D Flip Flop, 1.8 V / 2.5 V Differential, with Reset and CML Outputs

Multi-Level Inputs w/ Internal Termination

Description

The NB7V52M is a 10 GHz differential D_flip-flop_with a differential asynchronous Reset. The differential D/D, CLK/CLK and R/R inputs incorporate dual internal 50 Ω termination resistors and will accept LVPECL, CML, LVDS logic levels.

When Clock transitions from logic Low to High, Data will be transferred to the differential CML outputs. The differential Clock inputs allow the NB7V52M to also be used as a negative edge triggered device.

The 16 mA differential CML outputs provide matching internal 50 Ω termination and produce 400 mV output swings when externally receiver terminated with a 50 Ω resistor to V_{CC} .

The NB7V52M is offered in a low profile 3 mm x 3 mm 16-pin QFN package. The NB7V52M is a member of the GigaComm $^{\text{TM}}$ family of high performance clock products. Application notes, models, and support documentation are available at www.onsemi.com.

Features

- Maximum Input Clock Frequency > 10 GHz
- Maximum Input Data Rate > 10 Gb/s
- Random Clock Jitter < 0.8 ps RMS, Max
- 200 ps Typical Propagation Delay
- 35 ps Typical Rise and Fall Times
- Differential CML Outputs, 400 mV Peak-to-Peak, Typical
- Operating Range: $V_{CC} = 1.71 \text{ V}$ to 2.625 V with $V_{EE} = 0 \text{ V}$
- Internal 50 Ω Input Termination Resistors
- QFN-16 Package, 3mm x 3mm
- -40°C to +85°C Ambient Operating Temperature
- These are Pb-Free Devices

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM*

QFN-16 MN SUFFIX CASE 485G

A = Assembly Location

L = Wafer Lot
Y = Year
W = Work Week
Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

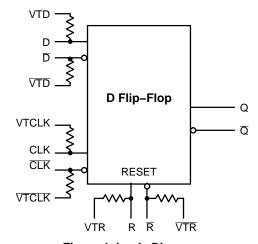


Figure 1. Logic Diagram

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

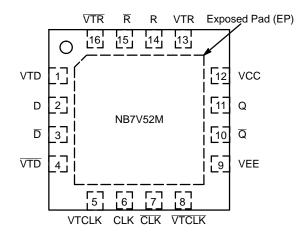


Table 1. INPUT/OUTPUT SELECT TRUTH TABLE

R	D	CLK	Q
Н	Х	Х	L
L	L	Z	L
L	Н	Z	Н

Z = LOW to HIGH Transition

x = Don't care

Figure 2. Pin Configuration (Top View)

Table 1. Pin Description

Pin	Name	1/0	Description
1	VTD	-	Internal 50 Ω Termination Pin for D
2	D	LVPECL, CML, LVDS Input	Noninverted Differential Data Input. (Note 1)
3	D	LVPECL, CML, LVDS Input	Inverted Differential Data Input. (Note 1)
4	VTD	-	Internal 50 Ω Termination Pin for D
5	VTCLK	-	Internal 50 Ω Termination Pin for CLK
6	CLK	LVPECL, CML, LVDS Input	Noninverted Differential Clock Input. (Note 1)
7	CLK	LVPECL, CML, LVDS Input	Inverted Differential Clock Input. (Note 1)
8	VTCLK	-	Internal 50 Ω Termination Pin for CLK
9	VEE	-	Negative Supply Voltage. (Note 2)
10	Q	CML Output	Inverted Differential Output
11	Q	CML Output	Noninverted Differential Output
12	VCC	-	Positive Supply Voltage. (Note 2)
13	VTR	-	Internal 50 Ω Termination Pin for R
14	R	LVPECL, CML, LVDS Input	Noninverted Asynchronous Differential Reset Input. (Note 1)
15	R	LVPECL, CML, LVDS Input	Inverted Asynchronous Differential Reset Input. (Note 1)
16	VTR	-	Internal 50 Ω Termination Pin for $\overline{\mathbb{R}}$
-	EP	-	The Exposed Pad (EP) on the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is electrically connected to the die, and must be electrically and thermally connected to VEE on the PC board.

^{1.} In the differential configuration when the input termination pins (VTx, \overline{VTx}) are connected to a common termination voltage or left open, and if no signal is applied on CLK/CLK input, then the device will be susceptible to self–oscillation.

2. All VCC and VEE pins must be externally connected to a power supply for proper operation.

Table 2. ATTRIBUTES

Char	Value			
ESD Protection	Human Body Model Machine Model	> 2 kV > 200 V		
Moisture Sensitivity	16-QFN	Level 1		
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in		
Transistor Count	173			
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test				

For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	V _{EE} = 0 V		3.0	V
V _{IO}	Positive Input/Output Voltage	V _{EE} = 0 V	$-0.5 \le VIO \le VCC + 0.5$	-0.5 to V _{CC} +0.5	V
V _{INPP}	Differential Input Voltage CLK – $\overline{\text{CLK}}$, D – $\overline{\text{D}}$, R – $\overline{\text{R}}$			1.89	V
l _{OUT}	Output Current Through R_{TOUT} (50 Ω Resistor)	Continuous Surge		34 40	mA
I _{IN}	Input Current Through R _{TIN} (50 Ω Resistor)			±40	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θJΑ	Thermal Resistance (Junction–to–Ambient) (Note 3)	0 lfpm 500 lfpm	QFN-16 QFN-16	42 35	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case) (Note 3)		QFN-16	4	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

3. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 4. DC CHARACTERISTICS, Multi-Level Inputs $V_{CC} = 1.71 \text{ V}$ to 2.625 V, $V_{EE} = 0 \text{ V}$, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$ (Note 4)

Symbol	Characteristic		Min	Тур	Max	Unit
POWER	SUPPLY CURRENT				•	•
I _{CC}	Power Supply Current (Inputs and Outputs Open)	$V_{CC} = 2.5 \text{ V}$ $V_{CC} = 1.8 \text{ V}$		90 70	110 90	mA
CML OU	TPUTS				•	•
V _{OH}	Output HIGH Voltage (Note 5)	V _{CC} = 2.5 V V _{CC} = 1.8 V	V _{CC} - 30 2470 1770	V _{CC} - 10 2490 1790	V _{CC} 2500 1800	mV
V _{OL}	Output LOW Voltage (Note 5)	V _{CC} = 2.5 V	V _{CC} – 650 1850	V _{CC} – 500 2000	V _{CC} – 400 2100	mV
		V _{CC} = 1.8 V	V _{CC} – 600 1200	V _{CC} – 450 1350	V _{CC} – 350 1450	
DIFFER	ENTIAL CLOCK INPUTS DRIVEN SINGLE-ENDED	(Note 6) (Figure	es 5 and 7)			
V_{th}	Input Threshold Reference Voltage Range (Note 7)		1000		V _{CC} – 100	mV
V_{IH}	Single-Ended Input HIGH Voltage		V _{th} + 100		V _{CC}	mV
V_{IL}	Single-Ended Input LOW Voltage		V _{EE}		V _{th} – 100	mV
V_{ISE}	Single-Ended Input Voltage (V _{IH} - V _{IL})		200		1200	mV
DIFFER	ENTIAL D/D, CLK/CLK, R/R INPUTS DRIVEN DIFFE	RENTIALLY (F	igures 6 and 8) (Note 8)		
V_{IHD}	Differential Input HIGH Voltage		1100		V _{CC}	mV
V_{ILD}	Differential Input LOW Voltage		V _{EE}		V _{CC} – 100	mV
V_{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})		100		1200	mV
V _{CMR}	Input Common Mode Range (Differential Configurat (Figure 10)	tion, Note 9)	1050		V _{CC} – 50	mV
I _{IH}	Input HIGH Current (VT _x /VT _x Open)		-250		250	μΑ
I _{IL}	Input LOW Current (VT _x /VT _x Open)		-250		250	μΑ
TERMIN	ATION RESISTORS					
R _{TIN}	Internal Input Termination Resistor		45	50	55	Ω
R _{TOUT}	Internal Output Termination Resistor		45	50	55	Ω

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 4. Input and output parameters vary 1:1 with V_{CC}.
- 5. CML outputs loaded with 50 Ω to V_{CC} for proper operation.
- 6. V_{th}, V_{IH}, V_{IL}, and V_{ISE} parameters must be complied with simultaneously.
 7. V_{th} is applied to the complementary input when operating in single-ended mode.
- V_{IHD}, V_{ILD}, V_{ID} and V_{CMR} parameters must be complied with simultaneously.
 V_{CMR} min varies 1:1 with V_{EE}, V_{CMR} max varies 1:1 with V_{CC}. The V_{CMR} range is referenced to the most positive side of the differential input

Table 5. AC CHARACTERISTICS $V_{CC} = 1.71 \text{ V}$ to 2.625 V; $V_{EE} = 0 \text{ V}$; $T_{A} = -40 ^{\circ}\text{C}$ to $85 ^{\circ}\text{C}$ (Note 10)

Symbol	Characteristic			Тур	Max	Unit
f _{MAX}	Maximum Input Clock Frequency			12		GHz
f _{DATA MAX}	Maximum Input Data Rate (PRBS23)			12		Gbps
V _{OUTPP}	$ \begin{array}{ll} \text{Output Voltage Amplitude (@V_{INPPmin})} & \text{fin} \leq 7 \text{ GHz} \\ \text{(See Figures 3 and 10, Note 11)} & \text{fin} \leq 10 \text{ GHz} \\ \end{array} $		300 250	400 400		mV
t _{PLH} , t _{PHL}	Propagation Delay to Differential Outputs, @ 1 GHz, Measured at Differential Cross-point	CLK/CLK to Q/Q R/R to Q/Q		200 300	350 600	ps
t _S	Setup Time (D to CLK)			15		ps
t _H	Hold Time (D to CLK)			20		ps
t _{RR}	Reset Recovery			200		ps
t _{PW}	Minimum Pulse Width R/R		1			ns
t _{JITTER}	RJ – Output Random Jitter (Note 12) $f_{in} \le 10 \text{ GHz}$			0.2	0.8	ps RMS
V _{INPP}	Input Voltage Swing (Differential Configuration) (Note 13)		100		1200	mV
t _{r,} , t _f	Output Rise/Fall Times @ 1 GHz (20% – 80%),	Q, Q	20	35	50	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 11. Output voltage swing is a single-ended measurement operating in differential mode.
- 12. Additive RMS jitter with 50% duty cycle clock signal.
- 13. Input voltage swing is a single-ended measurement operating in differential mode.

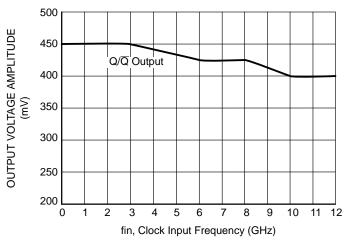


Figure 3. Clock Output Voltage Amplitude (V_{OUTPP}) vs. Input Frequency (f_{in}) at Ambient Temperature (Typ)

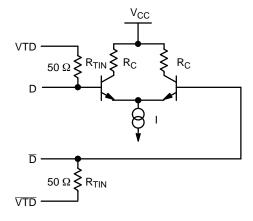


Figure 4. Simplified Input Structure

^{10.} Measured using a 400 mV V_{INPP} source, 50% duty cycle clock source. All output loading with external 50 Ω to V_{CC} . Input edge rates \geq 40 ps (20% - 80%).

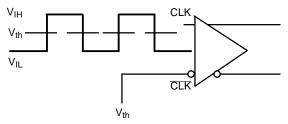


Figure 5. Differential Input Driven Single-Ended

Figure 6. Differential Inputs Driven Differentially

Figure 7. V_{th} Diagram

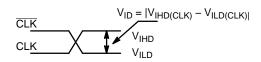


Figure 8. Differential Inputs Driven Differentially

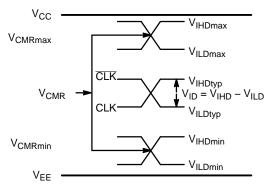


Figure 9. V_{CMR} Diagram

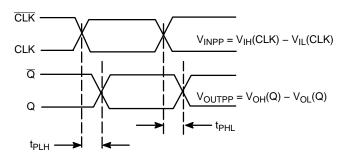


Figure 10. AC Reference Measurement

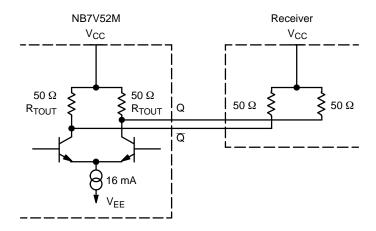


Figure 11. Typical CML Output Structure and Termination

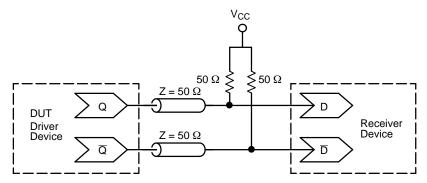


Figure 12. Typical Termination for CML Output Driver and Device Evaluation

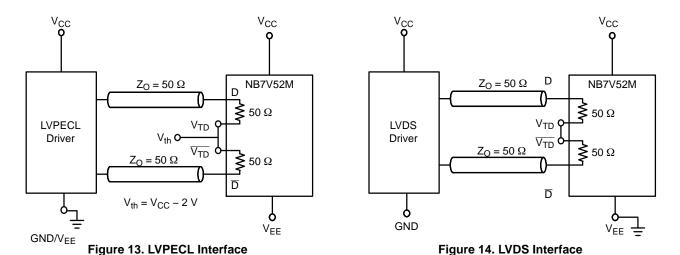
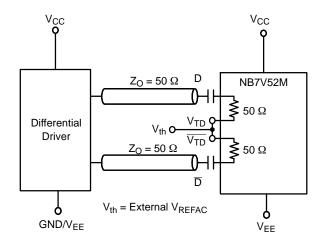
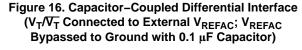
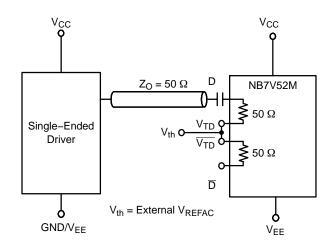





Figure 15. Standard 50 Ω Load CML Interface

GND

 V_{EE}

Figure 17. Capacitor–Coupled Single–Ended Interface (V_T/V_T Connected to External V_{REFAC} ; V_{REFAC} Bypassed to Ground with 0.1 μF Capacitor)

ORDERING INFORMATION

Device	Package	Shipping [†]
NB7V52MMNG	QFN-16 (Pb-free)	123 Units / Rail
NB7V52MMNHTBG	QFN-16 (Pb-free)	100 / Tape & Reel
NB7V52MMNTXG	QFN-16 (Pb-free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

GigaComm is a trademark of Semiconductor Components Industries, LLC (SCILLC).

回

TOP VIEW

┅┅

SIDE VIEW

DETAIL B

LEA

A1

PIN ONE

LOCATION

2X 0.10 C

2X 0.10 C

// 0.05 C

□ 0.05 C

NOTE 4

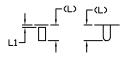
Α

В

SEATING PLANE

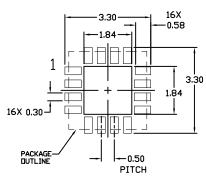
C

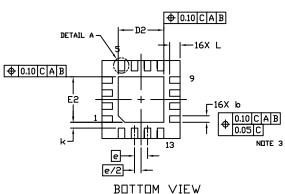
Ē


DATE 08 OCT 2021

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM THE TERMINAL TIP.
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS.
 THE TERMINALS.


DETAIL B
ALTERNATE
CONSTRUCTIONS



DETAIL A
ALTERNATE TERMINAL
CONSTRUCTIONS

	MILLIME			
DIM	MIN.	N□M.	MAX.	
Α	0.80	0.90	1.00	
A1	0.00	0.03	0.05	
A3		0.20 REF		
b	0.18	0.24	0.30	
D	3.00 B2C			
DS	1.65	1.75	1.85	
Ε	3.00 BSC			
E2	1.65	1.75	1.85	
e	0.50 BSC			
k	0.18 TYP			
L	0.30	0.40	0.50	
L1	0.00	0.08	0.15	

MOUNTING FOOTPRINT

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code A = Assembly Location

L = Wafer Lot
Y = Year
W = Work Week
■ Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON04795D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	QFN16 3X3, 0.5P		PAGE 1 OF 1		

onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

NB7V52MMNHTBG NB7V52MMNTXG NB7V52MMNG