onsemi

Complementary Bias Resistor Transistors R1 = 47 k Ω , **R2 = 47 k** Ω

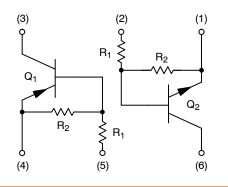
NPN and PNP Transistors with Monolithic Bias Resistor Network

MUN5313DW1, NSBC144EPDXV6, NSBC144EPDP6

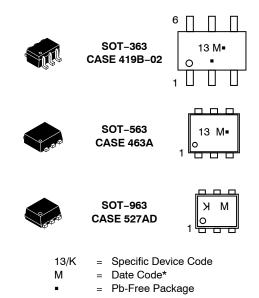
This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable*
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant


MAXIMUM RATINGS

 $(T_A = 25^{\circ}C \text{ both polarities } Q_1 \text{ (PNP) } \& Q_2 \text{ (NPN), unless otherwise noted)}$


Rating	Symbol	Мах	Unit
Collector-Base Voltage	V _{CBO}	50	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Collector Current – Continuous	۱ _C	100	mAdc
Input Forward Voltage	V _{IN(fwd)}	40	Vdc
Input Reverse Voltage	V _{IN(rev)}	10	Vdc

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

MARKING DIAGRAMS

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering, marking, and shipping information on page 2 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 2.

ORDERING INFORMATION

Device	Package	Shipping [†]
MUN5313DW1T1G, SMUN5313DW1T1G*	SOT-363	3,000 / Tape & Reel
SMUN5313DW1T3G*	SOT-363	10,000 / Tape & Reel
NSBC144EPDXV6T1G NSVBC144EPDXV6T1G*	SOT-563	4,000 / Tape & Reel

DISCONTINUED (Note 1)

NSBC144EPDXV6T5G	SOT-563	8,000 / Tape & Reel
NSBC144EPDP6T5G	SOT-963	8,000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1. **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on <u>www.onsemi.com</u>.

THERMAL CHARACTERISTICS

	Characteristic	Symbol	Max	Unit
MUN5313DW1 (SOT-363)	ONE JUNCTION HEATED	·	•	
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C	(Note 2) (Note 3) (Note 2) (Note 3)	PD	187 256 1.5 2.0	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 2) (Note 3)	$R_{ hetaJA}$	670 490	°C/W
MUN5313DW1 (SOT-363)	BOTH JUNCTION HEATED (Note 4)	·	-	
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C	(Note 2) (Note 3) (Note 2) (Note 3)	PD	250 385 2.0 3.0	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 2) (Note 3)	R _{θJA}	493 325	°C/W
Thermal Resistance, Junction to Lead	(Note 2) (Note 3)	R _{θJL}	188 208	°C/W
Junction and Storage Temp	perature Range	T _J , T _{stg}	–55 to +150	°C
NSBC144EPDXV6 (SOT-5	563) ONE JUNCTION HEATED			
Total Device Dissipation T _A = 25°C Derate above 25°C	(Note 2) (Note 2)	PD	357 2.9	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 2)	$R_{ heta JA}$	350	°C/W
NSBC144EPDXV6 (SOT-5	563) BOTH JUNCTION HEATED (Note 4)			
Total Device Dissipation T _A = 25°C Derate above 25°C	(Note 2) (Note 2)	PD	500 4.0	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 2)	R _{θJA}	250	°C/W
Junction and Storage Temp	perature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

	Characteristic	Symbol	Max	Unit
NSBC144EPDP6 (SOT-96	3) ONE JUNCTION HEATED		•	•
Total Device Dissipation	(Noto E)	PD	001	N4)A/
T _A = 25°C	(Note 5) (Note 6)		231 269	MW
Derate above 25°C	(Note 5) (Note 6)		1.9 2.2	mW/°C
Thermal Resistance, Junction to Ambient	(Note 5)	R _{0JA}	540	°C/W
Junction to Ambient	(Note 6)		464	
NSBC144EPDP6 (SOT-96	3) BOTH JUNCTION HEATED (Note 4)		•	-
Total Device Dissipation		PD		
T _A = 25°C	(Note 5) (Note 6)		339 408	MW
	(Nata 5)		0.7	14/100

Derate above 25°C	(Note 5) (Note 6)		2.7 3.3	mW/°C
Thermal Resistance, Junction to Ambient	(Note 5) (Note 6)	R _{θJA}	369 306	°C/W
Junction and Storage Tem	perature Range	T _J , T _{stg}	–55 to +150	°C

FR-4 @ Minimum Pad.
FR-4 @ 1.0 × 1.0 Inch Pad.

Both junction heated values assume total power is sum of two equally powered channels.
FR-4 @ 100 mm², 1 oz. copper traces, still air.
FR-4 @ 500 mm², 1 oz. copper traces, still air.

ELECTRICAL CHARACTERISTICS (T_A = 25°C both polarities Q₁ (PNP) & Q₂ (NPN), unless otherwise noted)

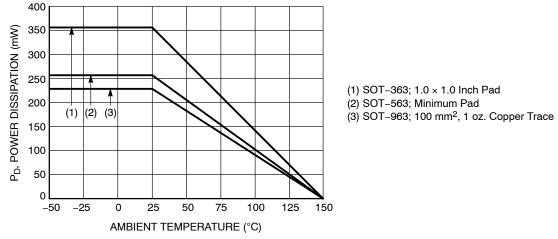
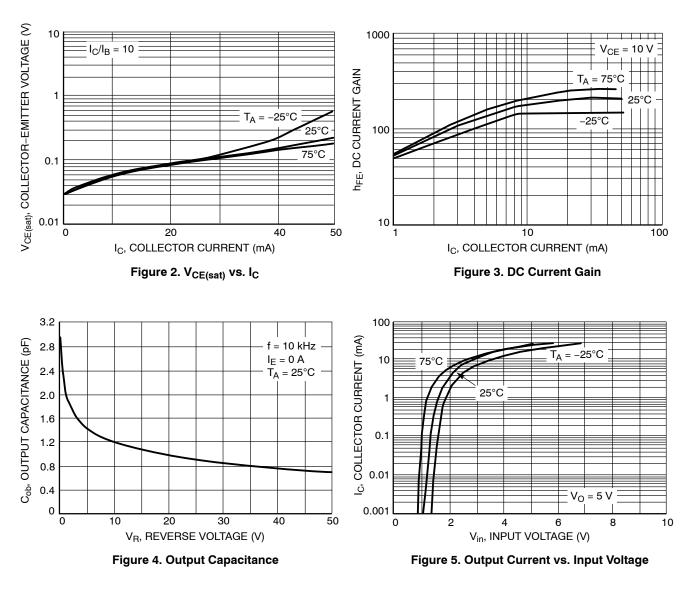
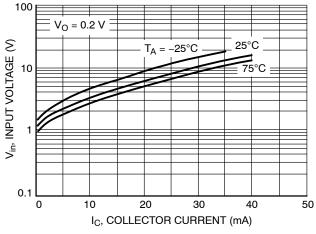
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Base Cutoff Current $(V_{CB} = 50 \text{ V}, I_E = 0)$	I _{CBO}	_	-	100	nAdc
Collector-Emitter Cutoff Current $(V_{CE} = 50 \text{ V}, I_B = 0)$	I _{CEO}	_	-	500	nAdc
Emitter-Base Cutoff Current $(V_{EB} = 6.0 \text{ V}, I_C = 0)$	I _{EBO}	_	_	0.1	mAdc
Collector-Base Breakdown Voltage ($I_C = 10 \ \mu A, I_E = 0$)	V _{(BR)CBO}	50	-	_	Vdc
Collector-Emitter Breakdown Voltage (Note 7) $(I_{C} = 2.0 \text{ mA}, I_{B} = 0)$	V _{(BR)CEO}	50	-	_	Vdc
ON CHARACTERISTICS					
DC Current Gain (Note 7) ($I_C = 5.0 \text{ mA}, V_{CE} = 10 \text{ V}$)	h _{FE}	80	140	_	
Collector-Emitter Saturation Voltage (Note 7) $(I_C = 10 \text{ mA}, I_B = 0.3 \text{ mA})$	V _{CE(sat)}	_	-	0.25	V
Input Voltage (Off) ($V_{CE} = 5.0 \text{ V}, I_C = 100 \mu\text{A}$) (NPN) ($V_{CE} = 5.0 \text{ V}, I_C = 100 \mu\text{A}$) (PNP)	V _{i(off)}	-	1.2 1.2		Vdc
Input Voltage (On) ($V_{CE} = 0.2 \text{ V}, I_C = 3.0 \text{ mA}$) (NPN) ($V_{CE} = 0.2 \text{ V}, I_C = 3.0 \text{ mA}$) (PNP)	V _{i(on)}	-	1.9 2.0		Vdc
Output Voltage (On) (V _{CC} = 5.0 V, V _B = 3.5 V, R _L = 1.0 k Ω)	V _{OL}	_	_	0.2	Vdc
Output Voltage (Off) (V_{CC} = 5.0 V, V_B = 0.5 V, R_L = 1.0 k Ω)	V _{OH}	4.9	_	_	Vdc

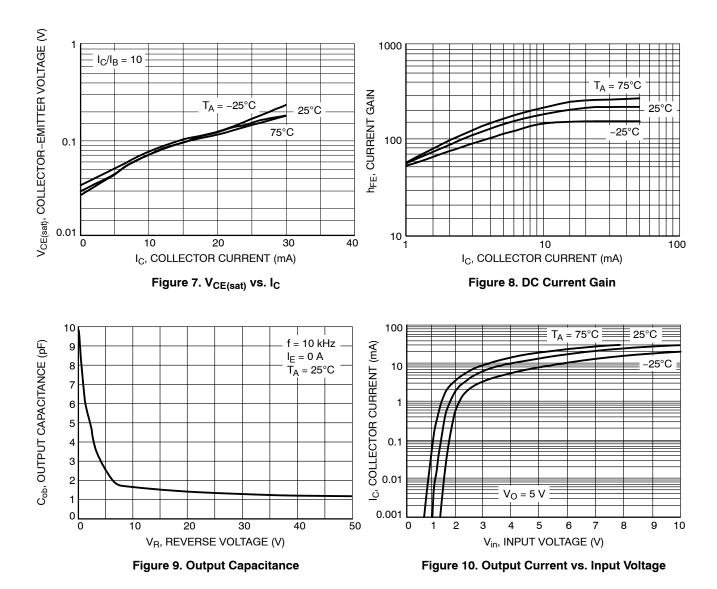
ELECTRICAL CHARACTERISTICS (T_A = 25°C both polarities Q₁ (PNP) & Q₂ (NPN), unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS					
Input Resistor	R1	32.9	47	61.1	kΩ
Resistor Ratio	R_1/R_2	0.8	1.0	1.2	

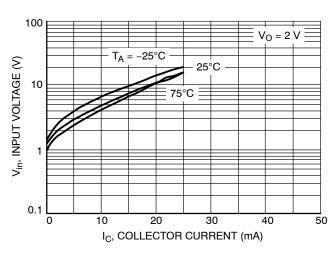
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{7.} Pulsed Condition: Pulse Width = 300 ms, Duty Cycle \leq 2%.

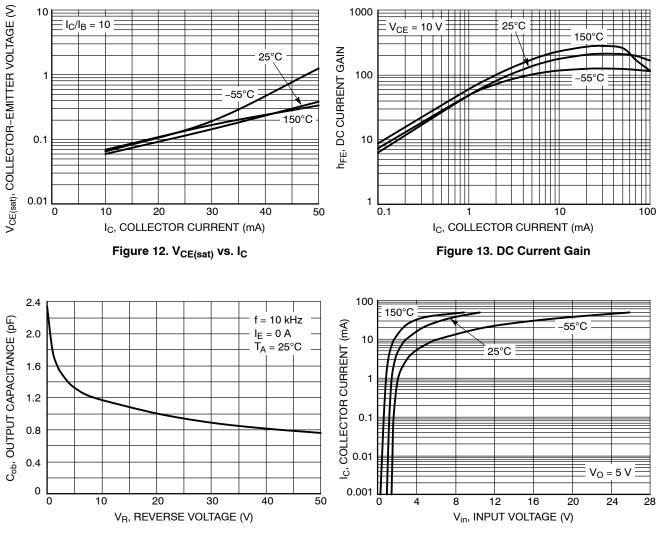
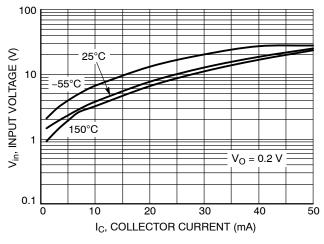

Figure 1. Derating Curve

TYPICAL CHARACTERISTICS – NPN TRANSISTOR MUN5313DW1, NSBC144EPDXV6



TYPICAL CHARACTERISTICS – PNP TRANSISTOR MUN5313DW1, NSBC144EPDXV6

TYPICAL CHARACTERISTICS – NPN TRANSISTOR NSBC144EPDP6

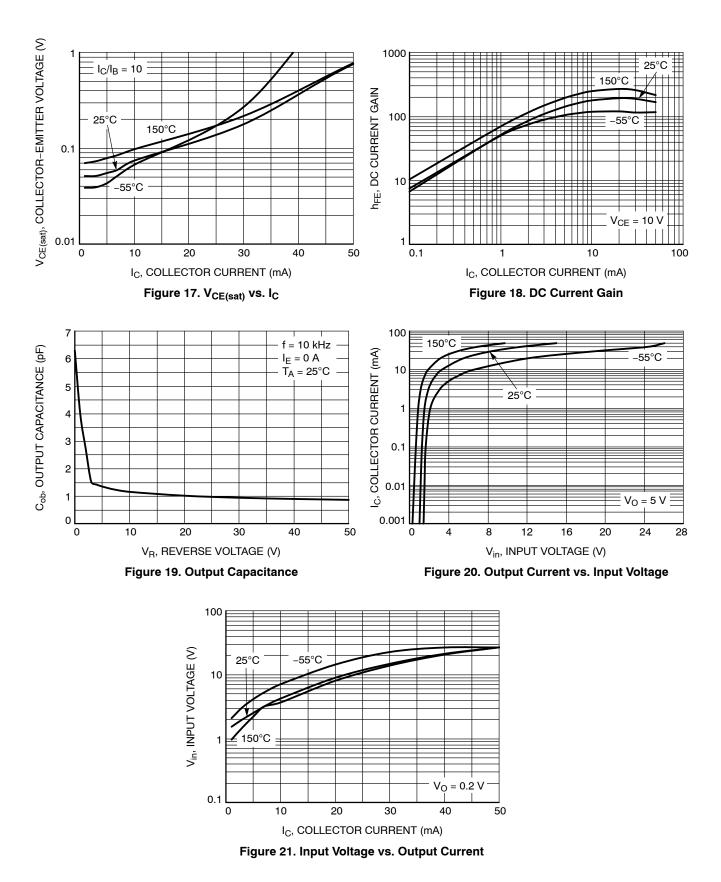
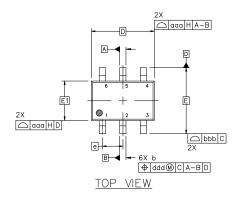
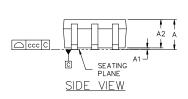
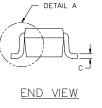

Figure 14. Output Capacitance

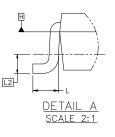
Figure 15. Output Current vs. Input Voltage


TYPICAL CHARACTERISTICS – PNP TRANSISTOR NSBC144EPDP6

semi


SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 **ISSUE Z**


DATE 18 APR 2024



NOTES:

- DIMENSIONING AND TOLERANCING CONFORM TO ASME 1. Y14.5-2018.
- 2.
- ALL DIMENSION ARE IN MILLIMETERS. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 3. PER END.
- 4. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5.
- DIMENSIONS & AND C APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. 6.
- DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. 7 ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION & AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

	MI	MILLIMETERS			
DIM	MIN.	NOM.	MAX.		
А			1.10		
A1	0.00		0.10		
A2	0.70	0.90	1.00		
b	0.15	0.20	0.25		
с	0.08	0.15	0.22		
D	2.00 BSC				
E	2.10 BSC				
E1	1.25 BSC				
е		0.65 BSC)		
L	0.26	0.36	0.46		
L2	0.15 BSC				
aaa	0.15				
bbb	0.30				
ccc	0.10				
ddd		0.10			

6X 0.66 6X 0.30-2.50 0.65 PITCH

RECOMMENDED MOUNTING FOOTPRINT*

FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

XXXM. . 0

GENERIC **MARKING DIAGRAM***

6

Μ

XXX = Specific Device Code

= Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.65	5P	PAGE 1 OF 2		
onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation					

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 ISSUE Z

DATE 18 APR 2024

STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6: PIN 1. ANODE 2 2. N/C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 7: PIN 1. SOURCE 2 2. DRAIN 2 3. GATE 1 4. SOURCE 1 5. DRAIN 1 6. GATE 2	STYLE 8: CANCELLED	STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2	STYLE 10: PIN 1. SOURCE 2 2. SOURCE 1 3. GATE 1 4. DRAIN 1 5. DRAIN 2 6. GATE 2	STYLE 11: PIN 1. CATHODE 2 2. CATHODE 2 3. ANODE 1 4. CATHODE 1 5. CATHODE 1 6. ANODE 2	STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2
STYLE 13:	STYLE 14:	STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE	PIN 1. VREF	PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. N/C	2. GND	2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. COLLECTOR	3. GND	3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. EMITTER	4. IOUT	4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. BASE	5. VEN	5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE	6. VCC	6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 19:	STYLE 20:	STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. I OUT	PIN 1. COLLECTOR	PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. GND	2. COLLECTOR	2. N/C	2. GND	2. CH1	2. ANODE
3. GND	3. BASE	3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. V CC	4. EMITTER	4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. V EN	5. COLLECTOR	5. N/C	5. VBUS	5. CH2	5. CATHODE
6. V REF	6. COLLECTOR	6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 25:	STYLE 26:	STYLE 27:	STYLE 28:	STYLE 29:	STYLE 30:
PIN 1. BASE 1	PIN 1. SOURCE 1	PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. CATHODE	2. GATE 1	2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 2	3. DRAIN 2	3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. BASE 2	4. SOURCE 2	4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER	5. GATE 2	5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 1	6. DRAIN 1	6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.6	SC-88 2.00x1.25x0.90, 0.65P PA			

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOT-563-6 1.60x1.20x0.55, 0.50P CASE 463A ISSUE J DATE 15 FEB 2024 NOTES: 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018. 2. ALL DIMENSION ARE IN MILLIMETERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM 3 THICKNESS OF BASE MATERIAL. -A D MILLIMETERS А 6X L DIM В MIN NDM. MAX. m 0.50 0.55 А 0.60 ł 6 4 PIN b 0.17 0.22 0.27 F Н REFERENCE C 0.08 0.13 0.18 2 ັບ 1 3 D 1.50 1.60 1.70 E 1.20 1.30 1.10 -⊨ 6X b C ⊕ 0.08∭ A B е 0.50 BSC е Н 1.50 1.60 1.70 TOP VIEW SIDE VIEW L 0.10 0.20 0.30 1.30 6X 0.45 0.30 1.80 STYLE 1: STYLE 2 STYLE 3 PIN 1. EMITTER 1 2. BASE 1 PIN 1. EMITTER 1 PIN 1. CATHODE 1 2. CATHODE 1 2. EMITTER 2 3. COLLECTOR 2 3. BASE 2 3. ANDDE/ANDDE 2 4. EMITTER 2 4. COLLECTOR 2 4. CATHODE 2 0.50 5. BASE 2 5. BASE 1 5. CATHODE 2 6. COLLECTOR 1 PITCH 6. COLLECTOR 1 6. ANDDE/ANDDE 1 RECOMMENDED MOUNTING FOOTPRINT* STYLE 6: PIN 1. CATHODE 2. ANODE FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE STYLE 5 STYLE 4: 1. CATHODE 2. CATHODE PIN 1. COLLECTOR PIN 2. COLLECTOR 3. BASE 3. ANDDE 3. CATHODE 4. ANDDE 5. CATHODE 4. CATHODE 5. CATHODE 4. EMITTER MANUAL, SOLDERRM/D. 5, COLLECTOR 6. COLLECTOR 6. CATHODE 6. CATHODE GENERIC **MARKING DIAGRAM*** STYLE 7: STYLE 8 STYLE 9 PIN 1. CATHODE PIN 1. DRAIN PIN 1. SOURCE 1 2. ANDDE 2. DRAIN 2. GATE 1 XXM. 3. CATHODE 4. CATHODE 3. GATE 4. SDURCE 5. DRAIN 3. DRAIN 2 4. SDURCE 2 5. GATE 2 1 5. ANDDE 6. CATHODE 6. DRAIN 6. DRAIN 1 XX = Specific Device Code M = Month Code = Pb-Free Package STYLE 10: STYLE 11: *This information is generic. Please refer to PIN 1. CATHODE 1 PIN 1. EMITTER 2 device data sheet for actual part marking. 2. N/C 3. CATHODE 2 2. BASE 2 3. COLLECTOR 1 Pb-Free indicator, "G" or microdot "•", may 4. ANDDE 2 EMITTER 1 4. or may not be present. Some products may BASE 5. N/C 5. not follow the Generic Marking. 6. ANDDE 1 COLLECTOR 2 6. Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98AON11126D Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOT-563-6 1.60x1.20x0.55, 0.50P PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

SOT-963 1.00x1.00x0.37, 0.35P CASE 527AD ISSUE F DATE 20 FEB 2024 NDTES: MILLIMETERS DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. 1. CONTROLLING DIMENSION: MILLIMETERS. 2. DIM MIN. NDM. MAX. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH З. 0.37 0.40 Α 0.34 THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 0.10 0.15 0.20 h DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, 4. PROTRUSIONS, OR GATE BURRS. С 0.07 0.12 0.17 A D D 0.95 1.00 1.05 А В Ε 0.75 0.80 0.85 4 6 0.35 BSC e Н Н 0.95 1.00 1.05 0.19 REF L2 0.05 0.10 0.15 ΤΠΡ VIEW С 6X 0.20 -6X 0.35 SIDE VIEW e 6X L 1.20 PACKAGE DUTLINE 0.35 PITCH L2 6X b RECOMMENDED MOUNTING \oplus 0.08 A B FOOTPRINT BOTTOM VIEW *For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor STYLE 1: PIN 1. EMITTER 1 STYLE 3: STYLE 2: PIN 1. EMITTER 1 PIN 1. CATHODE 1 Soldering and Mounting Techniques Reference manual, SOLDERRM/D. 2. BASE 1 2. EMITTER2 2. CATHODE 1 3. COLLECTOR 2 4. EMITTER 2 3. ANODE/ANODE 2 4. CATHODE 2 3. BASE 2 4. COLLECTOR 2 5. BASE 2 5. BASE 1 5. CATHODE 2 6. COLLECTOR 1 6. COLLECTOR 1 6. ANODE/ANODE 1 STYLE 4: STYLE 5: STYLE 6: PIN 1. CATHODE 2. CATHODE 3. ANODE 4. ANODE PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE PIN 1. COLLECTOR 2. COLLECTOR GENERIC 3. BASE 4. EMITTER **MARKING DIAGRAM*** 5 COLLECTOR 5. CATHODE 6. CATHODE 5 CATHODE 6. COLLECTOR 6. CATHODE STYLE 9: PIN 1. SOURCE 1 2. GATE 1 STYLE 7: PIN 1. CATHODE 2. ANODE STYLE 8: XXM PIN 1. DRAIN 2. DRAIN 1 3. CATHODE 4. CATHODE 3. GATE 4. SOURCE 3. DRAIN 2 4. SOURCE 2 XX = Specific Device Code 5. ANODE 6. CATHODE 5. DRAIN 5. GATE 2 6. DRAIN = Month Code 6. DRAIN 1 М STYLE 10: PIN 1. CATHODE 1 *This information is generic. Please refer to device data sheet for actual part marking. 2. N/C 3. CATHODE 2 Pb-Free indicator, "G" or microdot "=", may 4. ANODE 2 5. N/C or may not be present. Some products may not follow the Generic Marking. ANODE 1 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DOCUMENT NUMBER:** 98AON26456D **DESCRIPTION:** SOT-963 1.00x1.00x0.37, 0.35P PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

MUN5313DW1T1 MUN5313DW1T1G NSBC144EPDP6T5G NSBC144EPDXV6T1 NSBC144EPDXV6T1G NSBC144EPDXV6T5 NSBC144EPDXV6T5G SMUN5313DW1T1G NSVB144EPDXV6T1G SMUN5313DW1T3G NSVBC144EPDXV6T1G