# 3.3 V ECL Triple D Flip-Flop with Set and Reset

## MC100LVEL30

#### Description

The MC100LVEL30 is a triple master-slave D flip-flop with differential outputs. Data enters the master latch when the clock input is LOW and transfers to the slave upon a positive transition on the clock input.

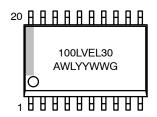
In addition to a common Set input individual Reset inputs are provided for each flip-flop. Both the Set and Reset inputs function asynchronous and overriding with respect to the clock inputs.

#### **Features**

- 1200 MHz Minimum Toggle Frequency
- 450 ps Typical Propagation Delays
- ESD Protection: > 2 kV Human Body Model
- The 100 Series Contains Temperature Compensation.
- PECL Mode Operating Range:
   V<sub>CC</sub> = 3.0 V to 3.8 V with V<sub>EE</sub> = 0 V
- NECL Mode Operating Range: V<sub>CC</sub> = 0 V with V<sub>EE</sub> = −3.0 V to −3.8 V
- Internal Input 75 kΩ Pulldown Resistors
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity: Level 3 (Pb-Free)
   (For Additional Information, see Application Note <u>AND8003/D</u>)
- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count = 347 Devices
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

1




### ON Semiconductor®

www.onsemi.com



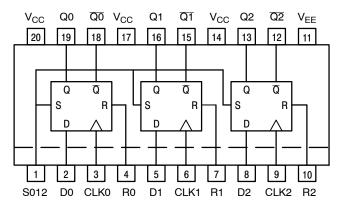
SOIC-20 WB DW SUFFIX CASE 751D-05

#### MARKING DIAGRAM\*



A = Assembly Location
WL = Wafer Lot

YY = Year
WW = Work Week
G = Pb-Free Package


#### **ORDERING INFORMATION**

| Device           | Package    | Shipping†   |
|------------------|------------|-------------|
| MC100LVEL30DWR2G | SOIC-20 WB | 1000 /      |
|                  | (Pb-Free)  | Tape & Reel |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

<sup>\*</sup>For additional marking information, refer to Application Note <u>AND8002/D</u>.

#### MC100LVEL30



Warning: All  $V_{CC}$  and  $V_{EE}$  pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. Logic Diagram and Pinout: 20-Lead SOIC (Top View)

**Table 2. PIN DESCRIPTION** 

| PIN                     | FUNCTION                      |  |  |  |  |  |  |
|-------------------------|-------------------------------|--|--|--|--|--|--|
| D0-D2                   | ECL Data Inputs               |  |  |  |  |  |  |
| R0-R2                   | ECL Reset Inputs              |  |  |  |  |  |  |
| CLK0-CLK2               | ECL Clock Inputs              |  |  |  |  |  |  |
| S012                    | ECL Common Set Input          |  |  |  |  |  |  |
| Q0-Q2; <del>Q0-Q2</del> | ECL Differential Data Outputs |  |  |  |  |  |  |
| V <sub>CC</sub>         | Positive Supply               |  |  |  |  |  |  |
| V <sub>EE</sub>         | Negative Supply               |  |  |  |  |  |  |

**Table 1. TRUTH TABLE** 

| R     | s       | D     | CLK              | Q                         | Q                         |
|-------|---------|-------|------------------|---------------------------|---------------------------|
| ココエコエ | <b></b> | ⊣¤××× | Z<br>Z<br>X<br>X | L<br>H<br>L<br>H<br>Undef | H<br>L<br>H<br>L<br>Undef |

Z = LOW to HIGH Transition X = Don't Care

**Table 3. MAXIMUM RATINGS** 

| Symbol           | Parameter                                          | Condition 1                                    | Condition 2                                                       | Rating            | Unit |
|------------------|----------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|-------------------|------|
| V <sub>CC</sub>  | PECL Mode Power Supply                             | V <sub>EE</sub> = 0 V                          |                                                                   | 8 to 0            | V    |
| V <sub>EE</sub>  | NECL Mode Power Supply                             | V <sub>CC</sub> = 0 V                          |                                                                   | -8 to 0           | V    |
| VI               | PECL Mode Input Voltage<br>NECL Mode Input Voltage | V <sub>EE</sub> = 0 V<br>V <sub>CC</sub> = 0 V | $\begin{array}{c} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$ | 6 to 0<br>-6 to 0 | V    |
| l <sub>out</sub> | Output Current                                     | Continuous<br>Surge                            |                                                                   | 50<br>100         | mA   |
| T <sub>A</sub>   | Operating Temperature Range                        |                                                |                                                                   | -40 to +85        | °C   |
| T <sub>stg</sub> | Storage Temperature Range                          |                                                |                                                                   | −65 to +150       | °C   |
| θJA              | Thermal Resistance (Junction-to-Ambient)           | 0 lfpm<br>500 lfpm                             | SOIC-20 WB<br>SOIC-20 WB                                          | 90<br>60          | °C/W |
| θ <sub>JC</sub>  | Thermal Resistance (Junction-to-Case)              | Standard Board                                 | SOIC-20 WB                                                        | 30 to 35          | °C/W |
| T <sub>sol</sub> | Wave Solder                                        | < 2 to 3 sec @ 248°C                           |                                                                   | 265               | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

#### MC100LVEL30

Table 4. LVPECL DC CHARACTERISTICS ( $V_{CC} = 3.3 \text{ V}$ ;  $V_{EE} = 0.0 \text{ V}$  (Note 1))

|                 |                              |      | -40°C |      |      | 25°C |      |      | 85°C |      |      |
|-----------------|------------------------------|------|-------|------|------|------|------|------|------|------|------|
| Symbol          | Characteristic               | Min  | Тур   | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Unit |
| I <sub>EE</sub> | Power Supply Current         |      | 55    | 62   |      | 55   | 62   |      | 55   | 64   | mA   |
| V <sub>OH</sub> | Output HIGH Voltage (Note 2) | 2215 | 2295  | 2420 | 2275 | 2345 | 2420 | 2275 | 2345 | 2420 | mV   |
| V <sub>OL</sub> | Output LOW Voltage (Note 2)  | 1470 | 1605  | 1745 | 1490 | 1595 | 1680 | 1490 | 1595 | 1680 | mV   |
| V <sub>IH</sub> | Input HIGH Voltage           | 2135 |       | 2420 | 2135 |      | 2420 | 2135 |      | 2420 | mV   |
| V <sub>IL</sub> | Input LOW Voltage            | 1490 |       | 1825 | 1490 |      | 1825 | 1490 |      | 1825 | mV   |
| I <sub>IH</sub> | Input HIGH Current           |      |       | 150  |      |      | 150  |      |      | 150  | μА   |
| I <sub>IL</sub> | Input LOW Current            | 0.5  |       |      | 0.5  |      |      | 0.5  |      |      | μΑ   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 1. Input and output parameters vary 1:1 with V $_{CC}$ . V $_{EE}$  can vary  $\pm 0.3$  V. 2. Outputs are terminated through a 50  $\Omega$  resistor to V $_{CC}$  2.0 V.

Table 5. LVNECL DC CHARACTERISTICS (V<sub>CC</sub> = 0.0 V; V<sub>EE</sub> = -3.3 V (Note 1))

|                 |                              | -40°C |       | 25°C  |       | 85°C  |       |       |       |       |      |
|-----------------|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| Symbol          | Characteristic               | Min   | Тур   | Max   | Min   | Тур   | Max   | Min   | Тур   | Max   | Unit |
| I <sub>EE</sub> | Power Supply Current         |       | 55    | 62    |       | 55    | 62    |       | 55    | 64    | mA   |
| V <sub>OH</sub> | Output HIGH Voltage (Note 2) | -1085 | -1005 | -880  | -1025 | -955  | -880  | -1025 | -955  | -880  | mV   |
| V <sub>OL</sub> | Output LOW Voltage (Note 2)  | -1830 | -1695 | -1555 | -1810 | -1705 | -1620 | -1810 | -1705 | -1620 | mV   |
| V <sub>IH</sub> | Input HIGH Voltage           | -1165 |       | -880  | -1165 |       | -880  | -1165 |       | -880  | mV   |
| V <sub>IL</sub> | Input LOW Voltage            | -1810 |       | -1475 | -1810 |       | -1475 | -1810 |       | -1475 | mV   |
| I <sub>IH</sub> | Input HIGH Current           |       |       | 150   |       |       | 150   |       |       | 150   | μΑ   |
| I <sub>IL</sub> | Input LOW Current            | 0.5   |       |       | 0.5   |       |       | 0.5   |       |       | μΑ   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 1. Input and output parameters vary 1:1 with V $_{CC}$ . V $_{EE}$  can vary  $\pm 0.3$  V. 2. Outputs are terminated through a 50  $\Omega$  resistor to V $_{CC}$  2.0 V.

Table 6. AC CHARACTERISTICS ( $V_{CC} = 3.3 \text{ V}$ ;  $V_{EE} = 0.0 \text{ V}$  or  $V_{CC} = 0.0 \text{ V}$ ;  $V_{EE} = -3.3 \text{ V}$  (Note 1))

|                                      |                                          | -40°C 25°C |          | 85°C |            |          |     |            |          |     |      |
|--------------------------------------|------------------------------------------|------------|----------|------|------------|----------|-----|------------|----------|-----|------|
| Symbol                               | Characteristic                           | Min        | Тур      | Max  | Min        | Тур      | Max | Min        | Тур      | Max | Unit |
| f <sub>max</sub>                     | Maximum Toggle Frequency                 | 1.2        |          |      | 1.2        |          |     | 1.2        |          |     | GHz  |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay to Output<br>CLK, S, R | 550        |          | 800  | 570        |          | 820 | 590        |          | 840 | ps   |
| t <sub>S</sub><br>t <sub>H</sub>     | Setup Time<br>Hold Time                  | 150<br>200 | 0<br>100 |      | 150<br>200 | 0<br>100 |     | 150<br>200 | 0<br>100 |     | ps   |
| t <sub>RR</sub>                      | Set/Reset Recovery                       | 400        | 200      |      | 400        | 200      |     | 400        | 200      |     | ps   |
| t <sub>PW</sub>                      | Minimum Pulse Width<br>CLK<br>Set, Reset | 400<br>650 |          |      | 400<br>650 |          |     | 400<br>650 |          |     | ps   |
| t <sub>JITTER</sub>                  | Cycle-to-Cycle Jitter                    |            | 9.5      |      |            | 10.5     |     |            | 10.8     |     | ps   |
| t <sub>r</sub><br>t <sub>f</sub>     | Output Rise/Fall Times Q (20%-80%)       | 280        |          | 550  | 280        | 450      | 550 | 280        |          | 550 | ps   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

1.  $V_{EE}$  can vary  $\pm 0.3$  V.

#### MC100LVEL30

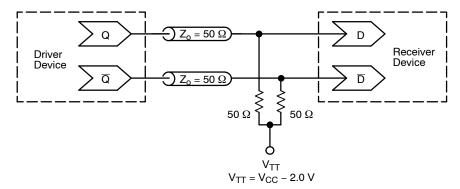



Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices)

### **Resource Reference of Application Notes**

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS I/O SPiCE Modeling Kit

AN1504/D - Metastability and the ECLinPS Family

AN1568/D - Interfacing Between LVDS and ECL

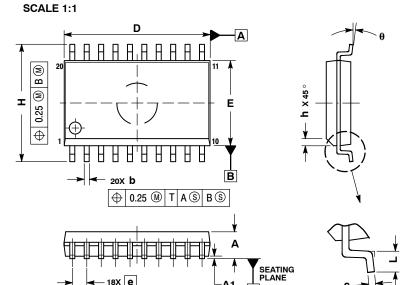
AN1672/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes

AND8020/D - Termination of ECL Logic Devices

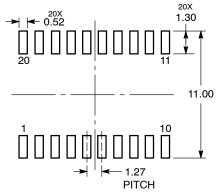
AND8066/D - Interfacing with ECLinPS


AND8090/D - AC Characteristics of ECL Devices



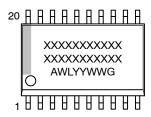


SOIC-20 WB CASE 751D-05 **ISSUE H** 


**DATE 22 APR 2015** 



- DIMENSIONS ARE IN MILLIMETERS.
   INTERPRET DIMENSIONS AND TOLERANCES.
- PER ASME Y14.5M, 1994.
  3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
  MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL


|     | MILLIMETERS |       |  |  |  |  |  |  |
|-----|-------------|-------|--|--|--|--|--|--|
| DIM | MIN         | MAX   |  |  |  |  |  |  |
| Α   | 2.35        | 2.65  |  |  |  |  |  |  |
| A1  | 0.10        | 0.25  |  |  |  |  |  |  |
| b   | 0.35        | 0.49  |  |  |  |  |  |  |
| С   | 0.23        | 0.32  |  |  |  |  |  |  |
| D   | 12.65       | 12.95 |  |  |  |  |  |  |
| E   | 7.40        | 7.60  |  |  |  |  |  |  |
| е   | 1.27        | BSC   |  |  |  |  |  |  |
| Н   | 10.05       | 10.55 |  |  |  |  |  |  |
| h   | 0.25        | 0.75  |  |  |  |  |  |  |
| L   | 0.50        | 0.90  |  |  |  |  |  |  |
| A   | 0 °         | 7 °   |  |  |  |  |  |  |

#### **RECOMMENDED SOLDERING FOOTPRINT\***



DIMENSIONS: MILLIMETERS

#### **GENERIC MARKING DIAGRAM\***



XXXXX = Specific Device Code = Assembly Location

WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repo<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |  |  |
|------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| DESCRIPTION:     | SOIC-20 WB  |                                                                                                                                                                              | PAGE 1 OF 1 |  |  |  |  |

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

# onsemi:

MC100LVEL30DW MC100LVEL30DWG MC100LVEL30DWR2 MC100LVEL30DWR2G