3.3 V Zero Delay Clock Buffer

NB2309A

The NB2309A is a versatile, 3.3 V zero delay buffer designed to distribute high-speed clocks. It accepts one reference input and drives out nine low-skew clocks. It is available in a 16 pin package.

The -1H version of the NB2309A operates at up to 133 MHz, and has higher drive than the -1 devices. All parts have on-chip PLL's that lock to an input clock on the REF pin. The PLL feedback is on-chip and is obtained from the CLKOUT pad.

The NB2309A has two banks of four outputs each, which can be controlled by the Select inputs as shown in the Select Input Decoding Table. If all the output clocks are not required, Bank B can be three–stated. The select inputs also allow the input clock to be directly applied to the outputs for chip and system testing purposes.

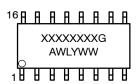
Multiple NB2309A devices can accept the same input clock and distribute it. In this case the skew between the outputs of the two devices is guaranteed to be less than 700 ps.

All outputs have less than 200 ps of cycle-to-cycle jitter. The input and output propagation delay is guaranteed to be less than 350 ps, and the output to output skew is guaranteed to be less than 250 ps.

The NB2309A is available in two different configurations, as shown in the ordering information table. The NB2309A1 is the base part. The NB2309A11H is the high drive version of the -1 and its rise and fall times are much faster than -1 part.

Features

- 15 MHz to 133 MHz Operating Range, Compatible with CPU and PCI Bus Frequencies
- Zero Input Output Propagation Delay
- Multiple Low-Skew Outputs
- Output-Output Skew Less than 250 ps
- Device-Device Skew Less than 700 ps
- One Input Drives 9 Outputs, Grouped as 4 + 4 + 1
- Less than 200 ps Cycle-to-Cycle Jitter is Compatible with Pentium® Based Systems
- Test Mode to Bypass PLL
- Accepts Spread Spectrum Clock at the Input
- Available in 16 Pin, 150 mil SOIC and 4.4 mm TSSOP
- 3.3 V Operation, Advanced 0.35 μ CMOS Technology
- Guaranteed Across Commercial and Industrial Temperature Ranges
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant


ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS*

SOIC-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F

XXXX = Device Code A = Assembly Location

WL, L = Wafer Lot
Y = Year
W, WW = Work Week
G or = Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 7 of this data sheet.

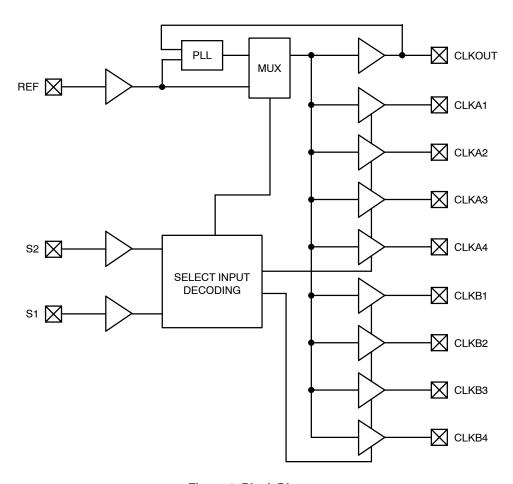


Figure 1. Block Diagram

Table 1. SELECT INPUT DECODING

S2	S1	Clock A1 – A4	Clock B1 – B4	CLKOUT (Note 1)	Output Source	PLL ShutDown
0	0	Three-state	Three-state	Driven	PLL	N
0	1	Driven	Three-state	Driven	PLL	N
1	0	Driven	Driven	Driven	Reference	Υ
1	1	Driven	Driven	Driven	PLL	N

^{1.} This output is driven and has an internal feedback for the PLL. The load on this output can be adjusted to change the skew between the reference and the output.

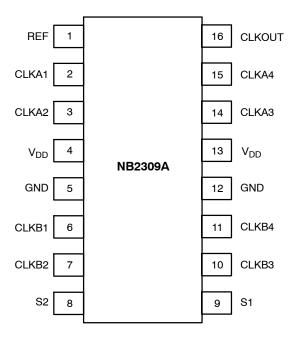


Figure 2. Pin Configuration

Table 2. PIN DESCRIPTION

Pin #	Pin Name	Description
1	REF (Note 2)	Input reference frequency, 5 V tolerant input.
2	CLKA1 (Note 3)	Buffered clock output, Bank A.
3	CLKA2 (Note 3)	Buffered clock output, Bank A.
4	V _{DD}	3.3 V supply.
5	GND	Ground.
6	CLKB1 (Note 3)	Buffered clock output, Bank B.
7	CLKB2 (Note 3)	Buffered clock output, Bank B.
8	S2 (Note 4)	Select input, bit 2.
9	S1 (Note 4)	Select input, bit 1.
10	CLKB3 (Note 3)	Buffered clock output, Bank B.
11	CLKB4 (Note 3)	Buffered clock output, Bank B.
12	GND	Ground.
13	V_{DD}	3.3 V supply.
14	CLKA3 (Note 3)	Buffered clock output, Bank A.
15	CLKA4 (Note 3)	Buffered clock output, Bank A.
16	CLKOUT (Note 3)	Buffered output, internal feedback on this pin.

- Weak pulldown.
 Weak pulldown on all outputs.
 Weak pullup on these inputs.

Table 3. MAXIMUM RATINGS

Parameter	Min	Max	Unit
Supply Voltage to Ground Potential	-0.5	+7.0	V
DC Input Voltage (Except REF)	-0.5	V _{DD} + 0.5	V
DC Input Voltage (REF)	-0.5	7	V
Storage Temperature	-65	+150	°C
Maximum Soldering Temperature (10 sec)		260	°C
Junction Temperature		150	°C
Static Discharge Voltage (per MIL-STD-883, Method 3015)		>2000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. RECOMMENDED OPERATING CONDITIONS

Parameter	Description	Min	Max	Unit	
V_{DD}	Supply Voltage		3.0	3.6	V
T _A	Operating Temperature (Ambient Temperature)	Industrial Commercial	-40 0	85 70	°C
C _L	Load Capacitance, below 100 MHz			30	pF
C _L	Load Capacitance, from 100 MHz to 133 MHz		10	pF	
C _{IN}	Input Capacitance			7	pF

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 5. ELECTRICAL CHARACTERISTICS V_{CC} = 3.0 V to 3.6 V, GND = 0 V, T_A = $-40^{\circ}C$ to $+85^{\circ}C$

Parameter	Description	Test Conditions	Min	Max	Unit
V _{IL}	Input LOW Voltage (Note 5)			0.8	V
V _{IH}	Input HIGH Voltage (Note 5)		2.0		V
I _{IL}	Input LOW Current	V _{IN} = 0 V		50.0	μΑ
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$		100.0	μΑ
V _{OL}	Output LOW Voltage	I _{OL} = 8 mA (-1) I _{OL} = 12 mA (-1H)		0.4	V
V _{OH}	Output HIGH Voltage	I _{OH} = -8 mA (-1) I _{OH} = -12 mA (-1H)	2.4		V
I _{DD}	Supply Current (Commercial Temp)	Unloaded outputs at 66.67 MHz, Select inputs at V _{DD}		34	mA
I _{DD}	Supply Current (Industrial Temp)	Unloaded outputs at 100 MHz 66.67 MHz 33 MHz Select inputs at V _{DD} or GND, at Room Temp		50 34 19	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{5.} REF input has a threshold voltage of $V_{DD}/2$.

Table 6. SWITCHING CHARACTERISTICS $V_{CC} = 3.0~V$ to 3.6~V, GND = 0 V, $T_A = -40^{\circ}C$ to $+85^{\circ}C$ (Note 6)

Parameter	Description		Test Conditions	Min	Тур	Max	Unit
1/t ₁	Output Frequency		30 pF load 10 pF load	15 15		100 133	MHz
1/t ₁	Duty Cycle = (t ₂ / t ₁) * 100 -1H)	(–1, (–1H)	Measured at 1.4 V, F _{OUT} = 66.67 MHz < 50 MHz	40 45	50 50	60 55	%
t ₃	Output Rise Time	(-1) (-1H)	Measured between 0.8 V and 2.0 V			2.5 1.5	ns
t ₄	Output Fall Time		Measured between 2.0 V and 0.8 V			1.5	ns
t ₅	Output-to-Output Skew		All outputs equally loaded			250	ps
t ₆	Delay, REF Rising Edge to CLKOUT Rising Edge		Measured at V _{DD} /2		0	±350	ps
t ₇	Device-to-Device Skew		Measured at $V_{DD}/2$ on the CLKOUT pins of the device		0	700	ps
t ₈	Output Slew Rate		Measured between 0.8 V and 2.0 V using Test Circuit #2	1			V/ns
tı	Cycle-to-Cycle Jitter		Measured at 66.67 MHz, loaded outputs			200	ps
t _{LOCK}	PLL Lock Time		Stable power supply, valid clock presented on REF pin			1.0	ms

^{6.} All parameters specified with loaded outputs in PLL-Mode.

Zero Delay and Skew Control

All outputs should be uniformly loaded to achieve Zero Delay between input and output. Since the CLKOUT pin is the internal feedback to the PLL, its relative loading can adjust the input-output delay.

For applications requiring zero input-output delay, all outputs, including CLKOUT, must be equally loaded. Even if CLKOUT is not used, it must have a capacitive load equal to that on other outputs, for obtaining zero-input-output delay.

SWITCHING WAVEFORMS



Figure 3. Duty Cycle Timing

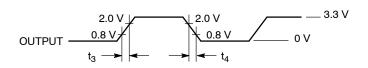


Figure 4. All Outputs Rise/Fall Time

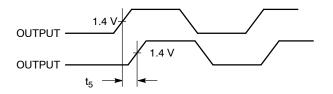


Figure 5. Output - Output Skew

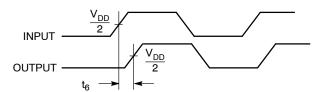


Figure 6. Input - Output Propagation Delay

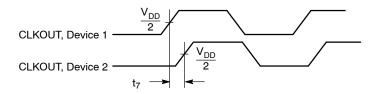


Figure 7. Device - Device Skew

TEST CIRCUITS

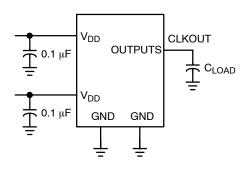


Figure 8. Test Circuit #1

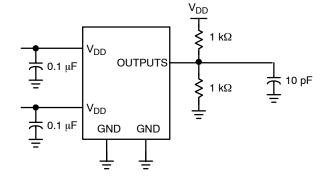
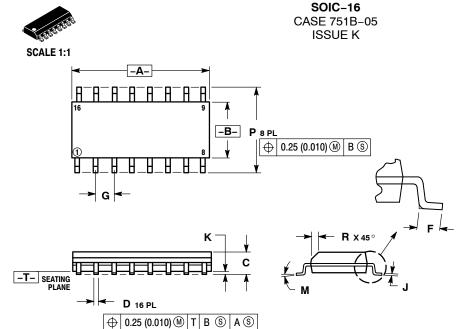


Figure 9. Test Circuit #2
For parameter t₈ (output slew rate) on –1H devices


ORDERING INFORMATION

Device	Marking	Operating Range	Package	Shipping [†]
NB2309Al1DR2G	2309Al1G	Industrial & Commercial	SOIC-16 (Pb-Free)	2500 Tape & Reel
NB2309AI1DTR2G	2309 Al1	Industrial & Commercial	TSSOP-16 (Pb-Free)	2500 Tape & Reel
NB2309AI1HDTR2G	2309 Al1H	Industrial & Commercial	TSSOP-16 (Pb-Free)	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

Pentium is a registered trademark of Intel Corporation.

MECHANICAL CASE OUTLINE

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

 DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
P	5.80	6.20	0.229	0.244	
R			0.010	0.019	

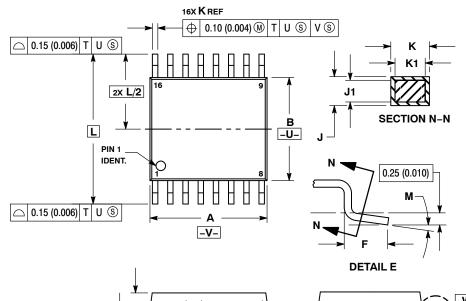
STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:			
PIN 1.	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE	#1	
2.	BASE	2.	ANODE	2.	BASE, #1	2.	COLLECTOR, #1		
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2		
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2		
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3		
6.	BASE	6.	NO CONNECTION		BASE, #2	6.	COLLECTOR, #3		
7.	COLLECTOR	7.	ANODE	7.		7.	COLLECTOR, #4		
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4		
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4		
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4		
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	BASE, #3		
12.	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	EMITTER, #3		
13.	BASE	13.	CATHODE	13.	COLLECTOR, #4	13.	BASE, #2	OOL DEDING	COOTDONT
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, #4	14.	EMITTER, #2	SOLDERING	FOOTPRINT
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	BASE, #1		8X
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1		i.40 — →
								- 0	.40
STYLE 5:		STYLE 6:		STYLE 7:					16X 1.12
PIN 1.	DRAIN, DYE #1		CATHODE	PIN 1.	SOURCE N-CH				10% 1.12
2.	DRAIN, #1		CATHODE	2.	COMMON DRAIN (OUTPU	Τ\		1	16
3.	DRAIN, #2	3.		3.	COMMON DRAIN (OUTPU			, L .	'0
3. 4.	DRAIN, #2	3. 4.	CATHODE	3. 4.	GATE P-CH	1)		- —	
4. 5.	DRAIN, #2	4. 5.	CATHODE	4. 5.	COMMON DRAIN (OUTPU	Τ\		, , , , , , , , , , , , , , , , , , , 	
5. 6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPU		16	5X 1 -	
7.	DRAIN, #4	7.	CATHODE	7.	COMMON DRAIN (OUTPU		0.5	58	, L
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH	•,			
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH				
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPU	T)			
11.	GATE, #3	11.		11.	COMMON DRAIN (OUTPU				
12.	SOURCE, #3	12.		12.	COMMON DRAIN (OUTPU				
13.	GATE, #2	13.		13.	GATE N-CH	.,			
14.	SOURCE, #2	14.		14.	COMMON DRAIN (OUTPU	T)			V PITCH
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPU				1 <u>+=</u> 1- 1
16.	SOURCE, #1		ANODE	16.	SOURCE N-CH	.,			
								□ 8	9 + - + -
									~
									' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
									DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16		PAGE 1 OF 1	

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

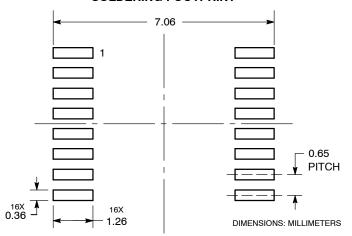
☐ 0.10 (0.004)

D


-T- SEATING PLANE

TSSOP-16 CASE 948F-01 ISSUE B

DATE 19 OCT 2006


NOTES

- JIES:
 DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD
 FLASH. PROTRUSIONS OR GATE BURRS.
 MOLD EL ROLL OF GATE BURDS SUAL NO.
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
- 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
C		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.18	0.28	0.007	0.011	
7	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
Ы	6.40		0.252 BSC		
М	0 °	8 °	0 °	8 °	

SOLDERING FOOTPRINT

G

GENERIC MARKING DIAGRAM*

168888888 XXXX XXXX **ALYW** 188888888

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L Υ = Year W = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Documen Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1		

DETAIL E

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

 NB2309AI1DG
 NB2309AI1DR2G
 NB2309AI1DTG
 NB2309AI1DTR2G
 NB2309AI1HDG
 NB2309AI1HDR2G

 NB2309AI1HDTG
 NB2309AI1HDTR2G
 NB2309AC1DT
 NB2309AI1HD
 NB2309AC1DG
 NB2309AC1DTG

 NB2309AC1DTR2G
 NB2309AC1HDG
 NB2309AC1HDT
 NB2309AC1D
 NB2309AC1DTR2G

 NB2309AC1DTG
 NB2309AC1HDR2G
 NB2309AC1HD
 NB2309AC1HDTR2G