MOSFET – Power, Single, P-Channel, TO-220

-60 V, -12 A

Features

- Low R_{DS(on)}
- Rugged Performance
- Fast Switching
- These are Pb-Free Devices*

Applications

- Industrial
- Automotive
- Power Supplies

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

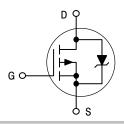
Parame	Symbol	Value	Unit		
Drain-to-Source Voltage	V_{DSS}	-60	V		
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain	Steady	T _C = 25°C	I _D	-12	Α
Current (Note 1)	State	T _C = 85°C		-9.0	
Power Dissipation (Note 1)		T _C = 25°C	P _D	62.5	W
Continuous Drain	Steady	T _A = 25°C	I _D	-2.4	Α
Current (Note 1)	State	State T _A = 85°C		-1.8	
Power Dissipation (Note 1)	T _A = 25°C		P _D	2.4	W
Pulsed Drain Current	Pulsed Drain Current $t_p = 10 \mu s$				Α
Operating Junction and S	T _J , T _{STG}	–55 to 175	°C		
Source Current (Body Dio	Is	-12	Α		
Single Pulse Drain-to-So Energy (V _{DD} = -30 V, I _{PK} = -12 A, L = 3.0 m	EAS	216	mJ		
Lead Temperature for Solo (1/8" from case for 10	TL	260	°C		

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case	$R_{\theta JC}$	2.4	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	62.5	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

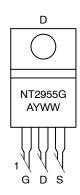
1



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} Typ	I _D MAX
-60 V	156 mΩ @ –10 V	-12 A


P-Channel

MARKING DIAGRAM & PIN ASSIGNMENT

TO-220 CASE 221A STYLE 5

A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
NTP2955G	TO-220 (Pb-Free)	50 Units / Rail

1. When surface mounted to an FR4 board using 1 in pad size (Cu. area = 1.127 in sq [1 oz] including traces).

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_J=25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
OFF CHARACTERISTICS			<u>.</u>		•		L	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$		-60			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				67		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			-1.0	μΑ	
		$V_{DS} = -48 \text{ V}$	T _J = 125°C			-10	7	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{C}$	_{SS} = ±20 V			±100	nA	
ON CHARACTERISTICS (Note 2)								
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= -250 μA	-2.0		-4.0	V	
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				56		mV/°C	
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -10 V,	I _D = -12 A		156	196	mΩ	
Forward Transconductance	g _{FS}	V _{DS} = -60 V, I _D = -12 A			6.0		S	
CHARGES AND CAPACITANCES					1		II.	
Input Capacitance	C _{ISS}				507	700	pF	
Output Capacitance	C _{OSS}	$V_{GS} = 0 \text{ V, f} = V_{DS} = -$			150	250		
Reverse Transfer Capacitance	C _{RSS}	• 03 –			48	98		
Total Gate Charge	Q _{G(TOT)}				14		nC	
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -10 \text{ V}, V_{DS} = -48 \text{ V},$ $I_D = -12 \text{ A}$			1.6	2.5		
Gate-to-Source Charge	Q_{GS}				3.4			
Gate-to-Drain Charge	Q_{GD}				6.2		1	
SWITCHING CHARACTERISTICS (No	ote 3)		<u>.</u>				•	
Turn-On Delay Time	t _{d(on)}				10	20	ns	
Rise Time	t _r	V _{GS} = -10 V, V	_{DD} = -30 V,		41	80		
Turn-Off Delay Time	t _{d(off)}	$I_{D} = -12 \text{A}, \text{R}$	$I_G = 9.1 \Omega$		27	47		
Fall Time	t _f				45	85		
DRAIN-SOURCE DIODE CHARACTE	RISTICS		<u>.</u>				•	
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		-1.6	-2.0	V	
		$I_S = -12 \text{ A}$	T _J = 125°C		-1.36			
Reverse Recovery Time	t _{RR}				53			
Charge Time	ta	$V_{GS} = 0 \text{ V, } dI_{S}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = -12 \text{ A}$			42		ns	
Discharge Time	t _b				12			
Reverse Recovery Charge	Q _{RR}				126		nC	

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

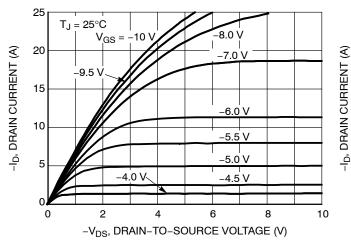


Figure 1. On-Region Characteristics

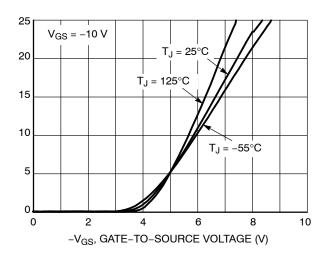


Figure 2. Transfer Characteristics

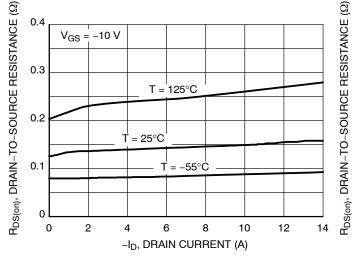


Figure 3. On-Resistance versus Drain Current and Temperature

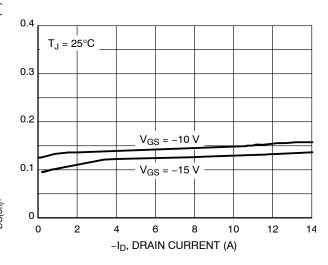


Figure 4. On-Resistance versus Drain Current and Gate Voltage

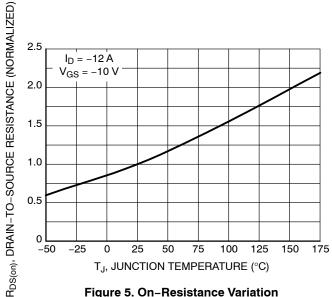


Figure 5. On–Resistance Variation with Temperature

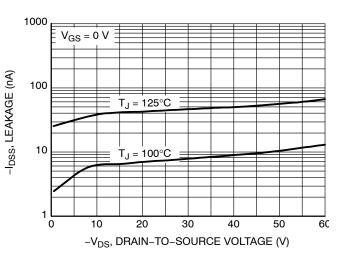
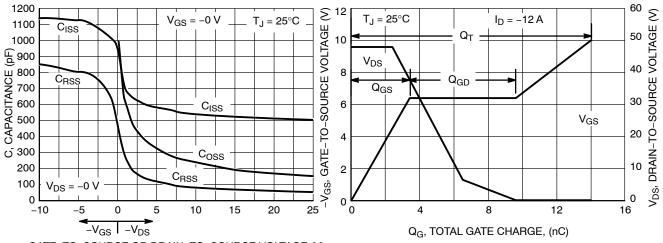



Figure 6. Drain-to-Source Leakage versus Voltage

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (V)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current

1.75

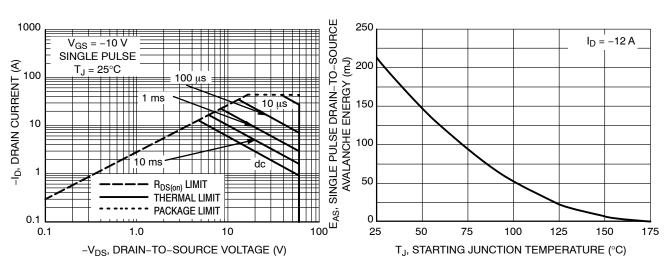
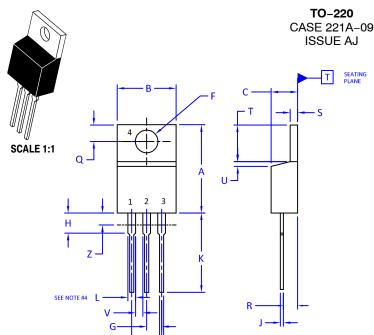



Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

DATE 05 NOV 2019

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES

NOTES:

3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

4. MAX WIDTH FOR F102 DEVICE = 1.35MM

	INCH	HES	MILLIMI	ETERS
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:	
PIN 1.	BASE	PIN 1.	BASE	PIN 1.	CATHODE	PIN 1.	MAIN TERMINAL 1
2.	COLLECTOR	2.	EMITTER	2.	ANODE	2.	MAIN TERMINAL 2
3.	EMITTER	3.	COLLECTOR	3.	GATE	3.	GATE
4.	COLLECTOR	4.	EMITTER	4.	ANODE	4.	MAIN TERMINAL 2
STYLE 5:		STYLE 6:		STYLE 7:		STYLE 8:	
PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	CATHODE
2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE
3.	SOURCE	3.	ANODE	3.	CATHODE	3.	EXTERNAL TRIP/DELA
4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE
STYLE 9:		STYLE 10:		STYLE 11:		STYLE 12	:
PIN 1.	GATE	PIN 1.	GATE	PIN 1.	DRAIN	PIN 1.	MAIN TERMINAL 1
2.	COLLECTOR	2.	SOURCE	2.	SOURCE	2.	MAIN TERMINAL 2
3.	EMITTER	3.	DRAIN	3.	GATE	3.	GATE
4.	COLLECTOR	4.	SOURCE	4.	SOURCE	4.	NOT CONNECTED

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-220		PAGE 1 OF 1		

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi

NTP2955 NTP2955G