BCD-to-Seven Segment Latch/Decoder/Driver for Liquid Crystals

The MC14543B BCD-to-seven segment latch/decoder/driver is designed for use with liquid crystal readouts, and is constructed with complementary MOS (CMOS) enhancement mode devices. The circuit provides the functions of a 4-bit storage latch and an 8421 BCD-to-seven segment decoder and driver. The device has the capability to invert the logic levels of the output combination. The phase (Ph), blanking (BI), and latch disable (LD) inputs are used to reverse the truth table phase, blank the display, and store a BCD code, respectively. For liquid crystal (LC) readouts, a square wave is applied to the Ph input of the circuit and the electrically common backplane of the display. The outputs of the circuit are connected directly to the segments of the LC readout. For other types of readouts, such as light-emitting diode (LED), incandescent, gas discharge, and fluorescent readouts, connection diagrams are given on this data sheet.

Applications include instrument (e.g., counter, DVM etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

Features

- Latch Storage of Code
- Blanking Input
- Readout Blanking on All Illegal Input Combinations
- Direct LED (Common Anode or Cathode) Driving Capability
- Supply Voltage Range = 3.0 V to 18 V
- Capable of Driving 2 Low–power TTL Loads, 1 Low–power Schottky TTL Load or 2 HTL Loads Over the Rated Temperature Range
- Pin–for–Pin Replacement for CD4056A (with Pin 7 Tied to V_{SS}).
- Chip Complexity: 207 FETs or 52 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.
- This Device is Pb-Free and is RoHS Compliant

ON Semiconductor®

http://onsemi.com

SOIC-16 D SUFFIX CASE 751B

PIN ASSIGNMENT

LD	þ	1●	16] V _{DC}
С	þ	2	15] f
В	þ	3	14	g
D	þ	4	13	
Α	þ	5	12] d
РΗ	þ	6] c
ВІ	þ	7	10] b
/ss	þ	8	9] a

MARKING DIAGRAM

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year

WW, W = Work Week
G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Parameter	Symbol	Value	Unit
DC Supply Voltage Range	V _{DD}	-0.5 to +18.0	V
Input Voltage Range, All Inputs	V _{in}	-0.5 to V _{DD} +0.5	V
DC Input Current per Pin	I _{in}	±10	mA
Power Dissipation per Package (Note 1)	P _D	500	mW
Operating Temperature Range	T _A	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Maximum Continuous Output Drive Current (Source or Sink)	I _{OHmax} I _{OLmax}	10 (per Output)	mA
Maximum Continuous Output Power (Source or Sink) (Note 2)	P _{OHmax} P _{OLmax}	70 (per Output)	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

TRUTH TABLE

Inputs							Outputs							
LD	ВІ	Ph*	D	С	В	Α	а	b	С	d	е	f	g	Display
Х	1	0	Χ	Χ	Χ	Χ	0	0	0	0	0	0	0	Blank
1	0	0	0	0	0	0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	1	1	0	0	0	0	1
1	0	0	0	0	1	0	1	1	0	1	1	0	1	2
1	0	0	0	0	1	1	1	1	1	1	0	0	1	3
1	0	0	0	1	0	0	0	1	1	0	0	1	1	4
1	0	0	0	1	0	1	1	0	1	1	0	1	1	5
1	0	0	0	1	1	0	1	0	1	1	1	1	1	6
1	0	0	0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	0	0	1	1	1	1	1	0	1	1	9
1	0	0	1	0	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	0	1	1	0	0	0	0	0	0	0	Blank
1	0	0	1	1	0	0	0	0	0	0	0	0	0	Blank
1	0	0	1	1	0	1	0	0	0	0	0	0	0	Blank
1	0	0	1	1	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	1	1	1	0	0	0	0	0	0	0	Blank
0	0	0	Х	Χ	Χ	Χ		**					**	
†	†	†		†			Inverse of Output Combinations Above					Display as above		

X = Don't care

^{1.} Temperature Derating: "D/DW" Package: -7.0 mW/°C From 65°C To 125°C

^{2.} $P_{OHmax} = I_{OH} (V_{OH} - V_{DD})$ and $P_{OLmax} = I_{OL} (V_{OL} - V_{SS})$ This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

^{† =} Above Combinations

^{* =} For liquid crystal readouts, apply a square wave to Ph For common cathode LED readouts, select Ph = 0 For common anode LED readouts, select Ph = 1

^{** =} Depends upon the BCD code previously applied when LD = 1

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

			- 5	5°C	25°C			125		
Characteristic	Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 3)	Max	Min	Max	Unit
Output Voltage "0" Level $V_{in} = V_{DD}$ or 0	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05		0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
$V_{in} = 0$ or V_{DD}	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
Input Voltage "0" Level (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
"1" Level $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	V _{IH}	5.0 10 15	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11	_ _ _	Vdc
Output Drive Current ($V_{OH} = 2.5 \text{ Vdc}$) Source ($V_{OH} = 4.6 \text{ Vdc}$) ($V_{OH} = 0.5 \text{ Vdc}$) ($V_{OH} = 9.5 \text{ Vdc}$) ($V_{OH} = 13.5 \text{ Vdc}$)	ІОН	5.0 5.0 10 10	-3.0 -0.64 - -1.6 -4.2	- - - -	-2.4 -0.51 - -1.3 -3.4	-4.2 -0.88 -10.1 -2.25 -8.8	- - - -	-1.7 -0.36 - -0.9 -2.4	- - -	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ Sink $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 9.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	I _{OL}	5.0 10 10 15	0.64 1.6 - 4.2	- - - -	0.51 1.3 - 3.4	0.88 2.25 10.1 8.8	- - - -	0.36 0.9 - 2.4	- - -	mAdc
Input Current	I _{in}	15	_	±0.1	-	±0.00001	±0.1	_	±1.0	μAdc
Input Capacitance	C _{in}	-	_	-	-	5.0	7.5	_	-	pF
Quiescent Current (Per Package) $V_{in} = 0$ or V_{DD} , $I_{out} = 0$ μA	I _{DD}	5.0 10 15	- - -	5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μAdc
Total Supply Current (Note 4, 5) (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching)	I _T	5.0 10 15			$I_T = (3)$	1.6 μΑ/kHz) f 3.1 μΑ/kHz) f 4.7 μΑ/kHz) f	+ I _{DD}	,		μAdc

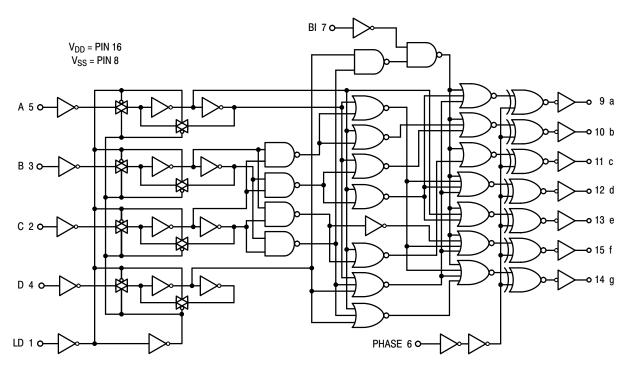
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

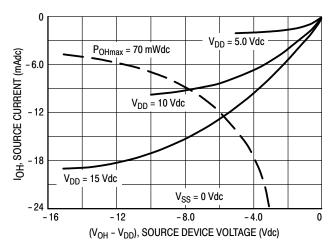
3. Noise immunity specified for worst-case input combination.

```
Noise Margin for both "1" and "0" level = 1.0 \text{ V min } @ \text{ V}_{DD} = 5.0 \text{ V}

2.0 \text{ V min } @ \text{ V}_{DD} = 10 \text{ V}

2.5 \text{ V min } @ \text{ V}_{DD} = 15 \text{ V}
```


- 4. To calculate total supply current at loads other than 50 pF: I_T(C_L) = I_T(50 pF) + 3.5 x 10⁻³ (C_L 50) V_{DD}f where: I_T is in μA (per package), C_L in pF, V_{DD} in V, and f in kHz is input frequency.
 5. The formulas given are for the typical characteristics only at 25°C.


SWITCHING CHARACTERISTICS (Note 6) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$)

Characteristic	Symbol	V_{DD}	Min	Тур	Max	Unit
Output Rise Time $t_{TLH} = (3.0 \text{ ns/pF}) C_L + 30 \text{ ns}$ $t_{TLH} = (1.5 \text{ ns/pF}) C_L + 15 \text{ ns}$ $t_{TLH} = (1.1 \text{ ns/pF}) C_L + 10 \text{ ns}$	t _{TLH}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Output Fall Time $t_{THL} = (1.5 \text{ ns/pF}) \text{ C}_{L} + 25 \text{ ns} \\ t_{THL} = (0.75 \text{ ns/pF}) \text{ C}_{L} + 12.5 \text{ ns} \\ t_{THL} = (0.55 \text{ ns/pF}) \text{ C}_{L} + 12.5 \text{ ns}$	t _{THL}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Turn–Off Delay Time $t_{PLH} = (1.7 \text{ ns/pF}) C_L + 520 \text{ ns}$ $t_{PLH} = (0.66 \text{ ns/pF}) C_L + 217 \text{ ns}$ $t_{PLH} = (0.5 \text{ ns/pF}) C_L + 160 \text{ ns}$	t _{PLH}	5.0 10 15	- - -	605 250 185	1210 500 370	ns
Turn–On Delay Time $t_{PHL} = (1.7 \text{ ns/pF}) \text{ C}_{L} + 420 \text{ ns}$ $t_{PHL} = (0.66 \text{ ns/pF}) \text{ C}_{L} + 172 \text{ ns}$ $t_{PHL} = (0.5 \text{ ns/pF}) \text{ C}_{L} + 130 \text{ ns}$	t _{PHL}	5.0 10 15	- - -	505 205 155	1650 660 495	ns
Setup Time	t _{su}	5.0 10 15	350 450 500		- - -	ns
Hold Time	t _h	5.0 10 15	40 30 20		- - -	ns
Latch Disable Pulse Width (Strobing Data)	t _{WH}	5.0 10 15	250 100 80	125 50 40	- - -	ns

^{6.} The formulas given are for the typical characteristics only.

LOGIC DIAGRAM

Figure 1. Typical Output Source Characteristics

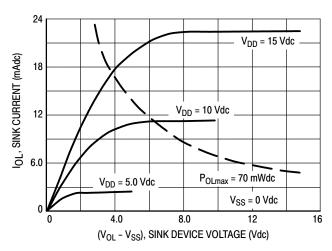
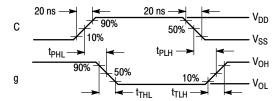
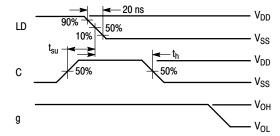




Figure 2. Typical Output Sink Characteristics

(a) Inputs D, Ph, and BI low, and Inputs A, B, and LD high.

(b) Inputs D, Ph, and BI low, and Inputs A and B high.

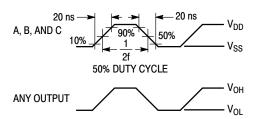
(c) Data DCBA strobed into latches

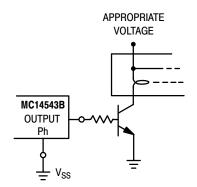


Figure 4. Dynamic Signal Waveforms

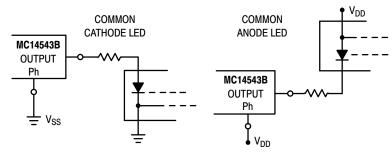
Inputs BI and Ph low, and Inputs D and LD high. f in respect to a system clock.

All outputs connected to respective C_L loads.



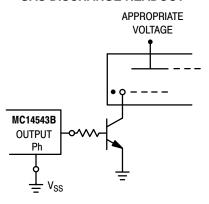

Figure 3. Dynamic Power Dissipation Signal Waveforms

CONNECTIONS TO VARIOUS DISPLAY READOUTS


LIQUID CRYSTAL (LC) READOUT

ONE OF SEVEN SEGMENTS OUTPUT Ph COMMON BACKPLANE SQUARE WAVE (VSS TO VDD)

INCANDESCENT READOUT



LIGHT EMITTING DIODE (LED) READOUT

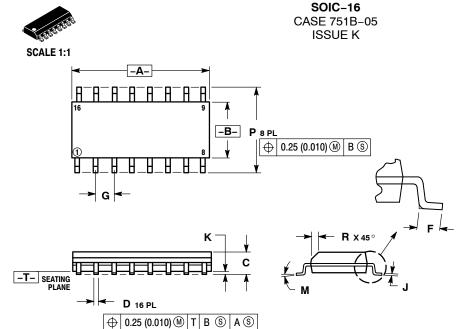
NOTE: Bipolar transistors may be added for gain (for $V_{DD} \le 10 \text{ V}$ or $I_{out} \ge 10 \text{ mA}$).

GAS DISCHARGE READOUT

CONNECTIONS TO SEGMENTS

$$e^{\int \frac{a}{g} \int_{c}^{b} b}$$

 $V_{DD} = PIN 16$ $V_{SS} = PIN 8$


ORDERING INFORMATION

Device	Package	Shipping [†]
MC14543BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14543BDR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
NLV14543BDR2G*	SOIC-16 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable.

MECHANICAL CASE OUTLINE

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

 DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	METERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	9.80	10.00	0.386	0.393		
В	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27	BSC	0.050 BSC			
J	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
M	0°	7°	0°	7°		
P	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:			
PIN 1.	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE	#1	
2.	BASE	2.	ANODE	2.	BASE, #1	2.	COLLECTOR, #1		
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2		
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2		
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3		
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3		
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4		
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4		
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4		
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4		
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	BASE, #3		
12.	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	EMITTER, #3		
13.	BASE	13.	CATHODE	13.	COLLECTOR, #4	13.	BASE, #2	COL DEDING	FOOTPRINT
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, #4	14.	EMITTER, #2	SOLDERING	3 FOOTPRINT
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	BASE, #1		8X
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1		5.40 →
								7	,.40
STYLE 5:		STYLE 6:		STYLE 7:					16X 1.12 <
PIN 1.	DRAIN, DYE #1		CATHODE	PIN 1.	SOURCE N-CH				
2.	DRAIN, #1		CATHODE	2.	COMMON DRAIN (OUTPU	T)		. 1	16
3.	DRAIN, #2	3.		3.	COMMON DRAIN (OUTPU			↓ └── ·	" 🗀
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH	•,		- —	
5.	DRAIN, #3	5.	CATHODE	5.	COMMON DRAIN (OUTPU	T)	16	5X T	
6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPU		0.5	iii I	· —
7.	DRAIN, #4	7.	CATHODE	7.	COMMON DRAIN (OUTPU		0.0		
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH	,			
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH				
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPU	T)			
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPU	T)			
12.	SOURCE, #3	12.	ANODE	12.	COMMON DRAIN (OUTPU	T)			
13.	GATE, #2	13.	ANODE	13.	GATE N-CH				
14.	SOURCE, #2	14.	ANODE	14.	COMMON DRAIN (OUTPU	T)			— V PITCH
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPU				<u> </u>
16.	SOURCE, #1	16.	ANODE	16.	SOURCE N-CH				
								8	9 + - + -
								 •	_ - _
									DIMENSIONS: MILLIMETERS
									DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16		PAGE 1 OF 1		

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

<u>MC14543BCP MC14543BCPG MC14543BD MC14543BDG MC14543BDR2 MC14543BDR2G MC1454543BDR2G MC1454543BDR2G MC1454543BDR2G MC1454543BDR2G MC145454545454 MC1454545454 MC1454545454 MC1454545454 MC1</u>