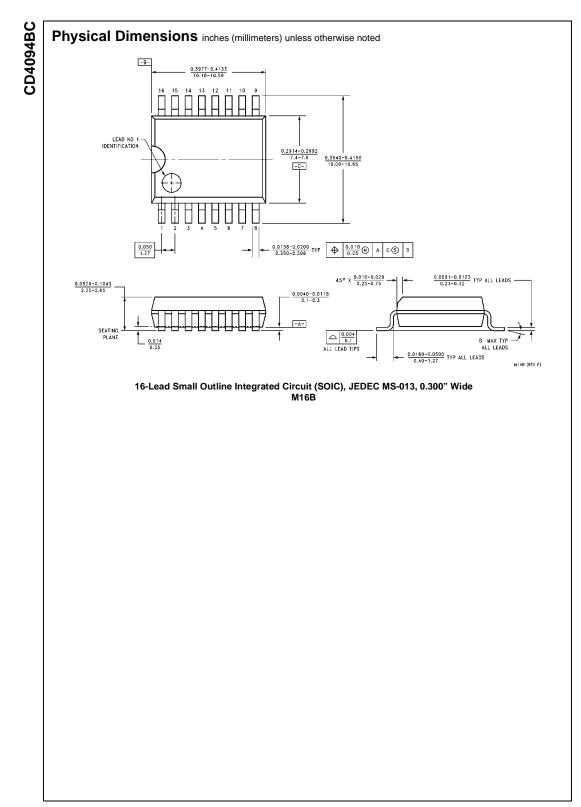
mended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

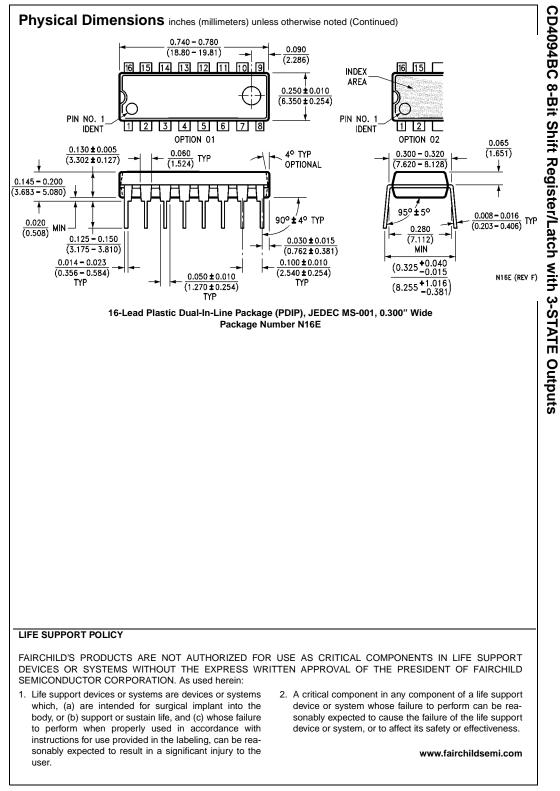
Note 3: $V_{\mbox{\scriptsize SS}}=0\mbox{V}$ unless otherwise specified.


DC Electrical Characteristics (Note 3)

85°C	Units
Max	
150	μA
300	μΑ μΑ μΑ ν ν
600	μΑ
0.05	V
0.05	$\begin{array}{c} \mu A \\ \mu A \\ \mu A \\ V \\$
0.05	V
	V
	V
5	V
1.5	V
3.0	V
4.0	V
	V
	V
	V
	mA
	mA
	mA
6	mA
	mA
	mA
-1.0	mA mA μA
1.0	μΑ
10	μΑ
	1.0

Note 4: I_{OH} and I_{OL} are tested one output at a time.


www.fairchildsemi.com


$T_A = 25^{\circ}C, C_L$		0		-		
Symbol	Parameter	Conditions	Min	Тур	Max	Uni
t _{PHL} , t _{PLH}	Propagation Delay	$V_{DD} = 5.0V$		300	600	ns
	Clock to Q _S	$V_{DD} = 10V$		125	250	ns
		V _{DD} = 15V		95	190	ns
t _{PHL} , t _{PLH}	Propagation Delay	$V_{DD} = 5.0V$		230	460	ns
	Clock to Q'_{Σ}	$V_{DD} = 10V$		110	220	ns
		V _{DD} = 15V		75	150	ns
t _{PHL} , t _{PLH}	Propagation Delay Clock	$V_{DD} = 5.0V$		420	840	ns
	to Parallel Out	$V_{DD} = 10V$		195	390	ns
	-	V _{DD} = 15V		135	270	ns
t _{PHL} , t _{PLH}	Propagation Delay Strobe	$V_{DD} = 5.0V$		290	580	ns
	to Parallel Out	$V_{DD} = 10V$		145	290	ns
		V _{DD} = 15V		100	200	ns
t _{PHZ}	Propagation Delay HIGH	$V_{DD} = 5.0V$		140	280	ns
	Level to HIGH Impedance	$V_{DD} = 10V$		75	150	ns
		V _{DD} = 15V		55	110	ns
t _{PLZ}	Propagation Delay LOW	$V_{DD} = 5.0V$		140	280	ns
	Level to HIGH Impedance	$V_{DD} = 10V$		75	150	ns
		V _{DD} = 15V		55	110	ns
t _{PZH}	Propagation Delay HIGH	V _{DD} = 5.0V		140	280	ns
	Impedance to HIGH Level	$V_{DD} = 10V$		75	150	ns
		V _{DD} = 15V		55	110	ns
t _{PZL}	Propagation Delay HIGH	$V_{DD} = 5.0V$		140	280	ns
	Impedance to LOW Level	$V_{DD} = 10V$		75	150	ns
		$V_{DD} = 15V$		55	110	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5.0V$		100	200	ns
		$V_{DD} = 10V$		50	100	ns
		V _{DD} = 15V		40	80	ns
t _{SU}	Set-Up Time	$V_{DD} = 5.0V$	80	40		ns
	Data to Clock	$V_{DD} = 10V$	40	20		ns
		V _{DD} = 15V	20	10		ns
t _r , t _f	Maximum Clock Rise	$V_{DD} = 5.0V$	1			ms
	and Fall Time	$V_{DD} = 10V$	1			ms
		V _{DD} = 15V	1	400		ms
t _{PC}	Minimum Clock	$V_{DD} = 5.0V$	200	100		ns
	Pulse Width	$V_{DD} = 10V$	100	50		ns
		V _{DD} = 15V	83	40		ns
t _{PS}	Minimum Strobe	$V_{DD} = 5.0V$	200	100		ns
	Pulse Width	$V_{DD} = 10V$	80	40		ns
4	Maximum Olast 5	$V_{DD} = 15V$	70	35		ns
f _{max}	Maximum Clock Frequency	$V_{DD} = 5.0V$	1.5	3.0		MH
		$V_{DD} = 10V$	3.0	6.0		MH
C _{IN}	Input Capacitance	V _{DD} = 15V Any Input	4.0	8.0 5.0	7.5	MH: pF

www.fairchildsemi.com

5

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi: CD4094BCN