<u>Onsemí</u>...

MOSFET – Dual, P-Channel, POWERTRENCH[®]

-20 V, -3.0 A, 120 m Ω

FDMA1027P

General Description

This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultra-portable applications. It features two independent P-Channel MOSFETs with low on-state resistance for minimum conduction losses. When connected in the typical common source configuration, bi-directional current flow is possible.

The MicroFET $^{\text{M}}$ 2x2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

Features

- -3.0 A, -20 V
 - $R_{DS(on)} = 120 \text{ m}\Omega \text{ at } V_{GS} = -4.5 \text{ V}$
 - $R_{DS(on)} = 160 \text{ m}\Omega \text{ at } V_{GS} = -2.5 \text{ V}$
 - $R_{DS(on)} = 240 \text{ m}\Omega \text{ at } V_{GS} = -1.8 \text{ V}$
- Low Profile 0.8 mm Maximum In the New Package MicroFET 2x2 mm
- Free from Halogenated Compounds and Antimony Oxides
- This Device is Pb-Free, Halide Free and is RoHS Compliant

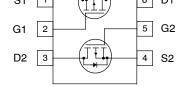
ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit		
V _{DSS}	MOSFET Drain-Source Voltage	-20	V		
V _{GSS}	V _{GSS} MOSFET Gate–Source Voltage		V		
ID	I _D Drain Current -Continuous (Note 1a) -Pulsed		A		
P _D	Power Dissipation (Note 1a) (Note 1b) (Note 1c) (Note 1d)	1.4 0.7 1.8 0.8	W		
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to +150	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

V _{DSS}	R _{DS(on)} MAX	I _D MAX
–20 V	120 mΩ @ –4.5 V	–3.0 A
	160 mΩ @ –2.5 V	
	240 mΩ @ -1.8 V	

WDFN6 2x2, 0.65P (MicroFET 2x2) CASE 511DA


MARKING DIAGRAM

- &Z = Assembly Plant Code
- &2 = 2-Digit Date Code
- &K = 2-Digits Lot Run Traceability Code
- 027 = Device Code

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
FDMA1027P	WDFN6 (Pb-Free, Halide Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, <u>BRD8011/D</u>.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{\theta JA}$	Thermal Resistance for Single Operation, Junction to Ambient (Note 1a)	86	°C/W
$R_{\theta JA}$	Thermal Resistance for Single Operation, Junction to Ambient (Note 1b)	173	
$R_{\theta JA}$	Thermal Resistance for Dual Operation, Junction to Ambient (Note 1c)	69	
$R_{ extsf{ heta}JA}$	Thermal Resistance for Dual Operation, Junction to Ambient (Note 1d)	151	

ELECTRICAL CHARACTERISTICS (T_A = $25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit		
OFF CHAR	OFF CHARACTERISTICS							
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \ \mu A, \ V_{GS} = 0 \ V$	-20	-	_	V		
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25° C	_	-12	_	mV/°C		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	-	-	-1	μA		
I _{GSS}	Gate-Body Leakage Current	$V_{GS} = \pm 8$ V, $V_{DS} = 0$ V	-	-	±100	nA		
ON CHARA	CTERISTICS (Note 2)							
V _{GS(th)}	Gate Threshold Voltage	I_D = -250 μ A, V_{DS} = V_{GS}	-0.4	-0.7	-1.3	V		
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25°C	-	2	-	mV/°C		
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -3.0 \text{ A}$	-	90	120	mΩ		
		$V_{GS} = -2.5 \text{ V}, \text{ I}_{D} = -2.5 \text{ A}$	-	120	160			
		$V_{GS} = -1.8$ V, $I_D = -1.0$ A	-	172	240			
		V_{GS} = -4.5 V, I_D = -3.0 A, T_J = 125°C	-	118	160			
9FS	Forward Transconductance	$I_D = -3.0 \text{ A}, \text{ V}_{DS} = -5 \text{ V}$	_	7	_	S		

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$	-	435	-	pF
C _{oss}	Output Capacitance		-	80	-	pF
C _{rss}	Reverse Transfer Capacitance		-	45	-	pF

SWITCHING CHARACTERISTICS (Note 2)

t _{d(on)}	Turn-On Delay Time	$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -1 \text{ A}$	-	9	18	ns
t _r	Turn–On Rise Time	$V_{GS} = -4.5$ V, $R_{GEN} = 6 \Omega$	-	11	19	ns
t _{d(off)}	Turn-Off Delay Time		-	15	27	ns
t _f	Turn-Off Fall Time		-	6	12	ns
Qg	Total Gate Charge	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -3.0 \text{ A}, V_{GS} = -4.5 \text{ V}$	-	4	6	nC
Q _{gs}	Gate-Source Charge	V _{GS} = -4.5 V	-	0.8	-	nC
Q _{gd}	Gate-Drain Charge]	-	0.9	-	nC

DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS

۱ _S	Maximum Continuous Drain-Source Diode Forward Current		-	-	-1.1	А
V_{SD}	Drain–Source Diode Forward Voltage $V_{GS} = 0 V, I_S = -1.1 A (Note 2)$		-	-0.8	-1.2	V
t _{rr}	Diode Reverse Recovery Time $I_F = -3.0 \text{ A}, \text{ di}_F/\text{dt} = 100 \text{ A}/\mu\text{s}$		-	17	-	ns
Q _{rr}	Diode Reverse Recovery Charge		-	6	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

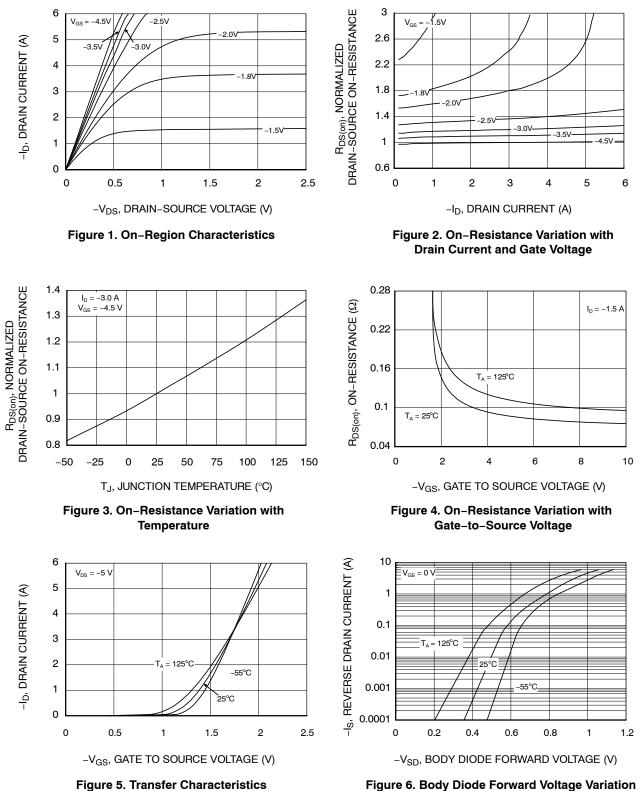
- 1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design.
 - a. $R_{\theta JA} = 86^{\circ}C/W$ when mounted on a 1 in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB. For single operation. b. $R_{\theta JA} = 173^{\circ}C/W$ when mounted on a minimum pad of 2 oz copper. For single operation.

 - c. $R_{\theta JA} = 69^{\circ}C/W$ when mounted on a 1 in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB. For dual operation, configured in parallel. d. $R_{\theta JA} = 151^{\circ}C/W$ when mounted on a minimum pad of 2 oz copper. For dual operation, configured in parallel.

000 00000 c. 69°C/W when mounted on d. $151^{\circ}C/W$ when mounted on

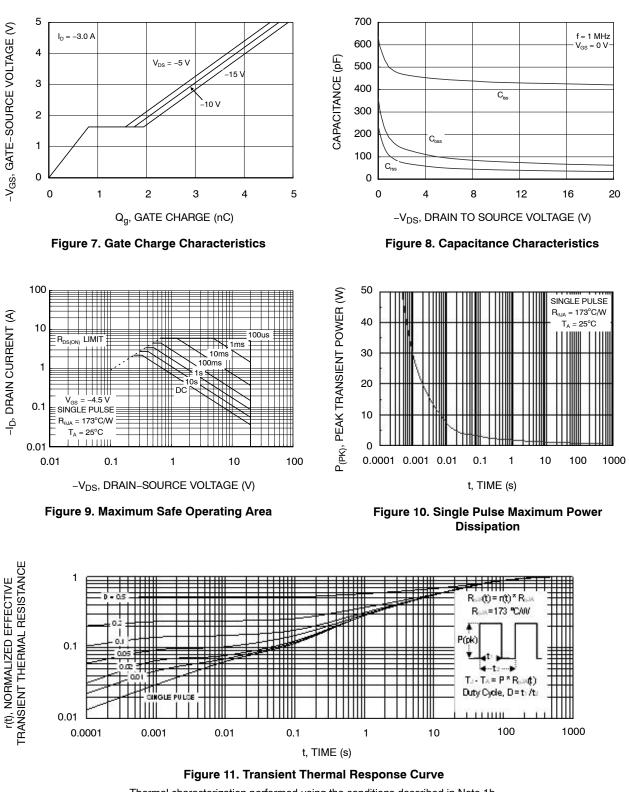
a. 86°C/W when mounted on

a 1 in² pad of 2 oz copper.


b. 173°C/W when mounted on

a minimum pad of 2 oz copper.

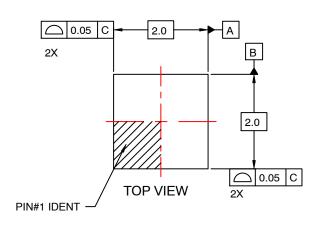
a minimum pad of 2 oz copper.

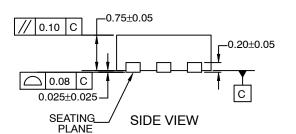

- a 1 in² pad of 2 oz copper.
- 2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

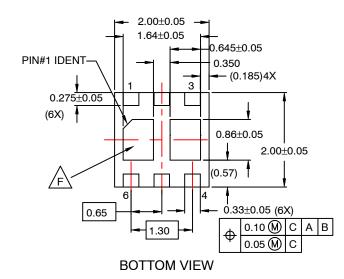
TYPICAL CHARACTERISTICS

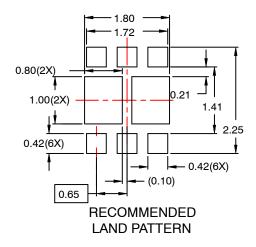
with Source Current and Temperature

TYPICAL CHARACTERISTICS (continued)


Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.


POWERTRENCH is a registered trademark and MicroFET is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.




WDFN6 2x2, 0.65P CASE 511DA ISSUE O

DATE 31 JUL 2016

NOTES:

- A. CONFORM TO JADEC REGISTRATIONS MO-229, VARIATION VCCC, EXCEPT WHERE NOTED.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

F. NON-JEDEC DUAL DAP

DOCUMENT NUMBER:	98AON13615G Electronic versions are uncontrolled except when accessed directly from the Document Reposition Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION: WDFN6 2X2, 0.65P PAGE 1						
ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.						

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi: FDMA1027P