Power MOSFET

40 V, 4.2 m Ω , 120 A, Single N–Channel

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- NVMFS5832NLWF Wettable Flanks Product
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	40	V
Gate-to-Source Voltage			V _{GS}	± 20	V
Continuous Drain Cur-		T _{mb} = 25°C	Ι _D	120	А
rent R _{ΨJ-mb} (Notes 1, 2, 3, 4)	Steady	T _{mb} = 100°C		84	
Power Dissipation	State	T _{mb} = 25°C	PD	127	W
R _{ΨJ-mb} (Notes 1, 2, 3)		T _{mb} = 100°C		64	
Continuous Drain Cur-		$T_A = 25^{\circ}C$	۱ _D	21	А
rent R _{θJA} (Notes 1, 3, 4)	Steady State	T _A = 100°C		15	
Power Dissipation		T _A = 25°C	PD	3.7	W
R _{θJA} (Notes 1 & 3)		T _A = 100°C		1.9	
Pulsed Drain Current	T _A = 25	°C, t _p = 10 μs	I _{DM}	557	А
Operating Junction and Storage Temperature		T _J , T _{stg}	– 55 to + 175	°C	
Source Current (Body Diode)			۱ _S	120	А
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, V _{GS} = 10 V, I _{L(pk)} = 52 A, L = 0.1 mH, R _G = 25 Ω)		E _{AS}	134	mJ	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

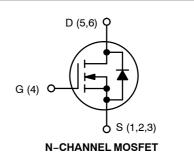
THERMAL RESISTANCE MAXIMUM RATINGS

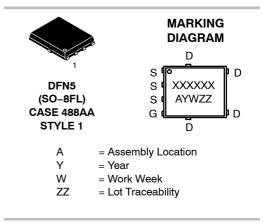
Parameter	Symbol	Value	Unit
Junction-to-Mounting Board (top) - Steady State (Notes 2, 3)	$R_{\PsiJ-mb}$	1.2	°C/W
Junction-to-Ambient - Steady State (Note 3)	R_{\thetaJA}	40	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

2. Psi (Ψ) is used as required per JESD51–12 for packages in which substantially less than 100% of the heat flows to single case surface.

Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
Maximum current for pulses as long as 1 second is higher but is dependent


on pulse duration and duty cycle.

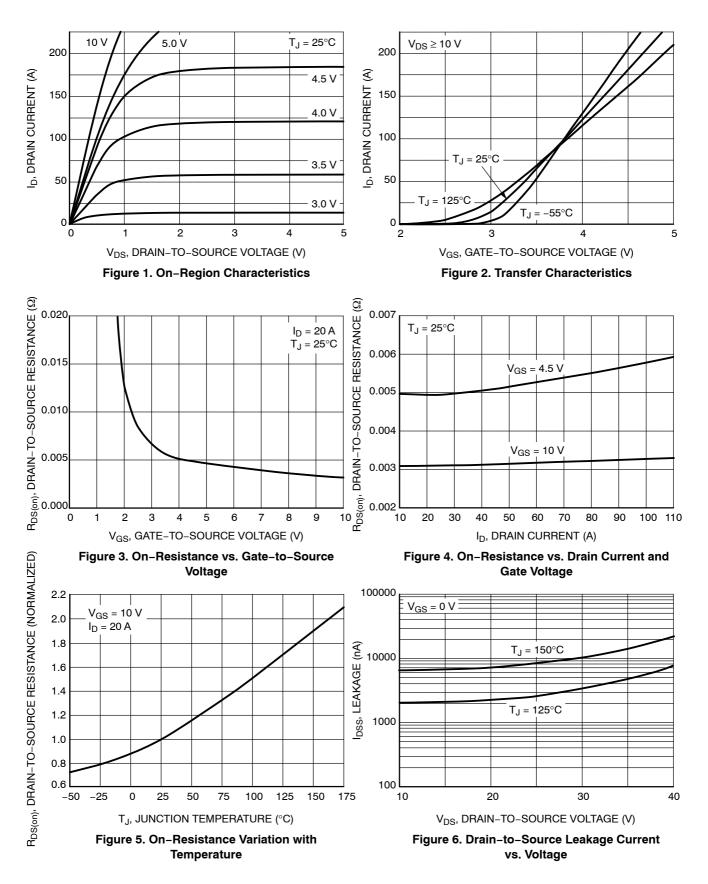


ON Semiconductor®

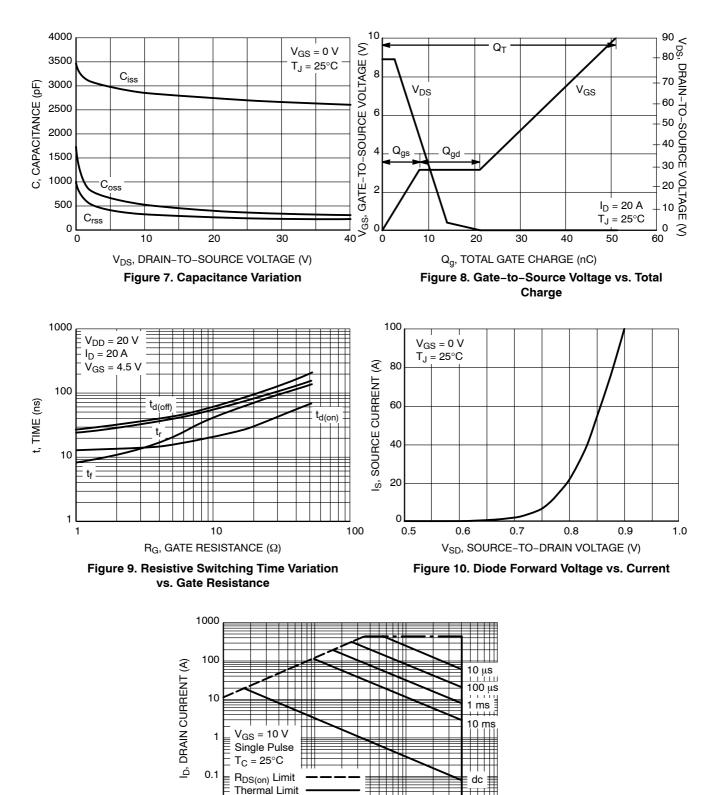
http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
40 V	$4.2 \text{ m}\Omega @ 10 \text{ V}$	100.4
40 V	6.5 mΩ @ 4.5 V	120 A

ORDERING INFORMATION


See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		40			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				34.2		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	T _J = 25 °C			1		
		$V_{DS} = 40 \text{ V}$ $T_{J} = 125^{\circ}\text{C}$				100	μΑ	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±20 V				±100	nA	
ON CHARACTERISTICS (Note 5)								
Gate Threshold Voltage	V _{GS(TH)}	V_{GS} = V_{DS} , I_D = 250 μ A		1.4		2.4	V	
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				6.4		mV/°C	
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 20 A		3.1	4.2		
		V _{GS} = 4.5 V	I _D = 20 A		5.0	6.5	mΩ	
Forward Transconductance	9 _{FS}	V _{DS} = 15 V, I _D	= 20 A		21		S	
CHARGES, CAPACITANCES & GATE RESIS	TANCE							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V			2700		pF	
Output Capacitance	C _{OSS}				360			
Reverse Transfer Capacitance	C _{RSS}				250			
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 4.5 V, V_{DS} = 20 V; I_{D} = 20 A			25			
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 20 V; I_{D} = 20 A			51			
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 20 V; I _D = 20 A			2.0		nC V	
Gate-to-Source Charge	Q _{GS}				8.0			
Gate-to-Drain Charge	Q _{GD}				12.7			
Plateau Voltage	V _{GP}				3.2			
SWITCHING CHARACTERISTICS (Note 6)								
Turn–On Delay Time	t _{d(ON)}	V_{GS} = 4.5 V, V_{DS} = 20 V, I _D = 10 A, R _G = 1.0 Ω			13		ns	
Rise Time	t _r				24			
Turn-Off Delay Time	t _{d(OFF)}				27			
Fall Time	t _f				8.0			
DRAIN-SOURCE DIODE CHARACTERISTIC	s							
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.73	1.2		
		$I_{\rm S} = 5 {\rm A}$ $T_{\rm J} = 125$			0.57		V	
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/µs, I _S = 10 A			28.6		ns	
Charge Time	ta				14			
Discharge Time	t _b				14.5			
Reverse Recovery Charge	Q _{RR}				23.4		nC	

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V) Figure 11. Maximum Rated Forward Biased Safe Operating Area

Package Limit

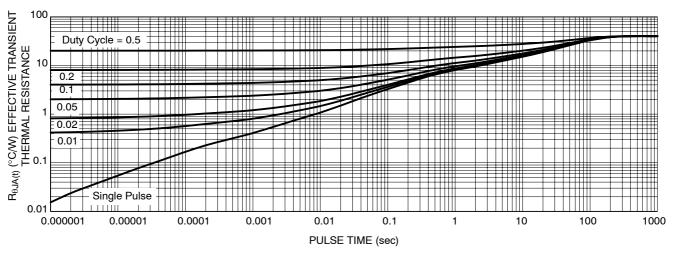
1

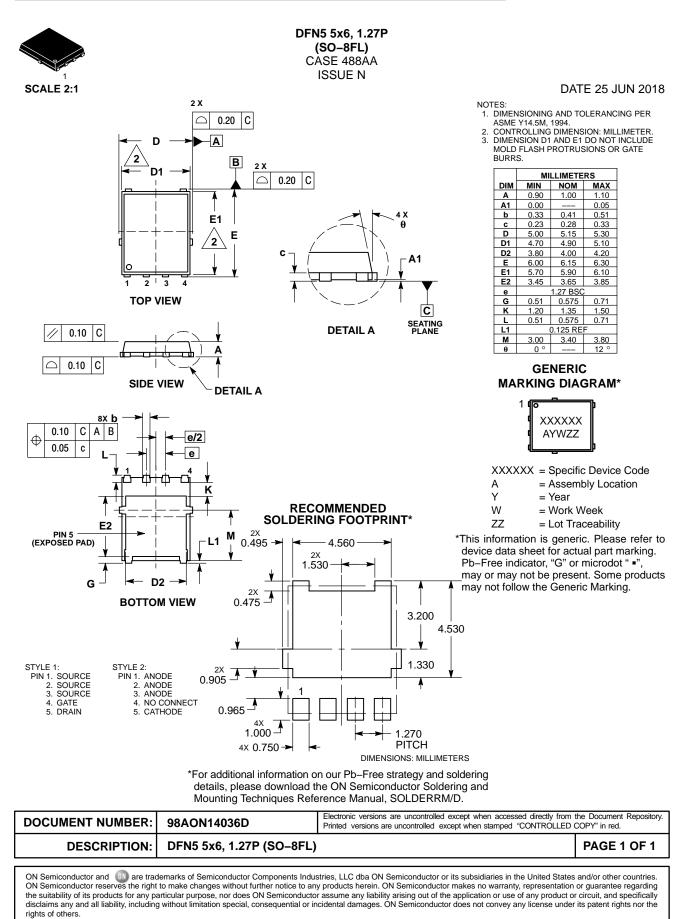
0.01 0.1

10

100

TYPICAL CHARACTERISTICS




Figure 12. Thermal Response

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFS5832NLT1G	V5832L	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS5832NLWFT1G	5832LW	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS5832NLT3G	V5832L	DFN5 (Pb-Free)	5000 / Tape & Reel
NVMFS5832NLWFT3G	5832LW	DFN5 (Pb–Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcula performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

NVMFS5832NLWFT3G NVMFS5832NLWFT1G NVMFS5832NLT3G NVMFS5832NLT1G