MOSFET – Power, Single, N-Channel, μCool, WDFN, 2X2 mm 30 V, 7.8 A

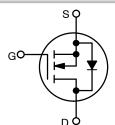
ON Semiconductor®

http://onsemi.com

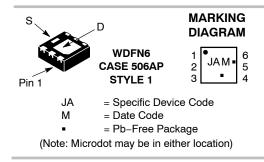
Features

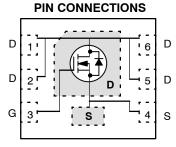
- WDFN Package Provides Exposed Drain Pad for Excellent Thermal Conduction
- 2x2 mm Footprint Same as SC-88
- Lowest R_{DS(on)} in 2x2 mm Package
- 1.8 V R_{DS(on)} Rating for Operation at Low Voltage Logic Level Gate Drive
- Low Profile (< 0.8 mm) for Easy Fit in Thin Environments
- This is a Pb–Free Device

Applications


- DC–DC Conversion
- Boost Circuits for LED Backlights
- Optimized for Battery and Load Management Applications in Portable Equipment such as, Cell Phones, PDA's, Media Players, etc.
- Low Side Load Switch for Noisy Environment

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)


Paran	Symbol	Value	Unit		
Drain-to-Source Volta	V _{DSS}	30	V		
Gate-to-Source Voltag	je		V _{GS}	±12	V
Continuous Drain	Steady	$T_A = 25^{\circ}C$	I _D	6.0	А
Current (Note 1)	State	$T_A = 85^{\circ}C$		4.4	
	t ≤ 5 s	$T_A = 25^{\circ}C$		7.8	
Power Dissipation (Note 1)	Steady State			1.92	W
	t ≤ 5 s			3.3	
Continuous Drain		$T_A = 25^{\circ}C$	I _D	3.6	А
Current (Note 2)	Steady	$T_A = 85^{\circ}C$		2.6	
Power Dissipation (Note 2)	State	$T_A = 25^{\circ}C$	PD	0.70	W
Pulsed Drain Current	t _p =	10 μs	I _{DM}	28	А
Operating Junction and	T _J , T _{STG}	–55 to 150	°C		
Source Current (Body I	۱ _S	3.0	А		
Lead Temperature for S (1/8" from case for 10 s	ΤL	260	°C		


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

V _{(BR)DSS}	R _{DS(on)} MAX	ID MAX (Note 1)
	35 mΩ @ 4.5 V	
30 V	45 mΩ @ 2.5 V	7.8 A
	55 mΩ @ 1.8 V	

N-CHANNEL MOSFET

(Top View)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTLJS4114NT1G	WDFN6 (Pb-Free)	3000/Tape & Reel
NTLJS4114NTAG	WDFN6 (Pb–Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
 Surface Mounted on FR4 Board using the minimum recommended pad size of 30 mm2, 2 oz Cu.

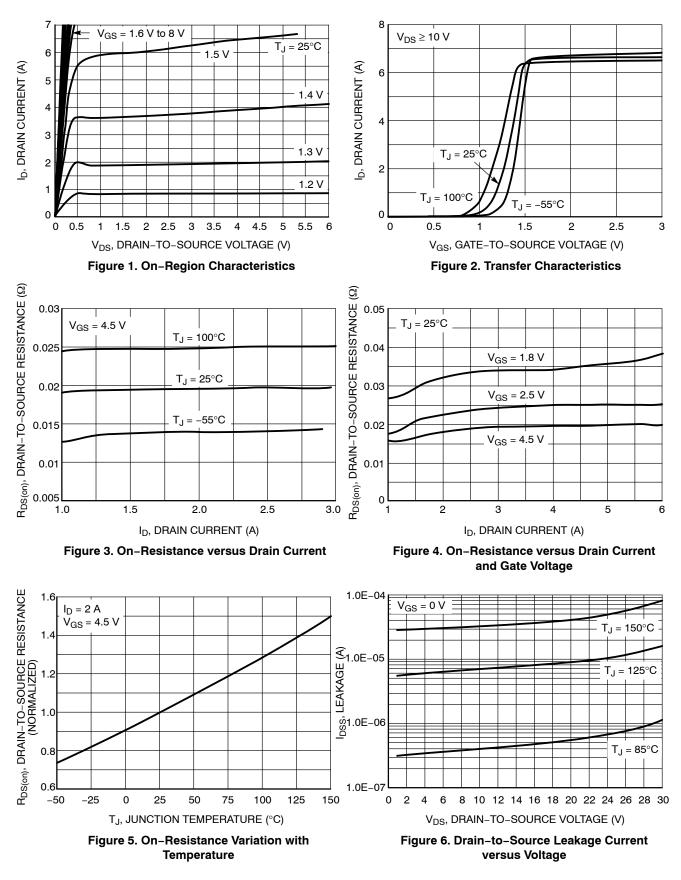
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	65	
Junction-to-Ambient – t \leq 5 s (Note 3)	$R_{ hetaJA}$	38	°C/W
Junction-to-Ambient - Steady State Min Pad (Note 4)	$R_{\theta JA}$	180	

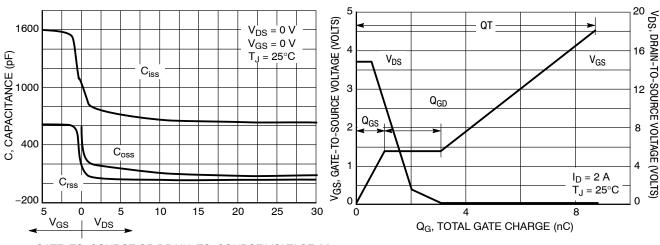
Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
 Surface Mounted on FR4 Board using the minimum recommended pad size (30 mm², 2 oz Cu).

MOSFET ELECTRICAL CHARACTERISTICS (T.I = 25°C unless otherwise noted)

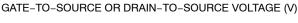
Symbol	Test Conditions		Min	Тур	Max	Unit
V _{(BR)DSS}	V _{GS} = 0 V, I _D = 25	0 μΑ	30			V
V _{(BR)DSS} /T _J	$I_D = 250 \ \mu A$, Ref to	25°C		20		mV/°C
I _{DSS}		T _J = 25°C			1.0	μΑ
	$v_{\rm DS} = 24 v, v_{\rm GS} = 0 v$	T _J = 85°C			10	
I _{GSS}	V _{DS} = 0 V, V _{GS} = ±	12 V			±100	nA
V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = 25$	50 μA	0.4	0.55	1.0	V
V _{GS(TH)} /T _J				3.18		mV/°C
R _{DS(on)}	V _{GS} = 4.5 V, I _D = 2	2.0 A		20.3	35	mΩ
	V _{GS} = 2.5 V, I _D = 2	2.0 A		25.8	45	
	V _{GS} = 1.8 V, I _D = 1	1.8 A		35.2	55	
9 _{FS}	V _{DS} = 16 V, I _D = 2	2.0 A		8		S
TE RESISTAN	CE			-		-
C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz,			650		pF
C _{OSS}				115.5		1
C _{RSS}				70		1
Q _{G(TOT)}				8.5	13	nC
	V(BR)DSS V(BR)DSS/TJ IDSS IGSS VGS(TH) VGS(TH)/TJ RDS(on) GFS TE RESISTANC CISS COSS CRSS	$\begin{array}{c c} V_{(BR)DSS} & V_{GS} = 0 \ V, \ I_D = 25 \\ V_{(BR)DSS}/T_J & I_D = 250 \ \mu A, \ Ref \ to \\ \hline I_{DSS} & V_{DS} = 24 \ V, \ V_{GS} = 0 \ V \\ \hline I_{GSS} & V_{DS} = 24 \ V, \ V_{GS} = 0 \ V \\ \hline I_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = 4 \\ \hline V_{GS(TH)} & V_{GS} = V_{DS}, \ I_D = 25 \\ \hline V_{GS(TH)}/T_J & V_{GS} = 4.5 \ V, \ I_D = 25 \\ \hline V_{GS}(TH)/T_J & V_{GS} = 2.5 \ V, \ I_D = 25 \\ \hline V_{GS} = 1.8 \ V, \ I_D = 25 \\ \hline V_{GS} = 1.8 \ V, \ I_D = 25 \\ \hline V_{DS} = 16 \ V, \ I_D = 25 \\ \hline TE \ RESISTANCE & V_{GS} = 0 \ V, \ f = 1.0 \ I_{VDS} = 15 \ V \\ \hline \end{array}$	$\begin{array}{ c c c c c } \hline V_{(BR)DSS} & V_{GS} = 0 \ V, \ I_D = 250 \ \mu A \\ \hline V_{(BR)DSS}/T_J & I_D = 250 \ \mu A, \ Ref \ to \ 25^\circ C \\ \hline I_{DSS} & V_{DS} = 24 \ V, \ V_{GS} = 0 \ V & \hline T_J = 25^\circ C \\ \hline T_J = 85^\circ C \\ \hline I_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = \pm 12 \ V \\ \hline \hline V_{GS(TH)} & V_{GS} = V_{DS}, \ I_D = 250 \ \mu A \\ \hline V_{GS(TH)}/T_J & \hline \\ \hline R_{DS(on)} & V_{GS} = 4.5 \ V, \ I_D = 2.0 \ A \\ \hline V_{GS} = 1.8 \ V, \ I_D = 2.0 \ A \\ \hline V_{GS} = 1.8 \ V, \ I_D = 1.8 \ A \\ \hline V_{GS} = 1.8 \ V, \ I_D = 2.0 \ A \\ \hline V_{GS} = 16 \ V, \ I_D = 2.0 \ A \\ \hline \hline V_{GS} = 1.8 \ V, \ I_D = 1.0 \ MHz, \\ \hline C_{RSS} & V_{DS} = 15 \ V \\ \hline \end{array}$	$\begin{tabular}{ c c c c c } \hline V_{(BR)DSS} & V_{GS} = 0 \ V, \ I_D = 250 \ \mu A & 30 \\ \hline V_{(BR)DSS}/T_J & I_D = 250 \ \mu A, \ Ref to \ 25^\circ C & $$$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

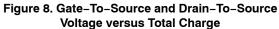

Reverse Transfer Capacitance	C _{RSS}			70		
Total Gate Charge	Q _{G(TOT)}			8.5	13	nC
Threshold Gate Charge	Q _{G(TH)}	V_{GS} = 4.5 V, V_{DS} = 15 V, I _D = 2.0 A		0.6		
Gate-to-Source Charge	Q _{GS}			0.9		
Gate-to-Drain Charge	Q _{GD}			2.1		
Gate Resistance	R _G			3.0		Ω
SWITCHING CHARACTERISTICS (Note 6)					
Turn On Dolou Timo	+		1	E	1	

Turn-On Delay Time 5 t_{d(ON)} ns **Rise Time** 9 t_r $\begin{array}{l} V_{GS} = 4.5 \text{ V}, \ V_{DD} = 15 \text{ V}, \\ I_{D} = 2.0 \text{ A}, \ R_{G} = 3.0 \ \Omega \end{array}$ Turn-Off Delay Time 20 t_{d(OFF)} Fall Time 4 t_f

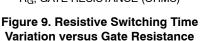

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Recovery Voltage	V _{SD}	V _{GS} = 0 V, IS = 2.0 A	T _J = 25°C	0.71	1.2	V
		VGS = 0 V, 13 = 2.0 A	T _J = 85°C	0.58		v
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, d_{ISD}/d_t = 100 A/µs, I_S = 1.0 A		14	35	
Charge Time	t _a			8.0		ns
Discharge Time	t _b			6.0		
Reverse Recovery Time	Q _{RR}			5.0		nC


 $\begin{array}{ll} \text{5. Pulse Test: Pulse Width} \leq 300 \ \mu\text{s}, \ \text{Duty Cycle} \leq 2\%. \\ \text{6. Switching characteristics are independent of operating junction temperatures.} \end{array}$


TYPICAL PERFORMANCE CURVES (T_J = 25° C unless otherwise noted)




TYPICAL PERFORMANCE CURVES (T_J = 25° C unless otherwise noted)

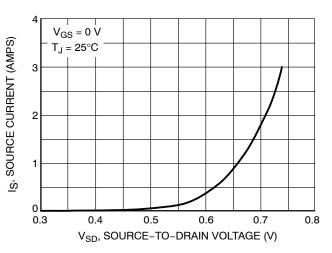
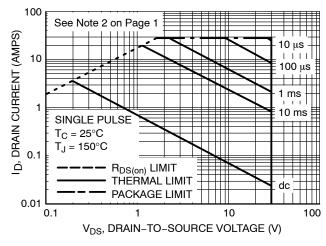
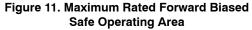
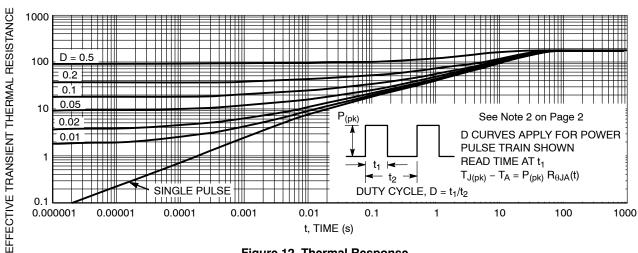
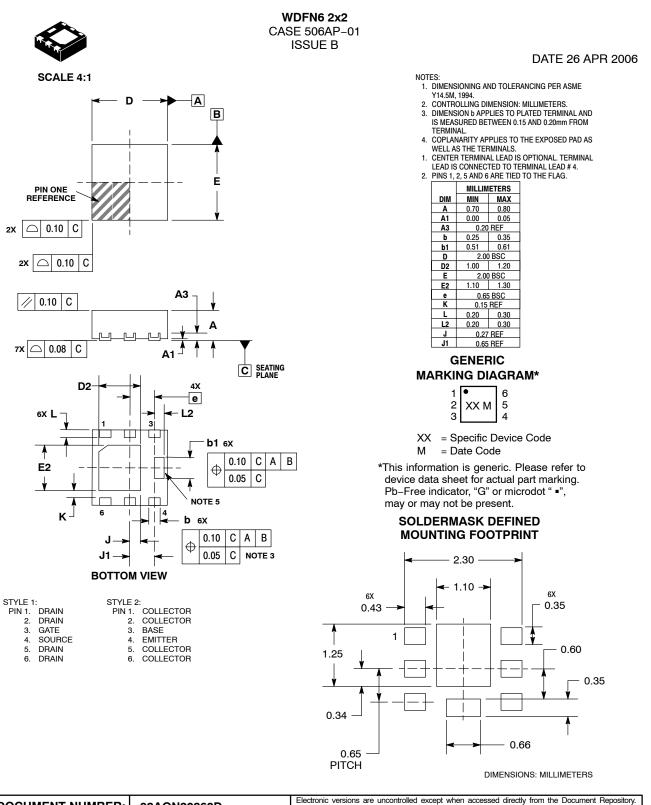





Figure 10. Diode Forward Voltage versus Current



TYPICAL PERFORMANCE CURVES (T_J = 25° C unless otherwise noted)

Figure 12. Thermal Response

 μCool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

DOCUMENT NUMBER:	98AON20860D	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	6 PIN WDFN 2X2, 0.65P		PAGE 1 OF 1		

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Onsemi: NTLJS4114NT1G NTLJS4114NTAG