ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

MOSFET - Dual N-Channel, Asymmetric, **POWERTRENCH[®]** Power Clip 25 V

FDPC8016S

General Description

This device includes two specialized N-Channel MOSFETs in a dual package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous SyncFET[™] (Q2) have been designed to provide optimal power efficiency.

Features

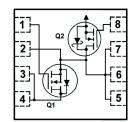
O1: N-Channel

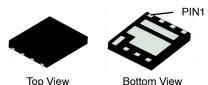
- Max $R_{DS(on)} = 3.8 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 20 \text{ A}$
- Max $R_{DS(on)} = 4.7 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 18 \text{ A}$

Q2: N-Channel

- Max $R_{DS(on)} = 1.4 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 35 \text{ A}$
- Max $R_{DS(on)} = 1.7 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 32 \text{ A}$
- Low Inductance Packaging Shortens Rise/Fall Times, Resulting in Lower Switching Losses
- MOSFET Integration Enables Optimum Layout for Lower Circuit Inductance and Reduced Switch Node Ringing
- These Devices are Pb-Free and are RoHS Compliant

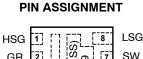
Applications

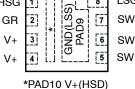

- Computing
- Communications
- General Purpose Point of Load


ON Semiconductor®

www.onsemi.com

ELECTRICAL CONNECTION




N-Channel MOSFET

Top View

Power Clip 56 (PQFN8 5x6) CASE 483AR

MARKING DIAGRAM

	\$Y&Z&3&K 05OD 15OD O	
\$Y &Z &3 &K 05OD 15OD	= Assembly = Numeric = Lot Code	conductor Logo v Plant Code Date Code Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

PINOUT DESCRIPTION

Pin	Name	Description	Pin	Name	Description	Pin	Name	Description
1	HSG	High Side Gate	3. 4, 10	V+(HSD)	High Side Drain	8	LSG	Low Side Gate
2	GR	Gate Return	5, 6, 7	SW	Switching Node, Low Side Drain	9	GND(LSS)	Low Side Source

MOSFET MAXIMUM RATINGS (T_A = 25°C, Unless otherwise specified)

Symbol	Parameter	Q1	Q2	Unit
V _{DS}	Drain to Source Voltage	25 (Note 5)	25 (Note 5)	V
V _{GS}	Gate to Source Voltage	±12	±12	V
Ι _D	Drain Current Continuous ($T_C = 25^{\circ}C$) Continuous ($T_A = 25^{\circ}C$) Pulsed ($T_A = 25^{\circ}C$) (Note 4)	60 20 (Note 1a) 75	100 35 (Note 1b) 140	A
E _{AS}	Single Pulsed Avalanche Energy (Note 3)	73	216	mJ
P _D	Power Dissipation for Single Operation $(T_C = 25^{\circ}C)$ $(T_A = 25^{\circ}C)$	21 2.1 (Note 1a)	42 2.3 (Note 1b)	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to	o +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Q1	Q2	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	6.0	3.0	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	60 (Note 1a)	55 (Note 1b)	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	130 (Note 1c)	120 (Note 1d)	°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
05OD/15OD	FDPC8016S	Power Clip 56	13″	12 mm	3,000 Units

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Unit
FF CHARACT	ERISTICS	•					
BV _{DSS}	Drain to Source Breakdown Voltage	$ I_D = 250 \ \mu A, \ V_{GS} = 0 \ V \\ I_D = 1 \ m A, \ V_{GS} = 0 \ V $	Q1 Q2	25 25			V
$\Delta \text{BV}_{\text{DSS}} / \Delta \text{T}_{\text{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25°C I_D = 10 mA, referenced to 25°C	Q1 Q2	-	24 28	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 20 V, V_{GS} = 0 V$ $V_{DS} = 20 V, V_{GS} = 0 V$	Q1 Q2	-		1 500	μΑ
I _{GSS}	Gate to Source Leakage Current, Forward		Q1 Q2	-	_ _	±100 ±100	nA nA

V _{GS(th)}	Gate to Source Threshold Voltage	$\begin{array}{l} V_{GS}=V_{DS},\ I_{D}=250\ \mu A\\ V_{GS}=V_{DS},\ I_{D}=1\ mA \end{array}$	Q1 Q2	0.8 1.0	1.3 1.5	2.5 2.5	V
$\Delta V_{GS(th)} / \Delta T_J$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25°C I_D = 10 mA, referenced to 25°C	Q1 Q2	-	-4 -3	-	mV/°C

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

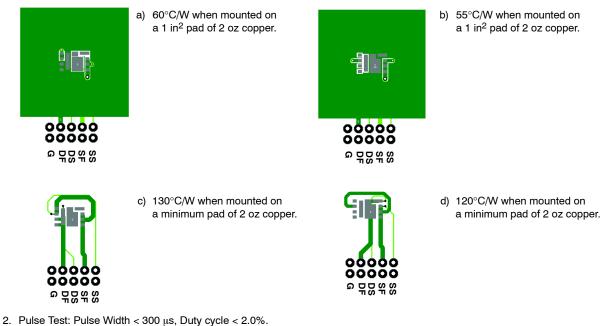
Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Unit
ON CHARACTE	ERISTICS						
R _{DS(on)}	Drain to Source On Resistance	$ \begin{array}{l} V_{GS} = 10 \; V, \; I_D = 20 \; A \\ V_{GS} = 4.5 \; V, \; I_D = 18 \; A \\ V_{GS} = 10 \; V, \; I_D = 20 \; A, \\ T_J = 125^\circ C \end{array} $	Q1	- - -	2.8 3.4 3.9	3.8 4.7 5.3	mΩ
		$\begin{array}{l} V_{GS} = 10 \; V, \; I_D = 35 \; A \\ V_{GS} = 4.5 \; V, \; I_D = 32 \; A \\ V_{GS} = 10 \; V, \; I_D = 35 \; A \; , \\ T_J = 125^\circ C \end{array}$	Q2		1.1 1.3 1.5	1.4 1.7 1.9	
9 _{FS}	Forward Transconductance		Q1 Q2		182 241		S

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	Q1: V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2	-	1695 4715	2375 6600	pF
C _{oss}	Output Capacitance	Q2: $V_{DS} = 13 V, V_{GS} = 0 V,$	Q1 Q2		495 1195	710 1675	pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHZ	Q1 Q2		54 159	100 290	pF
R _g	Gate Resistance		Q1 Q2	0.1 0.1	0.4 0.5	1.2 1.5	Ω

SWITCHING CHARACTERISTICS

t _{d(on)}	Turn-On Delay Time	Q1: V_{DD} = 13 V, I _D = 20 A, R_{GEN} = 6 Ω	Q1 Q2	-	8 13	16 24	ns
t _r	Rise Time	Q2: V _{DD} = 13 V, I _D = 35 A,	Q1 Q2		2 4	10 10	ns
t _{d(off)}	Turn-Off Delay Time	$R_{GEN} = 6 \Omega$	Q1 Q2		24 38	38 61	ns
t _f	Fall Time	-	Q1 Q2	-	2 3	10 10	ns
Qg	Total Gate Charge		Q1 Q2	_	25 67	35 94	nC
Qg	Total Gate Charge		Q1 Q2		11 31	16 44	nC
Q _{gs}	Gate to Source Gate Charge	Q1: $V_{DD} = 13 \text{ V}$, $I_D = 20 \text{ A}$ Q2: $V_{DD} = 13 \text{ V}$, $I_D = 35 \text{ A}$	Q1 Q2		3.4 10	- -	nC
Q _{gd}	Gate to Drain "Miller" Charge	Q1: V_{DD} = 13 V, I_D = 20 A Q2: V_{DD} = 13 V, I_D = 35 A	Q1 Q2		2.2 6.3		nC


DRAIN-SOURCE DIODE CHARACTERISTICS

V _{SD}	Source to Drain Diode Forward Voltage		Q1 Q2	_	0.8 0.8	1.2 1.2	V
t _{rr}	Reverse Recovery Time	Q1: I _F = 20 A, di/dt = 100 A/µs Q2:	Q1 Q2	-	25 33	40 53	ns
Q _{rr}	Reverse Recovery Charge	G2. I _F = 35 A, di/dt = 200 A/μs	Q1 Q2	-	10 31	20 50	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. $R_{\theta CA}$ is determined by the user's board design.

3. Q1:

 E_{AS} of 73 mJ is based on starting T_J = 25°C; N-ch: L = 3 mH, I_{AS} = 7 A, V_{DD} = 30 V, V_{GS} = 10 V, 100% tested at L = 0.1 mH, I_{AS} = 24 A. Q2:

5. The continuous V_{DS} rating is 25 V; However, a pulse of 30 V peak voltage for no longer than 100 ns duration at 600 KHz frequency can be applied.

TYPICAL CHARACTERISTICS (Q1 N-Channel)

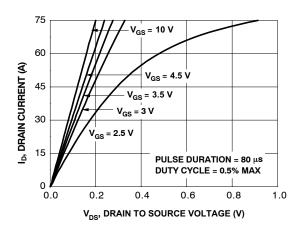


Figure 1. On-Region Characteristics

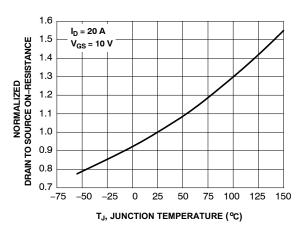


Figure 3. Normalized On-Resistance vs. Junction Temperature

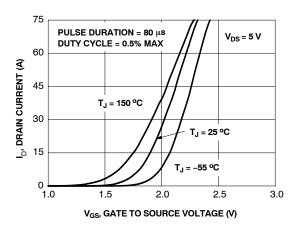


Figure 5. Transfer Characteristics

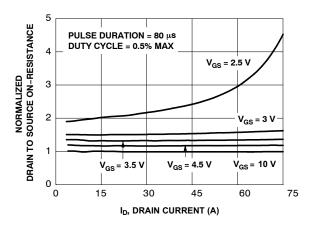


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

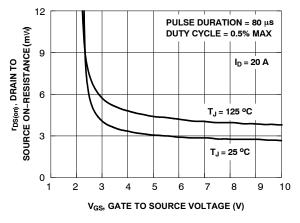
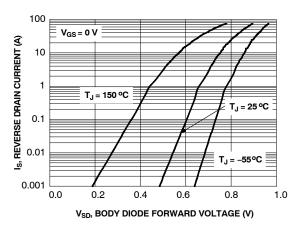



Figure 4. On-Resistance vs. Gate to Source Voltage

TYPICAL CHARACTERISTICS (Q1 N-Channel)

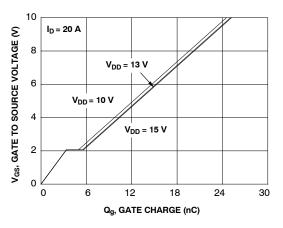


Figure 7. Gate Charge Characteristics

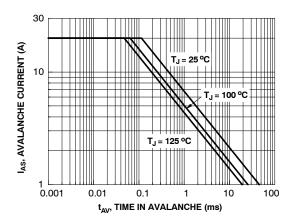


Figure 9. Unclamped Inductive Switching Capability

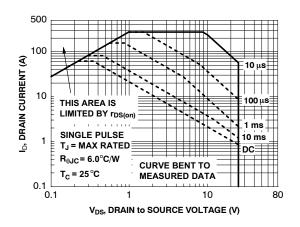


Figure 11. Forward Bias Safe Operating Area

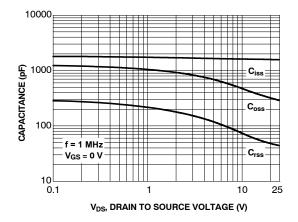


Figure 8. Capacitance vs. Drain to Source Voltage

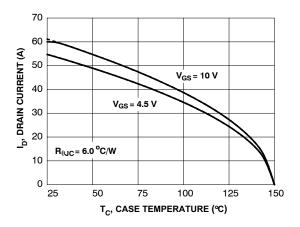


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

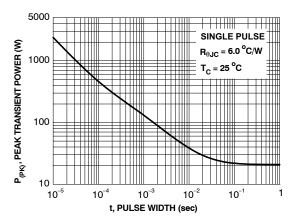


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (Q1 N-Channel)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

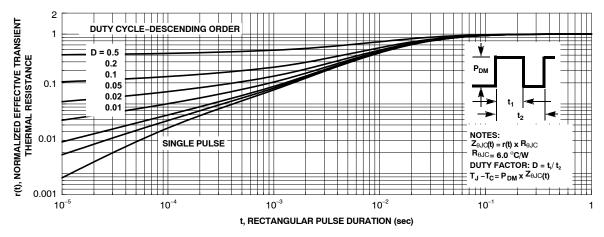


Figure 13. Junction-to-Case Transient Thermal Response Curve

TYPICAL CHARACTERISTICS (Q2 N-Channel)

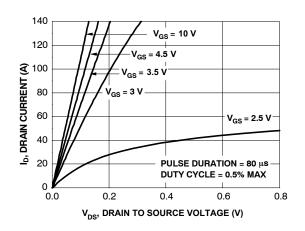


Figure 14. On-Region Characteristics

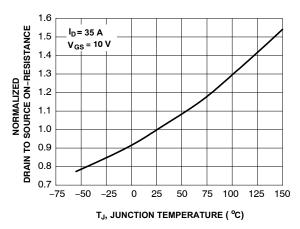


Figure 16. Normalized On-Resistance vs. Junction Temperature

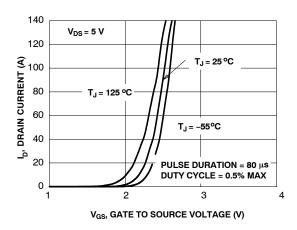


Figure 18. Transfer Characteristics

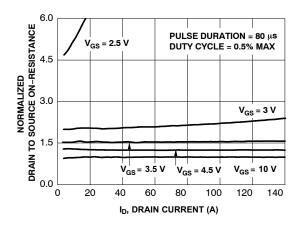


Figure 15. Normalized On-Resistance vs. Drain Current and Gate Voltage

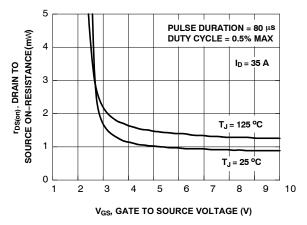
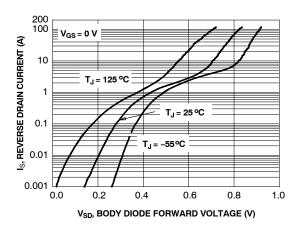



Figure 17. On-Resistance vs. Gate to Source Voltage

TYPICAL CHARACTERISTICS (Q2 N-Channel)

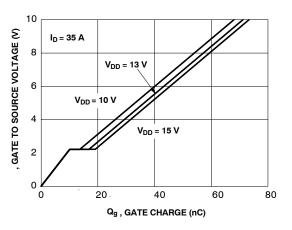


Figure 20. Gate Charge Characteristics

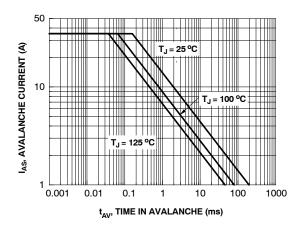


Figure 22. Unclamped Inductive Switching Capability

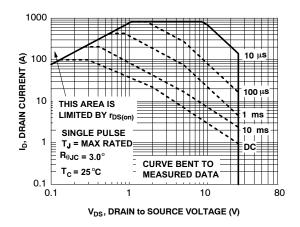


Figure 24. Forward Bias Safe Operating Area

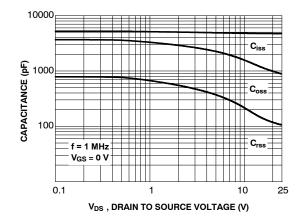


Figure 21. Capacitance vs. Drain to Source Voltage

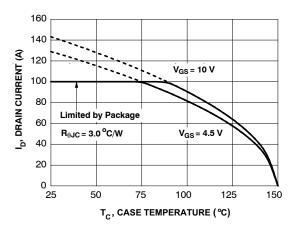


Figure 23. Maximum Continuous Drain Current vs. Case Temperature

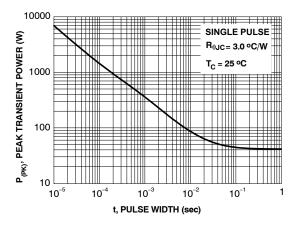


Figure 25. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (Q2 N-Channel)

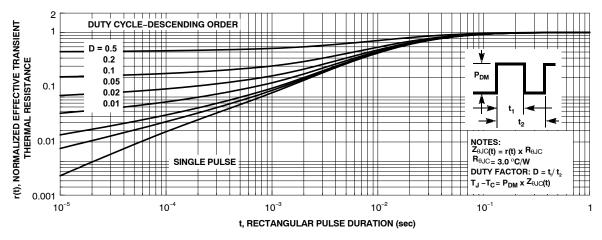


Figure 26. Junction-to-Case Transient Thermal Response Curve

TYPICAL CHARACTERISTICS (continued)

SyncFET Schottky Body Diode Characteristics

ON's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverse recovery characteristic of the FDPC8016S.

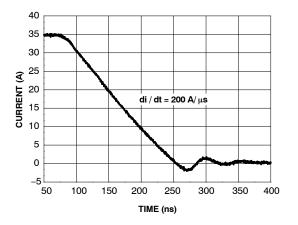


Figure 27. FDPC8016S SyncFET Body Diode Reverse Recovery Characteristic

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

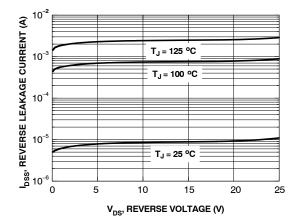


Figure 28. SyncFET Body Diode Reverse Leakage vs. Drain-Source Voltage

POWERTRENCH is a registered trademark and SyncFET is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi: FDPC8016S