ON Semiconductor # Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, **Preferred Devices** # **Silicon Epicap Diodes** Designed for general frequency control and tuning applications; providing solid-state reliability in replacement of mechanical tuning methods. #### **Features** - High Q with Guaranteed Minimum Values at VHF Frequencies - Controlled and Uniform Tuning Ratio - Available in Surface Mount Package - Pb-Free Packages are Available #### MAXIMUM RATINGS (T_C = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |--|------------------|--------------------------|----------------------------| | Reverse Voltage | V_R | 30 | Vdc | | Forward Current | lF | 200 | mAdc | | Forward Power Dissipation MMBV109LT1 @ T _A = 25°C Derate above 25°C MV209 @ T _A = 25°C Derate above 25°C | P _D | 200
2.0
200
1.6 | mW
mW/°C
mW
mW/°C | | Junction Temperature | TJ | +125 | °C | | Storage Temperature Range | T _{stg} | -55 to +150 | °C | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. ### **ELECTRICAL CHARACTERISTICS** ($T_A = 25^{\circ}C$ unless otherwise noted) | Characteristic | Symbol | Min | Тур | Max | Unit | |---|-----------------|-----|-----|-----|--------| | Reverse Breakdown Voltage (I _R = 10 μAdc) | $V_{(BR)R}$ | 30 | ı | ı | Vdc | | Reverse Voltage Leakage Current (V _R = 25 Vdc) | I _R | - | - | 0.1 | μAdc | | Diode Capacitance Temperature Coefficient (V _R = 3.0 Vdc, f = 1.0 MHz) | TC _C | - | 300 | - | ppm/°C | #### ON Semiconductor® http://onsemi.com # 26-32 pF VOLTAGE VARIABLE CAPACITANCE DIODES M4A = Device Code M = Date Code* • = Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation and/or overbar may vary depending upon manufacturing location. MV209 = Device Code A = Assembly Location Y = Year WW = Work Week ■ = Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. **Preferred** devices are recommended choices for future use and best overall value. | | | | C_t , Diode Capacitance $V_R = 3.0 \text{ Vdc}$, $f = 1.0 \text{ MHz}$ pF | | = 1.0 MHz V _R = 3.0 Vdc | | C _R , Capacitance Ratio
C ₃ /C ₂₅
f = 1.0 MHz (Note 1) | | |-------------|---------------------|-----------------------|--|-----|------------------------------------|-----|---|-----| | Device | Package | Shipping [†] | Min | Nom | Max | Min | Min | Max | | MMBV109LT1 | SOT-23 | 3,000 / Tape & Reel | | | | | | | | MMBV109LT1G | SOT-23
(Pb-Free) | 3,000 / Tape & Reel | | | | | | | | MMBV109LT3 | SOT-23 | 10,000 / Tape & Reel | | | | | | | | MMBV109LT3G | SOT-23
(Pb-Free) | 10,000 / Tape & Reel | 26 | 29 | 32 | 200 | 5.0 | 6.5 | | MV209 | TO-92 | 1,000 Units / Bag | | | | | | | | MV209G | TO-92
(Pb-Free) | 1,000 Units / Bag | | | | | | | 1000 ^{1.} C_R is the ratio of C_t measured at 3 Vdc divided by C_t measured at 25 Vdc. 100 100 100 100 100 1000 1000 Figure 1. DIODE CAPACITANCE Figure 3. LEAKAGE CURRENT Figure 4. DIODE CAPACITANCE #### NOTES ON TESTING AND SPECIFICATIONS ### **PACKAGE DIMENSIONS** SOT-23 (TO-236) CASE 318-08 **ISSUE AN** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. 318-01 THRU -07 AND -09 OBSOLETE, NEW STANDARD 318-08. | | MILLIMETERS | | | INCHES | | | | |-----|-------------|------|------|--------|-------|-------|--| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | | Α | 0.89 | 1.00 | 1.11 | 0.035 | 0.040 | 0.044 | | | A1 | 0.01 | 0.06 | 0.10 | 0.001 | 0.002 | 0.004 | | | b | 0.37 | 0.44 | 0.50 | 0.015 | 0.018 | 0.020 | | | С | 0.09 | 0.13 | 0.18 | 0.003 | 0.005 | 0.007 | | | D | 2.80 | 2.90 | 3.04 | 0.110 | 0.114 | 0.120 | | | E | 1.20 | 1.30 | 1.40 | 0.047 | 0.051 | 0.055 | | | е | 1.78 | 1.90 | 2.04 | 0.070 | 0.075 | 0.081 | | | L | 0.10 | 0.20 | 0.30 | 0.004 | 0.008 | 0.012 | | | L1 | 0.35 | 0.54 | 0.69 | 0.014 | 0.021 | 0.029 | | | HE | 2.10 | 2.40 | 2.64 | 0.083 | 0.094 | 0.104 | | #### STYLE 8: - ANODE NO CONNECTION CATHODE #### **SOLDERING FOOTPRINT*** *For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### PACKAGE DIMENSIONS TO-92 (TO-226AC) CASE 182-06 ISSUE L - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI - Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. - 3. CONTOUR OF PACKAGE BEYOND ZONE R IS UNCONTROLLED. - 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. | | INC | HES | MILLIMETERS | | | |-----|-----------|-------|-------------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.175 | 0.205 | 4.45 | 5.21 | | | В | 0.170 | 0.210 | 4.32 | 5.33 | | | С | 0.125 | 0.165 | 3.18 | 4.19 | | | D | 0.016 | 0.021 | 0.407 | 0.533 | | | G | 0.050 | BSC | 1.27 BSC | | | | Н | 0.100 BSC | | 2.54 BSC | | | | 7 | 0.014 | 0.016 | 0.36 | 0.41 | | | K | 0.500 | | 12.70 | | | | L | 0.250 | | 6.35 | | | | N | 0.080 | 0.105 | 2.03 | 2.66 | | | Р | | 0.050 | | 1.27 | | | R | 0.115 | | 2.93 | | | | ٧ | 0.135 | | 3.43 | | | STYLE 1: PIN 1. ANODE ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ltc (SCILLC) solicit esserves the inject to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative # **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: # onsemi: MV209 MV209G MV209RLRA MMBV109LT1 MMBV109LT1G MMBV109LT3 MMBV109LT3G