MOSFET - Power, Single, P-Channel, DPAK

-60 V, -15.5 A

Features

- Withstands High Energy in Avalanche and Commutation Modes
- Low Gate Charge for Fast Switching
- AEC Q101 Qualified NTDV20P06L
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Bridge Circuits
- Power Supplies, Power Motor Controls
- DC-DC Conversion

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

	Parameter	Symbol	Value	Unit	
Drain-to-Source Voltage			V_{DSS}	-60	V
Gate-to-Source	Continu	ous	V _{GS}	±20	V
Voltage	Non-Repetitive	$t_p \le 10 \text{ ms}$	V_{GSM}	±30	
Continuous Drain Current	Steady State	T _C = 25°C	I _D	-15.5	Α
Power Dissipa- tion	Steady State	T _C = 25°C	P _D	65	W
Pulsed Drain Current	t _p = 10	I _{DM}	±50	Α	
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 175	°C
Single Pulse Drain–to–Source Avalanche Energy (V_{DD} = 25 V, V_{GS} = 5 V, I_{PK} = 15 A, L = 2.7 mH, R_G = 25 Ω)			E _{AS}	304	mJ
Lead Temperature (1/8" from case fo	e for Soldering Pu r 10 s)	rposes	TL	260	°C

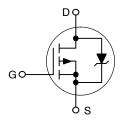
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	2.3	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	80	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	110	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface-mounted on FR4 board using 1 in sq. pad size (Cu area = 1.127 in sq. [1 oz] including traces)
- 2. Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = 0.412 in sq.)

1

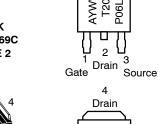


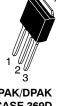
ON Semiconductor®

www.onsemi.com

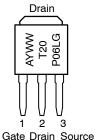
V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX (Note 1)
-60 V	130 mΩ @ -5.0 V	–15.5 A

P-Channel




MARKING DIAGRAMS

Drain



DPAK CASE 369C STYLE 2

IPAK/DPAK CASE 369D STYLE 2

20P06L Device Code

= Assembly Location

= Year

WW = Work Week = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Units
OFF CHARACTERISTICS							<u> </u>
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -$	-250 μΑ	-60	-74		V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				-64		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V.	T _J = 25°C			-1.0	μΑ
		$V_{GS} = 0 \text{ V}, V_{DS} = -60 \text{ V}$	T _J = 150°C			-10	1
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)	•					-	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	–250 μΑ	-1.0	-1.5	-2.0	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				3.1		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -5.0 \text{ V}, I_D$	= -7.5 A		0.130	0.150	Ω
		$V_{GS} = -5.0 \text{ V}, I_{D}$	= -15 A		0.143		
Forward Transconductance	9 _{FS}	V _{DS} = -10 V, I _D	= -7.5 A		11		S
Drain-to-Source On-Voltage	V _{DS(on)}	$V_{GS} = -5.0 \text{ V},$ $I_D = -7.5 \text{ A}$	T _J = 25°C			-1.2	V
			T _J = 150°C			-1.9	1
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}				740	1190	pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz,	V _{DS} = -25 V		207	300	1
Reverse Transfer Capacitance	C _{RSS}				66	120	1
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -5.0 \text{ V}, V_{DS} = -48 \text{ V},$ $I_D = -18 \text{ A}$			15	26	nC
Gate-to-Source Charge	Q _{GS}				4.0		1
Gate-to-Drain Charge	Q_{GD}				7.0		1
SWITCHING CHARACTERISTICS (Note 4)						
Turn-On Delay Time	t _{d(ON)}				11	20	ns
Rise Time	t _r	VGS = -5.0 V. VDF	n = -30 V.		90	180	1
Turn-Off Delay Time	t _{d(OFF)}	$V_{GS} = -5.0 \text{ V}, V_{DE}$ $I_D = -15 \text{ A}, R_G = -15 \text{ A}$	= 9.1 Ω		28	50	1
Fall Time	t _f	1			70	135	
DRAIN-SOURCE DIODE CHARACTERIS	TICS				•		•
Forward Diode Voltage	V_{SD}		T _J = 25°C		1.5	2.5	V
		$V_{GS} = 0 \text{ V}, I_{S} = -15 \text{ A}$	T _J = 150°C		1.3		1
Reverse Recovery Time	t _{RR}				60		ns
Charge Time	ta	VG9 = 0 V. dig/di =	: 100 A/us.		39		1
Discharge Time	t _b	$V_{GS} = 0 \text{ V, } d_{IS}/d_{t} = I_{S} = -12 \text{ A}$	٩		21		1
Reverse Recovery Charge	Q _{RR}	1			0.13		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{3.} Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$ 4. Switching characteristics are independent of operating junction temperatures

TYPICAL PERFORMANCE CURVES

(T_J = 25°C unless otherwise noted)

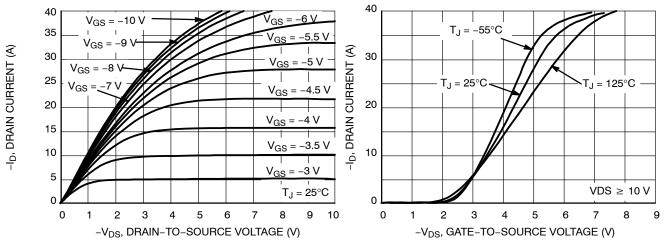


Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

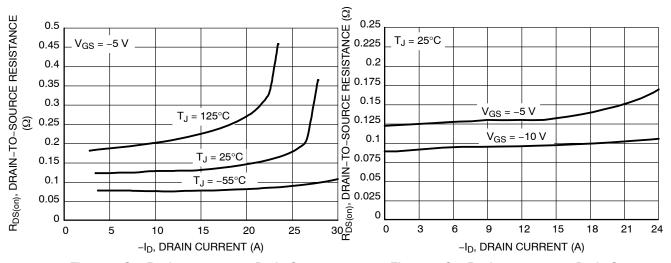


Figure 3. On-Resistance versus Drain Current and Temperature

Figure 4. On-Resistance versus Drain Current and Gate Voltage

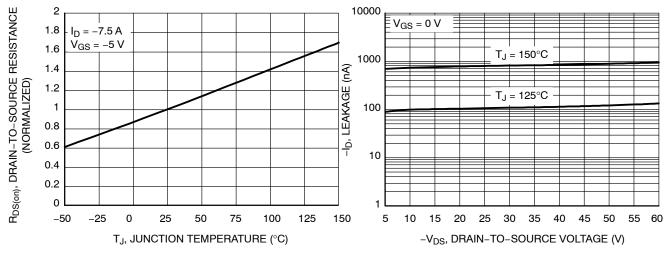
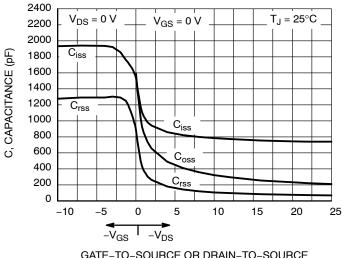



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current versus Voltage

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (V)

Figure 7. Capacitance Variation

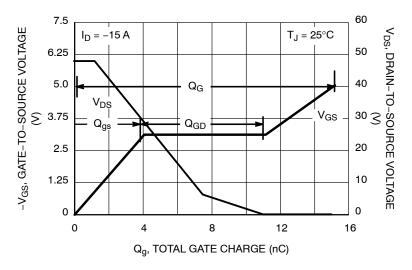
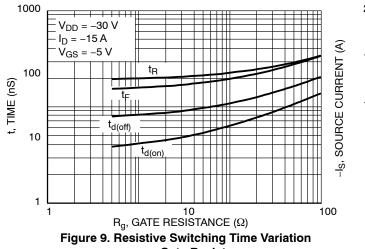



Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

versus Gate Resistance

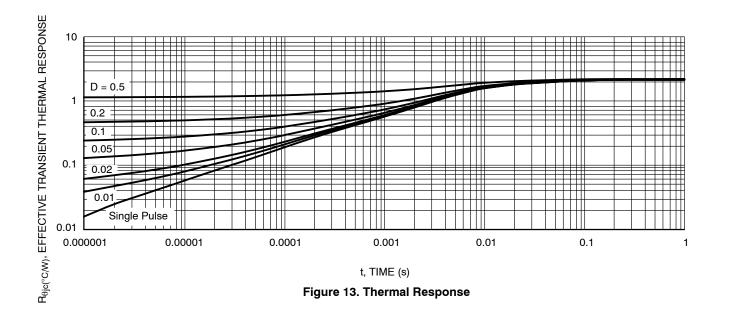


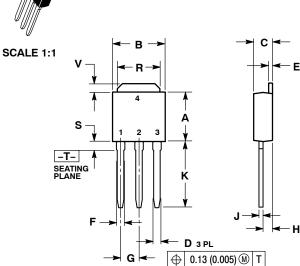
Figure 10. Diode Forward Voltage versus Current

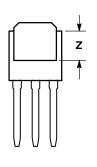
Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature

ORDERING INFORMATION

Device	Package	$Shipping^\dagger$
NTD20P06LG	DPAK (Pb-Free)	75 Units / Rail
NTD20P06LT4G		2500 / Tape & Reel
NTDV20P06LT4G		2500 / Tape & Reel
NTDV20P06LT4G-VF01		2500 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


MECHANICAL CASE OUTLINE

DATE 15 DEC 2010

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

MARKING DIAGRAMS

STYLE 1:				
BASE				
COLLECTOR				
EMITTER				
COLLECTOR				
	BASE COLLECTOR EMITTER			

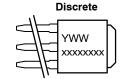
STYLE 5: PIN 1. GATE

2. ANODE CATHODE

ANODE

STYLE 2: PIN 1. GATE 2. DRAIN SOURCE 3 DRAIN

STYLE 6: PIN 1. MT1 2. MT2 3. GATE


MT2

STYLE 3: PIN 1. ANODE 2. CATHODE 3 ANODE 4. CATHODE

STYLE 7: PIN 1. GATE 2. COLLECTOR

3. EMITTER COLLECTOR STYLE 4: PIN 1. CATHODE ANODE
 GATE

4. ANODE

WW

xxxxxxxxx = Device Code Α = Assembly Location IL = Wafer Lot Υ = Year

= Work Week

DOCUMENT NUMBER:	98AON10528D	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	IPAK (DPAK INSERTION MOUNT)		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. В

NOTE 7

- h3

Ո

TOP VIEW

L3

b2 e

DPAK (SINGLE GAUGE) CASE 369C **ISSUE F** SCALE 1:1 Α

DETAIL A

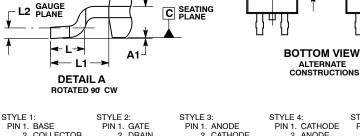
C-

SIDE VIEW

DATE 21 JUL 2015

NOTES:

z

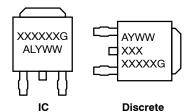

BOTTOM VIEW

Z

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114 REF		2.90	REF
L2	0.020 BSC		0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

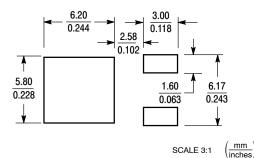

| \oplus | 0.005 (0.13) lacktriangledown C

Ħ

STYLE 5: PIN 1. BASE 2. COLLECTOR 3. EMITTER PIN 1. GATE 2. DRAIN PIN 1. ANODE 2. CATHODE 3. ANODE PIN 1. CATHODE PIN 1. GATE 2. ANODE 3. CATHODE 2. ANODE 3. GATE SOURCE 4. CATHODE ANODE 4. COLLECTOR 4. ANODE 4. DRAIN

STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:
PIN 1. MT1	PIN 1. GATE	PIN 1. N/C	PIN 1. ANODE	PIN 1. CATHODE
2. MT2	2. COLLECTOR	CATHODE	2. CATHODE	ANODE
3. GATE	EMITTER	ANODE	RESISTOR ADJUST	CATHODE
4. MT2	COLLECTOR	4. CATHODE	4. CATHODE	4. ANODE

GENERIC MARKING DIAGRAM*



XXXXXX = Device Code = Assembly Location Α L = Wafer Lot Υ = Year

WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

<u>NTDV20P06LT4G NTD20P06L NTD20P06L-001 NTD20P06L-1G NTD20P06LG NTD20P06LT4 NTD20P06LT4G NTDV20P06LT4G-VF01 NTDV20P06LT4G NTD20P06LT4G N</u>