2.5V / 3.3V Differential 4:1 Mux to 1:2 CML Clock/Data Fanout / Translator

Multi-Level Inputs w/ Internal Termination

Description

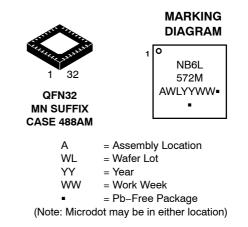
The NB6L572M is a high performance differential 4:1 Clock / Data input multiplexer and a 1:2 CML Clock / Data fanout buffer that operates up to 6 GHz / 8 Gbps respectively with a 2.5 V or 3.3 V power supply.

The differential Clock / Data inputs have internal 50 Ω termination resistors and will accept differential LVPECL, CML, or LVDS logic levels. The NB6L572M incorporates a pair of Select pins that will choose one of four differential inputs and will produce two identical CML output copies of Clock or Data.

As such, the NB6L572M is ideal for SONET, GigE, Fiber Channel, Backplane and other Clock/Data distribution applications.

The two differential CML outputs will swing 400 mV when externally loaded and terminated with a 50 Ω resistor to V_{CC} and are optimized for low skew and minimal jitter.

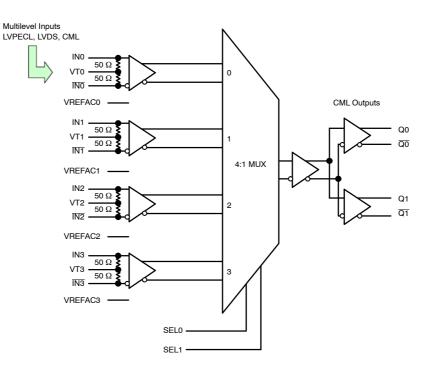
The NB6L572M is offered in a low profile 5x5mm 32-pin QFN Pb-Free package. Application notes, models, and support documentation are available at www.onsemi.com. The NB6L572M is a member of the ECLinPS MAX[™] family of high performance clock products.


Features

- Input Data Rate > 8 Gb/s Typical
- Data Dependent Jitter < 10 ps
- Maximum Input Clock Frequency > 6 GHz Typical
- Random Clock Jitter < 0.8 ps RMS
- Low Skew 1:2 CML Outputs, < 15 ps max
- 4:1 Multi-Level Mux Inputs, accepts LVPECL, CML LVDS
- 200 ps Typical Propagation Delay
- 35 ps Typical Rise and Fall Times

ON Semiconductor®

http://onsemi.com



ORDERING INFORMATION

See detailed ordering and shipping information on page 8 of this data sheet.

- Differential CML Outputs, 400 mV Peak-to-Peak, Typical
- Operating Range: $V_{CC} = 2.375$ V to 3.6 V with GND = 0 V
- Internal 50 Ω Input Termination Resistors
- V_{REFAC} Reference Output
- QFN-32 Package, 5mm x 5mm
- 40°C to +85°C Ambient Operating Temperature
- These are Pb-Free Devices

NB6L572M

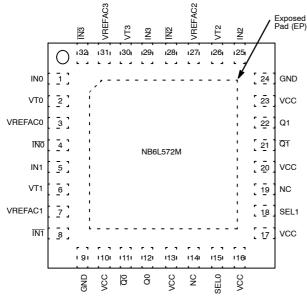


Figure 2. Pinout: QFN-32 (Top View)

Table 1. INPUT SELECT FUNCTION TABLE

SEL1*	SEL0*	Clock / Data Input Selected
0	0	IN0 Input Selected
0	1	IN1 Input Selected
1	0	IN2 Input Selected
1	1	IN3 Input Selected

*Defaults HIGH when left open.

Table 2. PIN DESCRIPTION

Pin Number	Pin Name	I/O	Pin Description
1, 4 5, 8 25, 28 29, 32	IN0, <u>IN0</u> IN1, <u>IN1</u> IN2, <u>IN2</u> IN3, IN3	LVPECL, CML, LVDS Input	Non-inverted, Inverted, Differential Clock or Data Inputs
2, 6 26, 30	VT0, VT1 VT2, VT3		Internal 100 Ω Center-tapped Termination Pin for INx/INx
15 18	SEL0 SEL1	LVTTL/LVCMOS Input	Input Select pins, default HIGH when left open through a 131 k Ω pullup resistor. Input logic threshold is V _{CC} /2. See Select Function, Table 1.
14, 19	NC	-	No Connect
10, 13, 16 17, 20, 23	VCC	-	Positive Supply Voltage. All V_{CC} pins must be connected to the positive power supply for correct DC and AC operation.
11, 12 21, 22	<u>Q0</u> , Q0 <u>Q1</u> , Q1	CML Output	Non-inverted, Inverted Differential Outputs.
9, 24	GND		Negative Supply Voltage, connected to Ground
3 7 27 31	VREF-AC0 VREF-AC1 VREF-AC2 VREF-AC3	-	Output Voltage Reference for Capacitor-Coupled Inputs
_	EP	_	The Exposed Pad (EP) on the QFN–32 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be at- tached to a heat–sinking conduit. The pad is electrically connected to the die, and must be electrically connected to GND.

In the differential configuration when the input termination pins (VT0, VT1, VT2, VT3) are connected to a common termination voltage or left open, and if no signal is applied on INx/INx input, then the device will be susceptible to self-oscillation.
 All V_{CC}, and GND pins must be externally connected to a power supply for proper operation.

Table 3. ATTRIBUTES

Characteristi	cs	Value
ESD Protection	Human Body Model Machine Model	> 2 kV > 200 V
R _{PU} – SELx Input Pull–up Resistor		131 kΩ
Moisture Sensitivity (Note 3)	QFN-32	Level 1
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count		275
Meets or exceeds JEDEC Spec EIA/J	ESD78 IC Latchup Test	

3. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		–0.5 V to +4.0	V
V _{IN}	Positive Input Voltage	GND = 0 V		–0.5 to V _{CC} +0.5	V
V _{INPP}	Differential Input Voltage IN – INx			1.89	V
l _{out}	Output Current Through R_T (50 Ω Resistor)			±40	mA
I _{IN}	Input current Through RT (50 Ω resistor)			±40	mA
IVREFAC	VREFAC Sink or Source Current			±1.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			–65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 4)	0 lfpm 500 lfpm	QFN32 QFN32	31 27	°C/W
θJC	Thermal Resistance (Junction-to-Case) (Note 4)		QFN32	12	°C/W
T _{sol}	Wave Solder	≤ 20 sec		265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

4. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

NB6L572M

Table 5. DC CHARACTERISTICS CML OUTPUT V _{CC} = 2.375 V to 3.6 V	V , GND = 0 V, $T_A = -40^{\circ}C$ to +85°C (Note 5)
---	---

Symbol	Characteristic		Min	Тур	Max	Unit
POWER S	SUPPLY					
V _{CC}		V _{CC} = 3.3 V V _{CC} = 2.5 V	3.0 2.375	3.3 2.5	3.6 2.625	V
Icc	Power Supply Current for V _{CC} (Inputs and Outputs Open)	V _{CC} = 3.3 V V _{CC} = 2.5 V		130 115	165 150	mA

CML OUTPUTS (Note 6)

V _{OH}	Output HIGH Voltage	VCC = 3.3 V VCC = 2.5 V	V _{CC} – 30 3270 2470	V _{CC} – 10 3290 2490	V _{CC} 3300 2500	mV
V _{OL}	Output LOW Voltage	V _{CC} = 3.3 V V _{CC} = 2.5 V	V _{CC} - 650 2650 V _{CC} - 650 1850	$V_{CC} - 450$ 2850 $V_{CC} - 450$ 2050	$\begin{array}{c} V_{CC}{-}300\\ 3000\\ V_{CC}{-}300\\ 2200 \end{array}$	mV

DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLE-ENDED (Figures 5 & 6) (Note 8)

V _{IH}	Single-ended Input HIGH Voltage	V _{th} + 100	V _{CC}	mV
V _{IL}	Single-ended Input LOW Voltage	GND	$V_{th} - 100$	mV
V _{th}	Input Threshold Reference Voltage Range (Note 8)	1100	$V_{CC}-100$	mV
V _{ISE}	Single-ended Input Voltage (V _{IH} - V _{IL})	200	1200	mV

VREFAC

V _{REF-AC} Output Reference Voltage (100 µA Load)	1050	V _{CC} – 1250	$V_{CC} - 1050$	mV
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 7 & 8) (Note 9)			

		,		
V _{IHD}	Differential Input HIGH Voltage (IN, TN)	1200	V _{CC}	mV
V _{ILD}	Differential Input LOW Voltage (IN, IN)	0	V _{IHD} – 100	mV
V _{ID}	Differential Input Voltage (IN, IN) (V _{IHD} - V _{ILD})	100	1200	mV
V _{CMR}	Input Common Mode Range (Differential Configuration, Note 10) (Figure 9)	1050	V _{CC} – 50	mV
I _{IH}	Input HIGH Current IN / INx (VTIN / VTINx Open)	-150	150	μΑ
IIL	Input LOW Current IN / INx (VTIN / VTINx Open)	-150	150	μΑ

CONTROL INPUT (SELx Pin)

V _{IH}	Input HIGH Voltage for Control Pin	V _{CC} x 0.65	V _{CC}	V
VIL	Input LOW Voltage for Control Pin	GND	V _{CC} x 0.35	V
I _{IH}	Input HIGH Current	-150	150	μΑ
IIL	Input LOW Current	-150	150	μΑ

TERMINATION RESISTORS

R _{TIN}	Internal Input Termination Resistor (Measured from INx to VTx)	45	50	55	Ω
R _{TOUT}	Internal Output Termination Resistor	45	50	55	Ω

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. Input and Output parameters vary 1:1 with V_{CC}.

6. CML outputs loaded with 50 Ω to V_{CC} for proper operation.

7. V_{th} is applied to the complementary input when operating in single-ended mode.

 V_{III}D, V_{ILD}, V_{ILL} and V_{ISE} parameters must be complied with simultaneously.
 V_{ILD}, V_{ILD}, V_{ID} and V_{CMR} parameters must be complied with simultaneously.
 V_{ILD}, V_{ILD}, v_{ILD} and V_{CMR} parameters must be complied with simultaneously.
 V_{CMR} min varies 1:1 with GND, V_{CMR} max varies 1:1 with V_{CC}. The V_{CMR} range is referenced to the most positive side of the differential input signal.

NB6L572M

Symbol	Characteristic		Min	Тур	Max	Unit
f _{MAX}	Maximum Input Clock Frequency $V_{OUT} \ge 250 \text{ mV}$		5	6		GHz
f _{DATAMAX}	Maximum Operating Data Rate NRZ, (PRBS23)		6.5	8		Gbps
f _{SEL}	Maximum Toggle Frequency, SELx		20	40		MHz
V _{OUTPP}	Output Voltage Amplitude (@ V _{INPPmin}) f _{in} ≤ 5 GHz (Note 12) (Figure 10)		250	400		mV
t _{PLH} , t _{PHL}	Propagation Delay to Differential Outputs Measured at Differential Crosspoint	@ 1 GHz INx/INx to Qx/Qx @ 50 MHz SELx to Qx	125	200 4	250 10	ps ns
t _{PD} Tempco	Differential Propagation Delay Temperature Coefficient			100		∆fs/°C
tskew	Output – Output skew (within device) (Note 13) Device – Device skew (tpdmax – tpdmin)			0 5	15 25	ps
t _{DC}	Output Clock Duty Cycle (Reference Duty Cycle = 50%) f _{in} = 1 GHz		45	50	55	%
$\Phi_{\sf N}$	Phase Noise, fin = 1 GHz 10 kHz 100 kHz 100 kHz 1 MHz 10 MHz 20 MHz 40 MHz			-134 -136 -149 -150 -150 -150		dBc
t _{∫ΦN}	Integrated Phase Jitter (Figure x) fin = 1 GHz, 12 kHz $-$ 20 MHz Offset (RMS)			35		fs
t _{JITTER}	Random Clock Jitter, RJ(RMS) (Note 14) Deterministic Jitter, DJ (Note 15) (FR4 ≤ 12')	$\begin{array}{l} f_{in} \leq 5 \text{ GHz} \\ f_{in} \leq 6.5 \text{ Gbps} \end{array}$		0.2 1	0.8 5	ps RMS ps pk–pk
	Crosstalk Induced Jitter (Adjacent Channel) (Note 16)			0.35	0.7	ps RMS
VINPP	Input Voltage Swing (Differential Configuration) (Note 17)		100		1200	mV
t _{r,} , t _f	Output Rise/Fall Times @ 1 GHz; (20% – 80%), V_{IN} = 400 mV Qx, \overline{Qx}		20	35	50	ps

Table 6. AC CHARACTERISTICS	V _{CC} = 2.375 V to 3.6 V, GND = 0 V, T _A = -40°C to +85°C (Note 11)
-----------------------------	--

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

11. Measured using a 100 mVpk-pk source, 50% duty cycle clock source. All output loading with external 50 Ω to V_{CC}. Input edge rates 40 ps (20% - 80%).

12. Output voltage swing is a single-ended measurement operating in differential mode.

13. Skew is measured between outputs under identical transitions and conditions. Duty cycle skew is defined only for differential operation when the delays are measured from cross-point of the inputs to the cross-point of the outputs.

14. Additive RMS jitter with 50% duty cycle clock signal.

15. Additive Peak-to-Peak data dependent jitter with input NRZ data at PRBS23.

16. Crosstalk is measured at the output while applying two similar clock frequencies that are asynchronous with respect to each other at the inputs.

17. Input voltage swing is a single-ended measurement operating in differential mode.

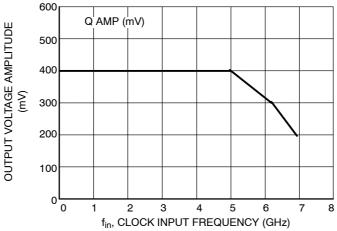
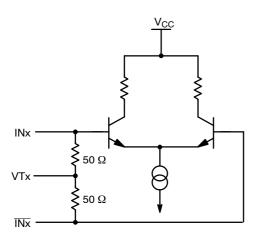



Figure 3. Clock Output Voltage Amplitude (V_{OUTPP}) vs. Input Frequency (fin) at Ambient Temperature (Typical)

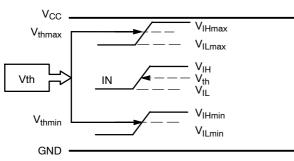


Figure 6. V_{th} Diagram

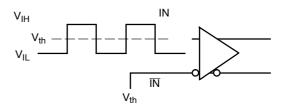
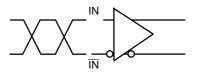
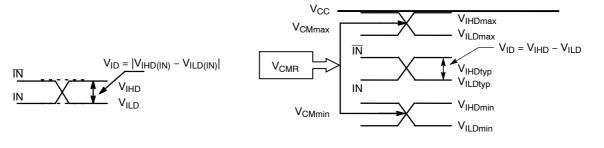
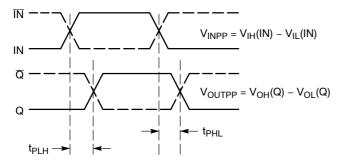
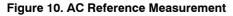
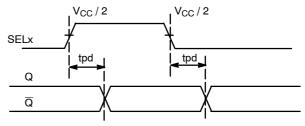
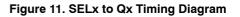




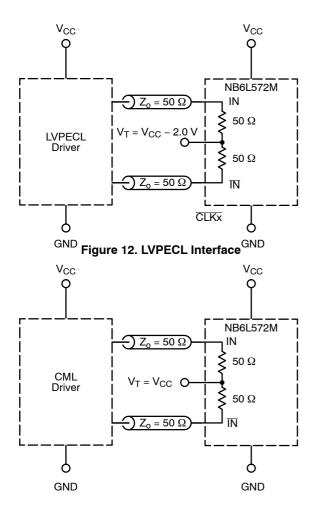
Figure 5. Differential Input Driven Single-Ended




GND







.,

Figure 14. Standard 50 Ω Load CML Interface

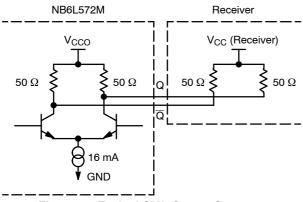
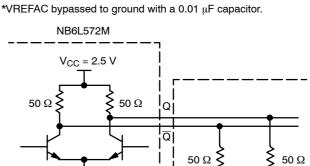
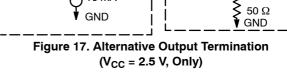


Figure 16. Typical CML Output Structure and Termination (V_{CC} = 2.5 V or 3.3 V)

DEVICE ORDERING INFORMATION


V _{CC}	V _{CC}
LVDS	$ \begin{array}{c} NB6L572M \\ IN \\ V_T = OPEN \\ Z_0 = 50 \Omega \\ \overline{Z_0} = 50 \Omega \\ \overline{IN} \\ \overline{IN} \end{array} $
GND	
	Figure 13. LVDS Interface
	$\begin{array}{c} & & \\ & & \\ \hline & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ & &$
Differential Driver	V _T = 0 VREFAC* 50 Ω
 	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \hline \\ \hline$

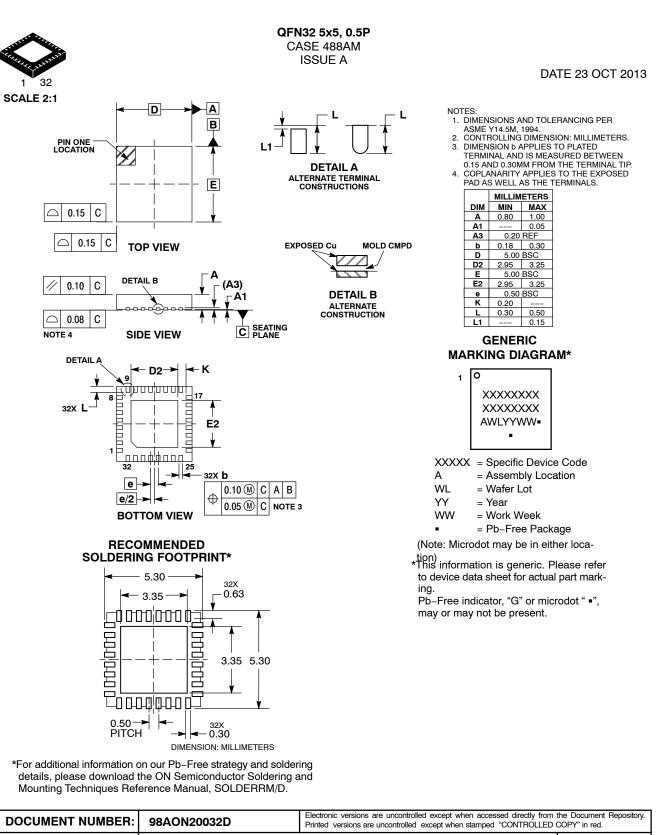

GND GND Figure 15. Capacitor-Coupled Differential Interface (V_T Connected to External V_{REFAC})

Q

50 Ω

Q

16 mA


GND

Device	Package	Shipping [†]
NB6L572MMNG	QFN-32 (Pb-Free)	74 Units / Rail
NB6L572MMNR4G	QFN-32 (Pb-Free)	1000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ECLinPS MAX is a trademark of Semiconductor Component Industries, LLC (SCILLC).

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

DESCRIPTION:

QFN32 5x5 0.5P

PAGE 1 OF 1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Onsemi: NB6L572MMNG NB6L572MMNR4G