

IGBT - Power, Co-PAK N-Channel, Field Stop IV, MQ (Medium Speed), TO247-4L 650 V, 1.45 V, 75 A FGH4L75T65MQDC50

Using the novel field stop 4th generation IGBT technology and generation 1.5 SiC Schottky Diode technology in TO-247 4-lead package, FGH4L75T65MQDC50 offers the optimum performance with both low conduction and switching losses for high-efficiency operations in various applications, especially totem pole bridgeless PFC and Inverter.

c,	at	 ~~

- Positive Temperature Coefficient for Easy Parallel Operation
- High Current Capability
- 100% of the Parts are Tested for I_{LM} (Note 2)
- Smooth and Optimized Switching
- Low Saturation Voltage: $V_{CE(Sat)} = 1.45 \text{ V (Typ.)}$ @ $I_C = 75 \text{ A}$
- No Reverse Recovery / No Forward Recovery
- Tight Parameter Distribution
- RoHS Compliant

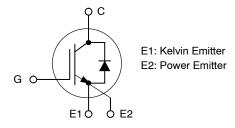
Applications

- Charging Station (EVSE)
- Solar Inverter

• UPS, ESS

• PFC, Converters

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)


Parame	Symbol	Value	Unit	
Collector-to-Emitter Voltage		V _{CES}	650	V
Gate-to-Emitter Voltage		V_{GES}	±20	
Transient Gate-to-Emitter $(t_p < 0.5 \mu s, D < 0.001)$	Voltage		±30	
Collector Current	T _C = 25°C (Note 1)	Ic	110	Α
	T _C = 100°C		75	
Power Dissipation	T _C = 25°C	P_{D}	385	W
	T _C = 100°C		192	
Pulsed Collector Current	Pulsed Collector Current T _C = 25°C (Note 2)		300	Α
T _C = 25°C (Note 3)		I _{CM}	300	
Diode Forward Current T _{C =} 25°C (Note 1)		Ι _F	60	Α
	$T_{C} = 100^{\circ}C$		50	
Pulsed Diode Maximum $T_{C = 25^{\circ}C}$ Forward Current		I _{FM}	200	Α
Operating Junction and Storage Temperature Range		T _J , T _{STG}	−55 to +175	°C
Maximum Lead Temperature for Soldering Purposes		TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Value limit by bond wire
- 2. V_{CC} = 400 \acute{V} , V_{GE} = 15 \acute{V} , I_{C} = 300 \acute{A} , Inductive Load, 100% tested
- 3. Repetitive rating: pulse width limited by max. junction temperature

BV _{CES}	V _{CE(sat)}	lc
650 V	1.45 V	75 A

PIN CONNECTIONS

TO-247-4LD CASE 340CJ

MARKING DIAGRAM

\$Y = onsemi Logo &Z = Assembly Plant Code &3 = 3-Digit Date Code &K = 2-Digit Lot Traceability Code G75T65MQDC50 = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping
FGH4L75T65MQDC50	TO-247	30 Units / Tube
	-4LD	

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance Junction-to-Case, for IGBT	$R_{ heta JC}$	0.39	°C/W
Thermal Resistance Junction-to-Case, for Diode	$R_{ heta JCD}$	0.74	
Thermal Resistance Junction-to-Ambient	$R_{ hetaJA}$	40	

	J = 25°C unless otherwise noted)		1	T -	Г	T
Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		1	•	1	1	
Collector-emitter Breakdown Voltage, Gate-emitter Short-circuited	$V_{GE} = 0 \text{ V, I}_{C} = 1 \text{ mA}$	BV _{CES}	650	-	-	V
Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	$\frac{\Delta BV_{CES}}{\Delta T_{J}}$	-	0.5	-	V/°C
Collector-emitter Cut-off Current, Gate-emitter Short-circuited	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}	-	-	250	μА
Gate Leakage Current, Collector-emitter Short-circuited	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	_	-	±400	nA
ON CHARACTERISTICS						
Gate-emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 75 \text{ mA}$	V _{GE(th)}	3.0	4.5	6.0	V
Collector-emitter Saturation Voltage	V _{GE} = 15 V, I _C = 75 A, T _J = 25°C	V _{CE(sat)}	-	1.45	1.8	V
	V _{GE} = 15 V, I _C = 75 A, T _J = 175°C		-	1.65	_	1
DYNAMIC CHARACTERISTICS						
Input Capacitance	V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz	C _{ies}	-	4770	_	pF
Output Capacitance		C _{oes}	-	619	_]
Reverse Transfer Capacitance		C _{res}	-	13	_	1
Gate Charge Total	V _{CC} = 400 V, I _C = 75 A, V _{GE} = 15 V	Q_g	-	146	_	nC
Gate-to-emitter Charge		Q _{ge}	-	26	_	1
Gate-to-collector Charge		Q _{gc}	-	34	_	1
SWITCHING CHARACTERISTICS, INDUC	TIVE LOAD					
Turn-on Delay Time	T _J = 25°C, V _{CC} = 400 V,	t _{d(on)}	-	24	_	ns
Rise Time	I_C = 37.5 A, R_G = 10 Ω , V_{GE} = 15 V, Inductive Load	t _r	-	16	_	1
Turn-off Delay Time		t _{d(off)}	-	192	-	1
Fall Time		t _f	-	16	_	
Turn-on Switching Loss		E _{on}	-	0.31	-	mJ
Turn-off Switching Loss		E _{off}	-	0.49	-	1
Total Switching Loss		E _{ts}	-	0.81	_	1
Turn-on Delay Time	T _J = 25°C, V _{CC} = 400 V,	t _{d(on)}	-	29	_	ns
Rise Time	I_C = 75 A, R_G = 10 Ω , V_{GE} = 15 V, Inductive Load	t _r	-	27	_	1
Turn-off Delay Time		t _{d(off)}	-	187	-	1
Fall Time		t _f	-	18	-	1
Turn-on Switching Loss		E _{on}	-	0.72	-	mJ
Turn-off Switching Loss		E _{off}	-	0.96	-	1
Total Switching Loss		E _{ts}	-	1.68	_	1

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS,	INDUCTIVE LOAD			-		
Turn-on Delay Time	T _J = 175°C, V _{CC} = 400 V,	t _{d(on)}	-	24	-	ns
Rise Time	I_C = 37.5 A, R_G = 15 Ω , V_{GE} = 10 V, Inductive Load	t _r	-	20	-	1
Turn-off Delay Time		t _{d(off)}	-	220	-	1
Fall Time		t _f	-	72	-	1
Turn-on Switching Loss		E _{on}	-	0.41	-	mJ
Turn-off Switching Loss		E _{off}	-	0.82	-	1
Total Switching Loss		E _{ts}	-	1.23	-	1
Turn-on Delay Time	$T_J = 175^{\circ}C$, $V_{CC} = 400 \text{ V}$,	t _{d(on)}	-	27	-	ns
Rise Time	I_C = 75 A, R_G = 15 Ω, V_{GE} = 10 V, Inductive Load	t _r	-	34	-	1
Turn-off Delay Time		t _{d(off)}	-	202	-	1
Fall Time		t _f	-	54	-	
Turn-on Switching Loss		E _{on}	-	0.91	-	mJ
Turn-off Switching Loss		E _{off}	-	1.30	-	
Total Switching Loss		E _{ts}	-	2.20	-	
DIODE CHARACTERISTICS	•			-		
Diode Forward Voltage	I _F = 50 A, T _J = 25°C	V _F	-	1.46	1.7	V
	I _F = 50 A, T _J = 175°C	1	-	1.83	-	1
Total Capacitance	V _R = 400 V, f = 1 MHz, T _J = 25°C	С	-	210	-	pF
	V _R = 600 V, f = 1 MHz, T _J = 25°C		-	202	-	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS



Figure 5. Saturation Voltage vs. Junction **Temperature at Various Current Level**

50

T_J, COLLECTOR-EMITTER JUNCTION TEMPERATURE (°C)

1.0

-100

-50

0

 $I_{C} = 40 \text{ A}$

100

150

V_{CE}, COLLECTOR-EMITTER VOLTAGE (V) Figure 6. Capacitance Variation

 $V_{GE} = 0 V$ f = 1 MHz

200

TYPICAL CHARACTERISTICS

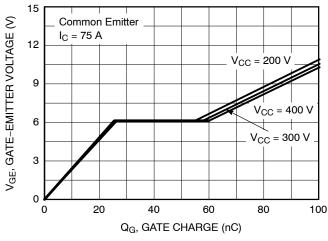


Figure 7. Gate Charge Characteristics

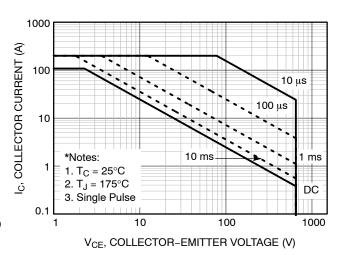


Figure 8. SOA Characteristics

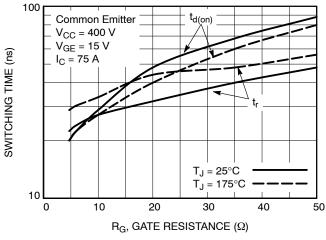


Figure 9. Turn-On Characteristics vs. Gate Resistance

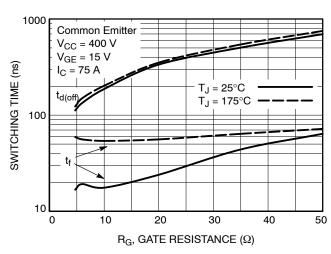


Figure 10. Turn-Off Characteristics vs. Gate Resistance



Figure 11. Turn-on Characteristics vs.
Collector Current

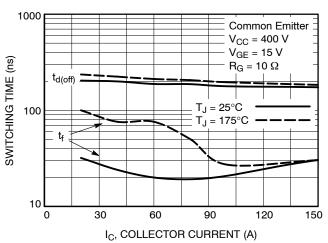


Figure 12. Turn-Off Characteristics vs.
Collector Current

TYPICAL CHARACTERISTICS

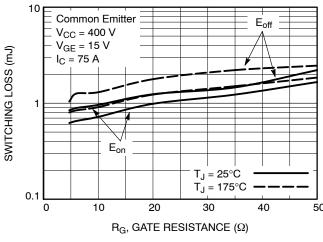


Figure 13. Switching Loss vs. Gate Resistance

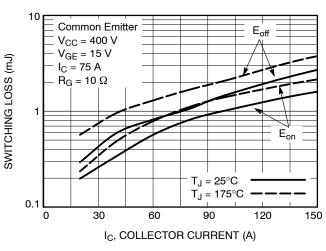


Figure 14. Switching Loss vs. Collector Current

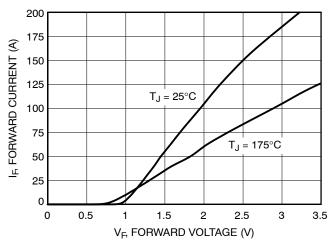


Figure 15. Forward Diode Characteristics

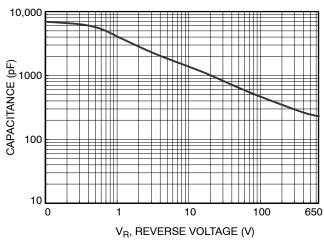


Figure 16. (Diode) Output Capacitance (Coes) vs. Reverse Voltage

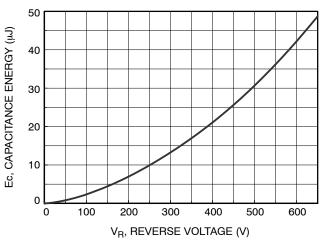


Figure 17. Output Capacitance Stored Energy

TYPICAL CHARACTERISTICS

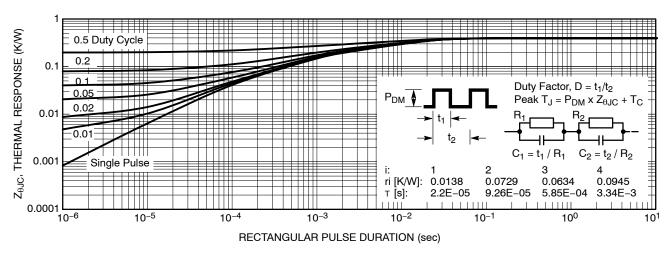


Figure 18. Transient Thermal Impedance of IGBT

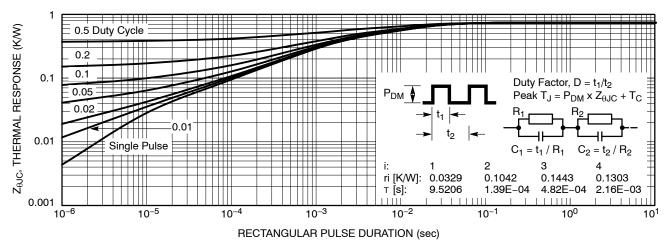
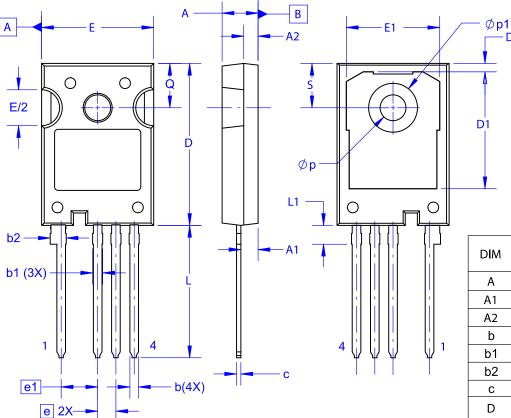



Figure 19. Transient Thermal Impedance of Diode

TO-247-4LD CASE 340CJ **ISSUE A**

DATE 16 SEP 2019

D2

NOTES:

0.254 M

- A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE.
 B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
 FLASH, AND TIE BAR EXTRUSIONS.
 C. ALL DIMENSIONS ARE IN MILLIMETERS.

C. ALL DIMENSIONS ARE IN MILLIMETERS.
D. DRAWING CONFORMS TO ASME Y14.5-2009.

DIM	WILLIMIETERS			
DIM	MIN	NOM	MAX	
Α	4.80	5.00	5.20	
A1	2.10	2.40	2.70	
A2	1.80	2.00	2.20	
b	1.07	1.20	1.33	
b1	1.20	1.40	1.60	
b2	2.02	2.22	2.42	
С	0.50	0.60	0.70	
D	22.34	22.54	22.74	
D1	16.00	16.25	16.50	
D2	0.97	1.17	1.37	
е	2	2.54 BSC		
e1	Ę	5.08 BSC		
E	15.40	15.60	15.80	
E1	12.80	13.00	13.20	
E/2	4.80	5.00	5.20	
L	18.22	18.42	18.62	
L1	2.42	2.62	2.82	
р	3.40	3.60	3.80	
p1	6.60	6.80	7.00	
Q	5.97	6.17	6.37	
S	5.97	6.17	6.37	

MILLIMETERS

DOCUMENT NUMBER:	98AON13852G	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-247-4LD		PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

FGH4L75T65MQDC50