ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

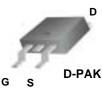
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

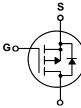
ON Semiconductor®

FQD3P50TM-F085

500V P-Channel MOSFET

General Description

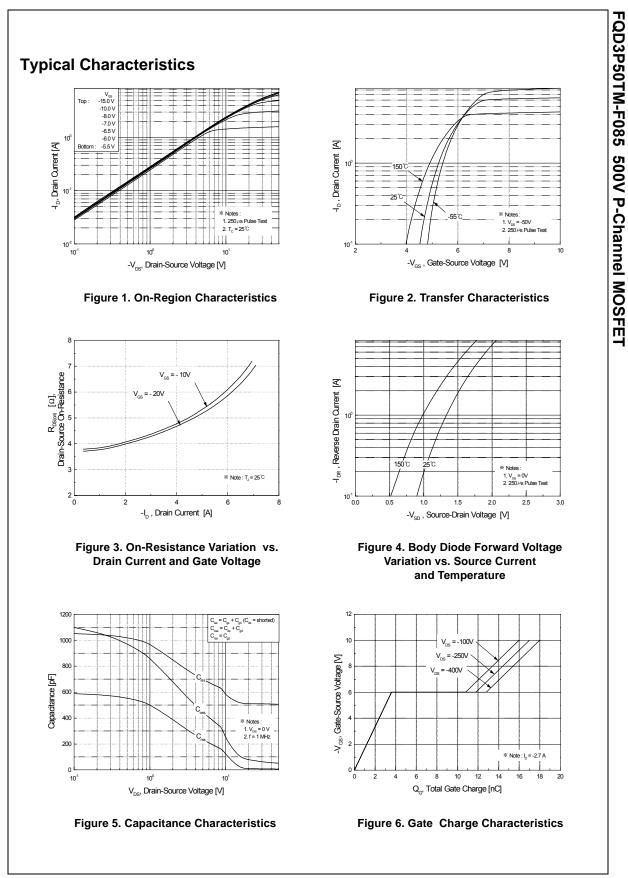

These P-Channel enhancement mode power field effect transistors are produced using ON Semiconductor's proprietary, planar stripe, DMOS technology.

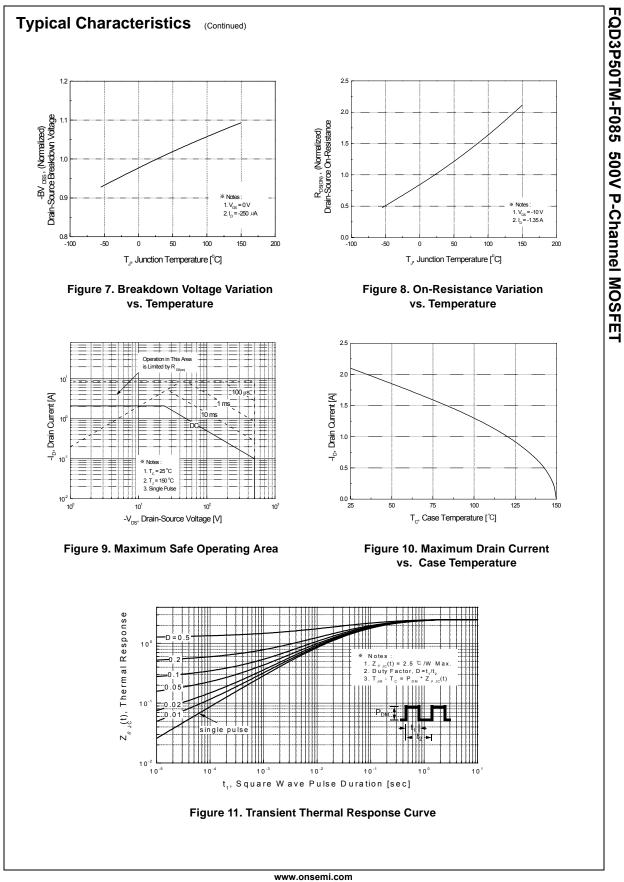

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for electronic lamp ballast based on complimentary half bridge.

Features

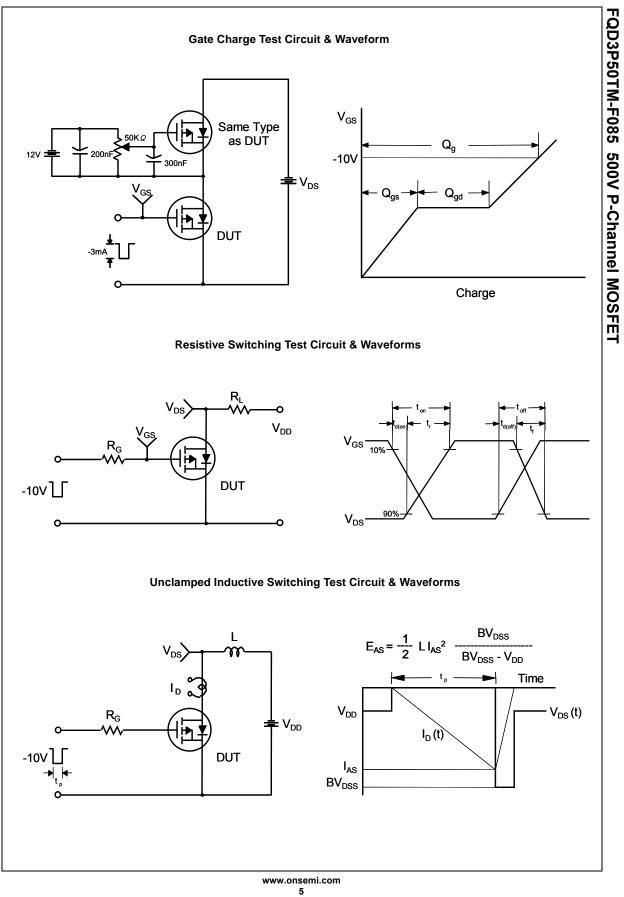
- -2.1A, -500V, $R_{DS(on)} = 4.9\Omega @V_{GS} = -10 V$
- Low gate charge (typical 18 nC)
- Low Crss (typical 9.5 pF)
- · Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- Qualified to AEC Q101
- RoHS Compliant

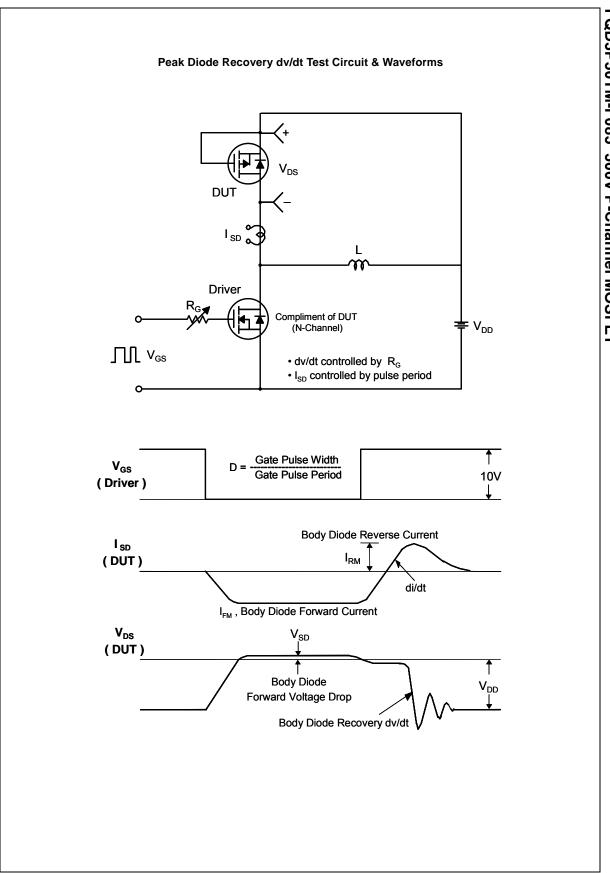
Absolute Maximum Ratings T_C = 25°C unless otherwise noted

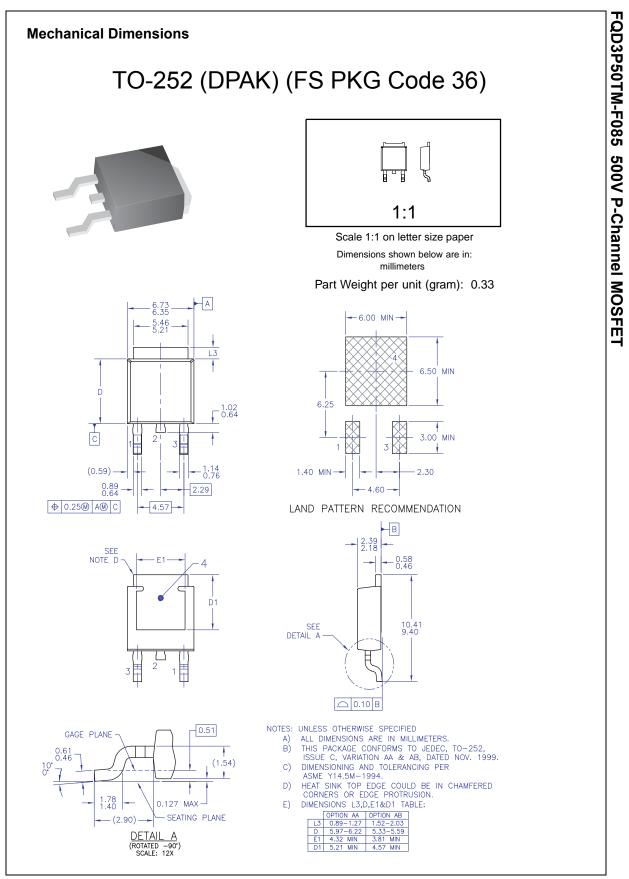

Symbol	Parameter		FQD3P50T	M-F085	Units
V _{DSS}	Drain-Source Voltage		-50	0	V
I _D	Drain Current - Continuous (T _C = 25°	°C)	-2.	1	Α
	- Continuous (T _C = 100	D°C)	-1.3	33	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	-8.	4	Α
V _{GSS}	Gate-Source Voltage		± 3	0	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	25	0	mJ
I _{AR}	Avalanche Current	(Note 1)	-2.	1	Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	5.0	D	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	-4.	5	V/ns
PD	Power Dissipation (T _A = 25°C) *		2.5	5	W
	Power Dissipation (T _C = 25°C)		50		W
	- Derate above 25°C		0.4	4	W/°C
T _J , T _{STG}	Operating and Storage Temperature Ra	nge	-55 to	+150	°C
T	Maximum lead temperature for soldering purposes,		300		°C
'L	1/8" from case for 5 seconds		50	0	U
Thermal	Characteristics				
Symbol	Parameter		Тур	Max	Units


Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		2.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		50	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		110	°C/W
* When mounter	ed on the minimum pad size recommended (PCB Mount)			·

Publication Order Number: FQD3P50TM-F085/D


racteristics Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient					Units
Drain-Source Breakdown Voltage Breakdown Voltage Temperature	T				
Breakdown Voltage Temperature	V _{GS} = 0 V, I _D = -250 μA	-500			V
	$I_D = -250 \mu$ A, Referenced to 25°C		0.42		V/°C
Zero Gate Voltage Drain Current	V _{DS} = -500 V, V _{GS} = 0 V			-1	μA
	V _{DS} = -400 V, T _C = 125°C			-10	μA
Gate-Body Leakage Current, Forward	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
Gate-Body Leakage Current, Reverse	V_{GS} = 30 V, V_{DS} = 0 V			100	nA
racteristics					
Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = -250 μA	-3.0		-5.0	V
Static Drain-Source On-Resistance	V _{GS} = -10 V, I _D = -1.05 A		3.9	4.9	Ω
Forward Transconductance	V _{DS} = -50 V, I _D = -1.05 A (Note 4)		2.1		S
c Characteristics	1				1
	V_{DS} = -25 V, V_{GS} = 0 V,				pF
	f = 1.0 MHz				pF pF
					I
nd Characteristics					
ng Characteristics Turn-On Delay Time	y = 250 y = 2.7		12	35	ns
-	V _{DD} = -250 V, I _D = -2.7 A,		12 56	35 120	ns ns
Turn-On Delay Time	V_{DD} = -250 V, I _D = -2.7 A, R _G = 25 Ω				
Turn-On Delay Time Turn-On Rise Time			56	120	ns
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	R _G = 25 Ω (Note 4, 5)		56 35	120 80	ns ns
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	R _G = 25 Ω		56 35 45	120 80 100	ns ns ns
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$R_{G} = 25 \Omega$ (Note 4, 5) V _{DS} = -400 V, I _D = -2.7 A,	 	56 35 45 18	120 80 100 23	ns ns ns nC
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	R_{G} = 25 Ω (Note 4, 5) V_{DS} = -400 V, I _D = -2.7 A, V_{GS} = -10 V (Note 4, 5)	 	56 35 45 18 3.6	120 80 100 23 	ns ns nS nC nC
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_{G} = 25 \Omega$ (Note 4, 5) V _{DS} = -400 V, I _D = -2.7 A, V _{GS} = -10 V (Note 4, 5) Maximum Ratings	 	56 35 45 18 3.6	120 80 100 23 	ns ns nS nC nC
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Ource Diode Characteristics and Maximum Continuous Drain-Source Diode F	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = -400 V, I_{D} = -2.7 A,$ $V_{GS} = -10 V$ (Note 4, 5) (Note 4, 5	 	56 35 45 18 3.6 9.2	120 80 100 23 	ns ns nC nC nC
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Ource Diode Characteristics and Maximum Continuous Drain-Source Diode F	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = -400 V, I_{D} = -2.7 A,$ $V_{GS} = -10 V$ (Note 4, 5) (Note 4, 5	 	56 35 45 18 3.6 9.2	120 80 100 23 	ns ns nC nC nC
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Ource Diode Characteristics and Maximum Continuous Drain-Source Diode F	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = -400 V, I_{D} = -2.7 A,$ $V_{GS} = -10 V$ (Note 4, 5) (Note 4, 5	 	56 35 45 18 3.6 9.2	120 80 100 23 -2.1 -8.4	ns ns nC nC nC
	Cacteristics Gate Threshold Voltage Static Drain-Source On-Resistance Forward Transconductance	acteristicsGate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$ Static Drain-Source On-Resistance $V_{GS} = -10 \ V$, $I_D = -1.05 \ A$ Forward Transconductance $V_{DS} = -50 \ V$, $I_D = -1.05 \ A$ (Note 4)c CharacteristicsInput Capacitance $V_{DS} = -25 \ V$, $V_{GS} = 0 \ V$, f = 1.0 MHz	racteristicsGate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$ -3.0Static Drain-Source $V_{GS} = -10 \ V$, $I_D = -1.05 \ A$ On-Resistance $V_{DS} = -50 \ V$, $I_D = -1.05 \ A$ Forward Transconductance $V_{DS} = -50 \ V$, $I_D = -1.05 \ A$ (Note 4) C Characteristics Input Capacitance $V_{DS} = -25 \ V$, $V_{GS} = 0 \ V$,Output Capacitance $f = 1.0 \ MHz$	racteristicsGate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$ -3.0 $$ Static Drain-Source On-Resistance $V_{GS} = -10 \ V$, $I_D = -1.05 \ A$ $$ 3.9 Forward Transconductance $V_{DS} = -50 \ V$, $I_D = -1.05 \ A$ $$ 2.1 C CharacteristicsInput Capacitance $V_{DS} = -25 \ V$, $V_{GS} = 0 \ V$, $f = 1.0 \ MHz$ $$ 510	racteristics Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$ -3.0 -5.0 Static Drain-Source $V_{GS} = -10 \ V$, $I_D = -1.05 \ A$ 3.9 4.9 On-Resistance $V_{DS} = -50 \ V$, $I_D = -1.05 \ A$ 2.1 Forward Transconductance $V_{DS} = -50 \ V$, $I_D = -1.05 \ A$ (Note 4) 2.1 C Characteristics Input Capacitance $V_{DS} = -25 \ V$, $V_{GS} = 0 \ V$, $f = 1.0 \ MHz$ 510 660


FQD3P50TM-F085 500V P-Channel MOSFET



⁴ ww.onsenn.co

FQD3P50TM-F085 500V P-Channel MOSFET

www.onsemi.com 7

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi: FQD3P50TM-F085