Test Procedure for the NCP1615GEVB Evaluation Board

Table 1: Required Equipment

*Chroma 61604 AC	*Voltech PM3000A	*Agilent 34401A
Power Source	Power Analyzer	Multimeter
	*Chroma 6314	*Tektronix TDS5034B
*Agilent 34401A	Electronic Load with	Oscilloscope with
Multimeter	*Chroma 63108 High	*Tektronix P5205
	Voltage Module	Differential Probes

^{*}Equivalent test equipment may be substituted.

Test Procedure:

- 1. Make sure jumper J4 (PSM) is connected.
- 2. Connect the electronic load with high voltage module to the output labeled "400 V/300 mA".
- 3. Connect one of the multimeters in series with the output and load and set it to measure current
- 4. Connect the second multimeter to the output and set it to measure voltage.
- 5. Connect the oscilloscope with differential probes to the output and set it to measure output ripple and frequency.
- 6. Connect the ac power source and power analyzer to the terminals labeled "Input". Set the current compliance limit to 3 A.
- 7. Set the ac power source to 85 Vac / 60 Hz.
- 8. Set the high voltage electronic load to 300 mA.
- 9. Turn the AC source on.
- 10. Wait 10 seconds, and then check the output voltage (V_{OUT}) using the corresponding multimeter. Verify it is within the limits of Table 2.
- 11. Measure power factor (**PF**) and input power (P_{IN}) using the power analyzer.
- 12. Measure the peak to peak voltage and frequency of the output ripple using the oscilloscope.
- 13. Measure **I**_{OUT} using the corresponding multimeter.
- 14. Calculate efficiency (η) using the equation: $\eta = \frac{I_{OUT} \cdot V_{OUT}}{P_{IN}} \cdot 100\%$
- 15. Repeat steps 9-13 with the ac source set to 115 Vac / 60 Hz, 230 Vac / 50 Hz, 265 Vac / 50 Hz. Verify the results are within the limits of Table 2.
- 16. Turn off the ac source.
- 17. Since high voltage will be present after the voltage is removed, wait for the dc voltmeter to show approximately 0 V before continuing.
- 18. Disconnect the ac source.
- 19. Disconnect the oscilloscope.
- 20. Disconnect the electronic load.
- 21. Disconnect both multimeters.
- 22. End of test.

Table 2: Desired Results

Table 2. Desired Results		
For 85 Vac / 60 Hz input,	$\mathbf{V_{OUT}} = 400 \pm 15 \; \mathbf{V}$	
	PF > 0.98	
	Output Ripple Voltage < 20 V _{PP}	
	Output Ripple Frequency = 120 Hz sine wave	
	$\eta > 92\%$	
For 115 Vac / 60 Hz input,	$V_{OUT} = 400 \pm 15 \text{ V}$	
	PF > 0.98	
	Output Ripple Voltage < 20 V _{PP}	
	Output Ripple Frequency = 120 Hz sine wave	
	$\eta > 94\%$	
For 230 Vac / 50 Hz input,	$V_{OUT} = 400 \pm 15 \text{ V}$	
	PF > 0.96	
	Output Ripple Voltage < 20 V _{PP}	
	Output Ripple Frequency = 100 Hz sine wave	
	$\eta > 95\%$	
For 265 Vac / 50 Hz input,	$V_{OUT} = 400 \pm 15 \text{ V}$	
	PF > 0.96	
	Output Ripple Voltage < 20 V _{PP}	
	Output Ripple Frequency = 100 Hz sine wave	
	$\eta > 95\%$	

Figure 1: Test Setup Chroma 6314 34401A Agilent Voltech PM3000A Tout=250mA Chroma 61604 $\mathbf{I}_{\mathrm{OUT}}$ Ν V+ |+ V-× × -265 V. ΦΦΦ Φ 0 0 Tektronix TDS5034B Oscilloscope NCP1615GEVB Demonstration Board CHANNEL 34401A Agilent V_{OUT} \bigcirc \bigcirc \bigcirc \bigcirc Tektronix P5205 ***

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi

NCP1615GEVB