POWERTRENCH® MOSFET, N-Channel, DUAL COOL® 56

80 V, 110 A, 3.1 m Ω

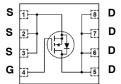
General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced POWERTRENCH® process that incorporates Shielded Gate technology. Advancements in both silicon and DUAL COOL® package technologies have been combined to offer the lowest $r_{DS(on)}$ while maintaining excellent switching performance by extremely low Junction-to-Ambient thermal resistance.

Features

- DUAL COOL Top Side Cooling PQFN package
- Max $r_{DS(on)} = 3.1 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 24 \text{ A}$
- Max $r_{DS(on)} = 4.0 \text{ m}\Omega$ at $V_{GS} = 8 \text{ V}$, $I_D = 21 \text{ A}$
- High performance technology for extremely low r_{DS(on)}
- 100% UIL Tested
- RoHS Compliant

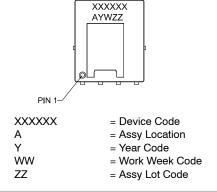
Typical Applications


- Synchronous Rectifier for DC/DC Converters
- Telecom Secondary Side Rectification
- High End Server/Workstation Vcore Low Side

ON Semiconductor®

www.onsemi.com

ELECTRICAL CONNECTION



N-Channel MOSFET

DFN8 5.1x6.15 (Dual Cool 56) CASE 506EG

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Shipping [†]
86300	FDMS86300DC	UDFN8	13"	12 mm	3000 Units/ Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MOSFET MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise noted)

Symbol		Para	meter		Ratings	Units
V_{DS}	Drain to Source \	Voltage			80	V
V_{GS}	Gate to Source V	/oltage			±20	V
I _D	Drain Current	-Continuous	T _C = 25°C		110	Α
		-Continuous	T _A = 25°C	(Note 1a)	24	
		-Pulsed		(Note 2)	260	
E _{AS}	Single Pulse Ava	lanche Energy		(Note 3)	240	mJ
P _D	Power Dissipatio	n	T _C = 25°C		125	W
	Power Dissipatio	n	T _A = 25°C	(Note 1a)	3.2	
T _J , T _{STG}	Operating and St	torage Junction Temper	rature Range		-55 to +150	°C

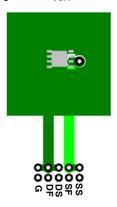
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
OFF CHAP	RACTERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	80			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C		45		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 64 V, V _{GS} = 0 V			1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
ON CHAR	ACTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2.5	3.3	4.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Tempera- ture Coefficient	I _D = 250 μA, referenced to 25°C		-11		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 24 A		2.6	3.1	mΩ
		V _{GS} = 8 V, I _D = 21 A		3.1	4.0	
		$V_{GS} = 10 \text{ V}, I_D = 24 \text{ A}, T_J = 125^{\circ}\text{C}$		4.1	5.0	
9FS	Forward Transconductance	V _{DD} = 10 V, I _D = 24 A		79		S
DYNAMIC	CHARACTERISTICS				•	
C _{ISS}	Input Capacitance	V _{DS} = 40 V, V _{GS} = 0 V, f = 1 MHz		5265	7005	pF
C _{OSS}	Output Capacitance]		929	1235	pF
C _{RSS}	Reverse Transfer Capacitance]		21	50	pF
R _G	Gate Resistance		0.1	1.2	2.6	Ω
			-	-	-	

ELECTRICAL CHARACTERISTICS (T_{.I} = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
SWITCHIN	G CHARACTERISTICS			•		
td _(ON)	Turn – On Delay Time	V _{DD} = 40 V, I _D = 24 A,		29	47	ns
t _r	Rise Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		25	44	ns
t _{D(OFF)}	Turn – Off Delay Time			35	57	ns
t _f	Fall Time			9	18	ns
Q _{g(TOT)}	Total Gate Charge	V _{GS} = 0 V to 10 V		72	101	nC
	Total Gate Charge V _{GS} = 0 V to 8 V		59	84	nC	
Q _{gs}	Gate to Source Gate Charge	V _{DD} = 40 V,		26		nC
Q _{gd}	Gate to Drain "Miller" Charge	I _D = 24 A		14		nC
DRAIN-SC	DURCE DIODE CHARACTERISTICS					
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2.7 A (Note 2)		0.72	1.2	V
		V _{GS} = 0 V, I _S = 24 A (Note 2)		0.80	1.3	
I _S	Source to Drain Diode Forward Voltage	T _C = 25°C			75	V
					150	
t _{rr}	Reverse Recovery Time			56	88	ns
Q _{rr}	Reverse Recovery Charge			42	67	nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

THERMAL CHARACTERISTICS

Symbol	Parameter		Ratings	Units
$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Top Source)	2.3	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	1.0	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	38	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	81	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1c)	27	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1d)	34	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1e)	16	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1f)	19	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1g)	26	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1h)	61	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1i)	16	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1j)	23	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1k)	11	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1I)	13	

NOTES:

R_{θJA} is determined with the device mounted on a FR-4 board using a specified pad of 2 oz copper as shown below. R_{θJC} is guaranteed by design while R_{θCA} is determined by the user's board design.

a) 38°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 81°C/W when mounted on a minimum pad of 2 oz copper.

- c) Still air, 20.9×10.4×12.7 mm Aluminum Heat Sink, 1 in² pad of 2 oz copper
- d) Still air, 20.9×10.4×12.7 mm Aluminum Heat Sink, minimum pad of 2 oz copper
- e) Still air, 45.2×41.4×11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper
- f) Still air, 45.2×41.4×11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper
- g) .200FPM Airflow, No Heat Sink, 1 in2 pad of 2 oz copper
- h) .200FPM Airflow, No Heat Sink, minimum pad of 2 oz copper
- i) .200FPM Airflow, 20.9×10.4×12.7 mm Aluminum Heat Sink, 1 in² pad of 2 oz copper
- j) .200FPM Airflow, 20.9×10.4×12.7 mm Aluminum Heat Sink, minimum pad of 2 oz copper
- k) .200FPM Airflow, 45.2×41.4×11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper
- l) .200FPM Airflow, 45.2×41.4×11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper
- 2. Pulse Test: Pulse Width $< 300 \mu s$, Duty cycle < 2.0%.
- 3. Starting $T_J = 25^{\circ}C$; N-ch: L = 0.3 mH, $I_{AS} = 40$ A, $V_{DD} = 72$ V, $V_{GS} = 10$ V.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

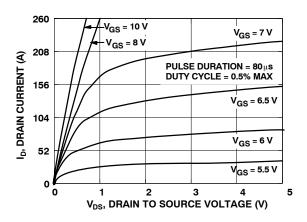


Figure 1. On Region Characteristics

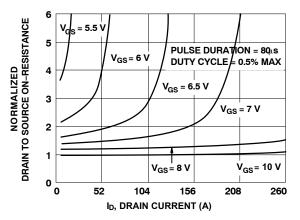


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

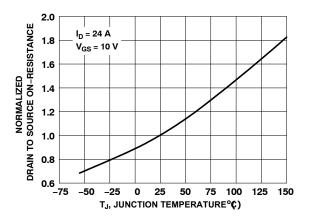


Figure 3. Normalized On Resistance vs. Junction Temperature

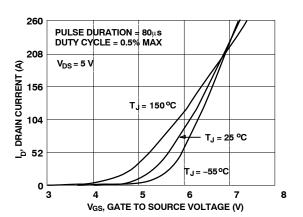


Figure 5. Transfer Characteristics

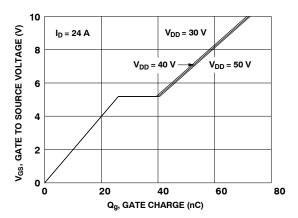


Figure 7. Gate Charge Characteristics

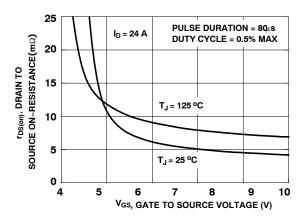


Figure 4. On-Resistance vs. Gate to Source Voltage

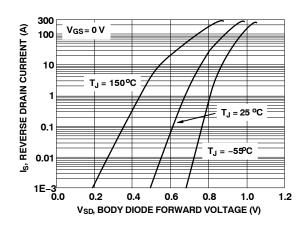


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

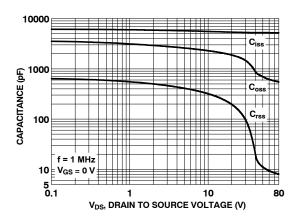


Figure 8. Capacitance vs. Drain to Source Voltage

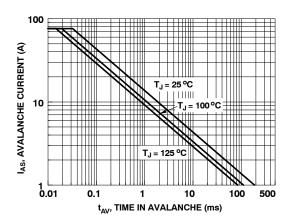


Figure 9. Unclamped Inductive Switching Capability

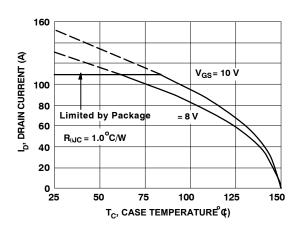


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

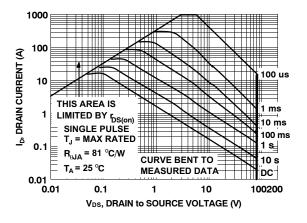


Figure 11. Forward Bias Safe Operating Area

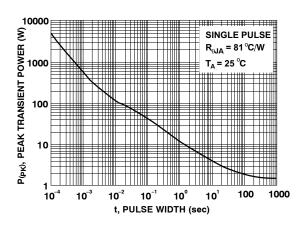


Figure 12. Single Pulse Maximum Power Dissipation

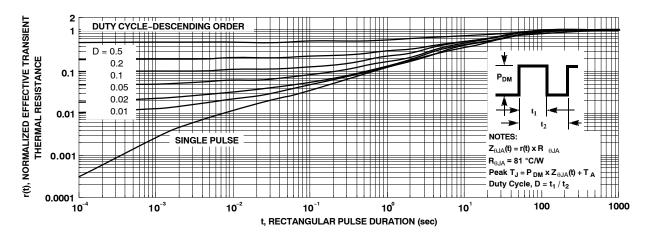


Figure 13. Junction-to-Case Transient Thermal Response Curve

POWERTRENCH and DUAL COOL are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi

FDMS86300DC